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Abstract

We consider the probability that a weighted sum of n i.i.d. random variables Xj , j =
1, . . . , n, with stretched exponential tails is larger than its expectation and deter-
mine the rate of its decay, under suitable conditions on the weights. We show that
the decay is subexponential, and identify the rate function in terms of the tails of
Xj and the weights. Our result generalizes the large deviation principle given by
Kiesel and Stadtmüller [9] as well as the tail asymptotics for sums of i.i.d. random
variables provided by Nagaev [10, 11]. As an application of our result, motivated
by random projections of high-dimensional vectors, we consider the case of random,
self-normalized weights that are independent of the sequence {Xj}j∈N, identify the
decay rate for both the quenched and annealed large deviations in this case, and
show that they coincide. As another application we consider weights derived from
kernel functions that arise in nonparametric regression.
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1 Introduction

Let {Xj}j∈N be a sequence of independent and identically distributed (i.i.d.) random

variables on a probability space (Ω,F ,P) that take values in the real line R and have

finite expectation m := E[X1] < ∞. For n ∈ N, let Sn :=
∑n
j=1Xj denote the partial

sum, and let S̄n := Sn/n denote the empirical mean. The strong law of large numbers

implies that S̄n → m almost surely. Cramér’s Theorem on large deviations tells us that

if the Xj have finite exponential moments, that is, there exists t > 0 such that

M(t) := E[exp (tX1)] <∞, (1.1)

then for any x > m, the probability P
(
S̄n ≥ x

)
decays exponentially. More precisely,

lim
n→∞

1

n
logP

(
S̄n ≥ x

)
= −Λ∗(x),
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Large deviations for weighted sums

where Λ∗(x) := supt≥0 {tx− logM(t)} > 0. We will refer to this case as the “light-tailed”

case. It is well known that if M(t) = +∞ for all t > 0, the probabilities P
(
S̄n ≥ x

)
decay slower than exponentially. The reason is that, in contrast to when (1.1) holds,

a “deviation” of the type S̄n ≥ x is produced by the event that just one of the random

variables takes a large value. For instance, if there is r ∈ (0, 1) and c > 0 such that

P (X1 ≥ t) = c exp(−tr) for t large enough, then

lim
n→∞

1

nr
logP

(
S̄n ≥ x

)
= −(x−m)r, ∀x > m. (1.2)

The result in (1.2) goes back to Theorem 3 in [10] and it will also follow from our main

result, Theorem 1. Cramér’s Theorem was generalized in [9] to weighted sums of i.i.d.

random variables; see Section 2 below for a precise statement of their results. Our

main result, Theorem 1, gives a corresponding statement for weighted sums of i.i.d.

random variables with stretched exponential tails, which arise in many applications.

One motivation to consider weighted sums, which is elaborated upon in Section 5.1,

comes from random projections of high-dimensional vectors, which are of relevance

in asymptotic geometric analysis [5] and data analysis [2]. Another motivation stems

from statistics (kernel functions, moving averages), see Section 5.2 for an example. The

analogous example for the light-tailed case was considered in [9].

This article is organized as follows: We first present the result and the regularity

conditions from [9] in Section 2. Our main result, Theorem 1, is given in Section 3, and

its proof is presented in Section 4. Finally, in Section 5.1, we give an application to

random weights, and in Section 5.2, we consider weights derived from kernel functions

that arise in non-parametric regression.

2 The Light-Tailed Case

For n ∈ N, let {aj(n)}j∈N be a sequence of real numbers which we will call weights.

For n ∈ N, define the weighted sum

S̄n :=

n∑
j=1

aj(n)Xj , (2.1)

and let µn be the distribution of S̄n, that is, the measure on B (R), the set of Borel sets

in R, given by

µn (A) := P
(
S̄n ∈ A

)
, A ∈ B(R). (2.2)

When the {Xj}j∈N have finite exponential moments, that is, the moment generating

function M(t) defined in (1.1) is finite for all t ∈ R, a large deviation principle for the

sequence of weighted sums {S̄n}n∈N was established in [9] under suitable assumptions

on the weights, see Assumption A below. The “classical” case of Cramér’s theorem

corresponds to aj(n) = 1/n, j = 1, 2, . . . , n, n ∈ N.

Assumption A. (A.1) There exists a sequence of real numbers {sν}ν∈N such that sν 6= 0

for all ν ∈ N, the limit s := lim
ν→∞

ν
√
|sν | exists and

n∑
j=1

(aj(n))
ν

=
sν
nν−1

R(ν, n) for all ν and n ∈ N, (2.3)

for some function R : N2 → R that satisfies, for every ν ∈ N, R (ν, n) → 1 as

n→∞.
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Large deviations for weighted sums

(A.2) There exist sequences {rν}ν∈N and {δn}n∈N such that lim supν→∞ ν
√
rν ≤ 1,

limn→∞ δn = 0 and the error term satisfies

|R(ν, n)− 1| ≤ rν
(1 + δn)ν

n
for all ν and n. (2.4)

Now, let Λ denote the cumulant (or log moment) generating function of X1, and let

{cν}ν∈N be the sequence of coefficients that arise in the power series expansion for Λ:

that is, given M(t) as in (1.1),

Λ(t) := logM(t) =

∞∑
ν=1

cν
ν!
tν , t ∈ R. (2.5)

Also, for t > 0, let χ(t) :=
∞∑
ν=1

sνcν
ν! t

ν , and let χ∗ denote its Legendre-Fenchel transform:

χ∗(t) := sup
t∈R
{tx− χ(t)}. (2.6)

It was shown in [9] that under Assumption A the sequence of measures {µn}n∈N on

B(R) defined in (2.2) satisfies a large deviation principle with speed n and rate function

χ∗. Recall that this means that

− inf
x∈A◦

χ∗(x) ≤ lim inf
n→∞

1

n
µn(A◦) ≤ lim sup

n→∞

1

n
µn(Ā) ≤ − inf

x∈Ā
χ∗(x), ∀A ∈ B(R),

where A◦ and Ā, respectively, represent the interior and the closure of the set A.

Remark 2.1. In fact, [9] provides a more general result that considers an infinite sum

and refers to a general scale within the regularity conditions (cf. Assumption A), that

is, they prove large deviations for the family of weighted sums of the form A(λ) :=∑∞
j=1 aj(λ)Xj , where λ ∈ I and either I = N or I = [0,∞].

Our goal will be to relax the finiteness assumption (1.1) on the moment generating

function M(·).

3 Main Result

In order to present our large deviation result for weighted sums of stretched ex-

ponential random variables, we will use slightly different assumptions on the weights

from those used in [9]. We will restrict our considerations to non-negative weights. As

we show in Lemma 3.1 below, in this case, our assumptions are weaker than those used

in [9].

Assumption B. (B.1) There exists a real number s1 6= 0 such that the sequence

{R(1, n)}n∈N of real numbers defined by

n∑
j=1

aj(n) = s1R(1, n), for all n ∈ N,

satisfies R(1, n)→ 1 as n→∞.

(B.2) There exists a real number s such that for amax(n) := max1≤j≤n aj(n),

lim
n→∞

n · amax(n) = s. (3.1)
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Large deviations for weighted sums

Examples of weight sequences that satisfy both Assumption A and Assumption B include

Valiron means, see [9], as well as kernel functions (see Section 5.1).

Recall that a function ` : (0,∞) → (0,∞) is called slowly varying (at infinity) if for

every a > 0,

lim
x→∞

`(ax)

`(x)
= 1. (3.2)

We now state our main result.

Theorem 1 (Large Deviations for Weighted Sums, Stretched Exponential Tails). Let

{Xj}j∈N be a sequence of i.i.d. random variables on a probability space (Ω,F ,P) with

E[|X1|k] <∞ ∀k ∈ N, (3.3)

and let m := E[X1]. Suppose that there exist a constant r ∈ (0, 1) and slowly varying

functions b, c1, c2 : (0,∞)→ (0,∞) and a constant t∗ > 0 such that for t ≥ t∗,

c1(t) exp (−b(t)tr) ≤ P (X1 ≥ t) ≤ c2(t) exp (−b(t)tr) . (3.4)

Let {aj(n)}j∈N, n ∈ N, be an infinite array of non-negative real numbers that satisfy

Assumption B with associated constants s1, s ∈ R, and let {S̄n}n∈N be the sequence of

weighted sums defined in (2.1). Then

lim
n→∞

1

b(n)nr
logP

(
S̄n ≥ x

)
= −

(x
s
− s1

s
m
)r
, ∀x > s1m. (3.5)

Remark 3.1. The non-negativity assumption on the weights cannot be relaxed without

additional information about the lower tail of the {Xj}, that is, about the probabilites

P(X1 ≤ −t) for t > 0. Consider the following example: aj(n) = 1/n, j = 1, . . . , b2n/3c,
aj(n) = −1/n, j = b2n/3c + 1, . . . , n (where, for z ∈ R, bzc represents the greatest

integer less than or equal to z). Then Assumption B is satisfied with s1 = 1/3 and s = 1.

Take i.i.d. random variables {Xj}j∈N with mean m that satisfy (3.3), (3.4) and the lower

tail bound P(X1 ≤ −t) = exp(−tα) for some α with 0 < α < r, and t large enough.

Then, applying Theorem 1 to {−Xj}j∈N with aj(n) = 1/n, and for any ε > 0, noting

on the one hand that, as n → ∞, P(X1 + . . . + Xb2n/3c ≥ 2n(m + ε)/3) is negligible

in comparison with P(−Xb2n/3c+1 − . . . − Xn ≥ n(x − 2(m + ε)/3)), and on the other

hand that P(X1 + . . . Xb2n/3c ≥ 2n(m − ε)/3) converges to 1 by the strong law of large

numbers, it can be shown that for every x > m/3, we have with γx = (x −m/3)α > 0

that

lim
n→∞

1

nα
logP

(
S̄n ≥ x

)
= −γx < 0.

However, we cannot recover α, and hence, γx from the assumptions in Theorem 1.

Remark 3.2. For the same reason as in the last remark, namely that the only assump-

tion on the lower tail of {Xj}j∈N is (3.3), the result in (3.4) cannot be strengthened to a

large deviation principle without imposing further assumptions. For x < s1m, the decay

of P(S̄n ≤ x) is determined by the lower tail of the {Xj}. For example, if the {Xj}j∈N
are bounded below, Cramér’s Theorem implies that P(S̄n ≤ x) decays exponentially in

n. If, on the other hand, P(X1 ≤ −t) = exp(−tα) with 0 < α < r, then as in Remark 3.1,

we can show that −∞ < limn→∞ n−α logP(S̄n ≤ x) < 0.

Stretched exponential distributions have been proposed as a complement to the

frequently used power law distributions to model many naturally occurring heavy-tailed

distributions, see e.g. [6] for applications. Any distribution that satisfies (3.4) and is
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Large deviations for weighted sums

bounded below also satisfies (3.3). A concrete example is the Weibull distribution with

shape parameter lying in the interval (0, 1). Before proceeding to the proof of Theorem

1, we comment on the relationship between Assumptions A and B. Specifically, for a

non-negative sequence of weights, we show in Lemma 3.1 that Assumption B is weaker

than Assumption A. To see that it is strictly weaker, consider the sequence of weights

defined by aj(n) = n−1 + n−(1+ε), j = 1, ..., n, for some ε ∈ (0, 1
2 ). It is easy to show that

this sequence satisfies Assumption B, but does not satisfy condition (A.2).

Lemma 3.1 (Relationship between Assumptions A and B). Let {aj(n)}j∈N, n ∈ N, be an

infinite array of non-negative real numbers that satisfy Assumption A. Then {aj(n)}j∈N,

n ∈ N also satisfies Assumption B.

Proof. Given weights {aj(n)}j∈N, n ∈ N, that satisfy Assumption A, clearly (B.1) follows

immediately from (A.1). It only remains to show (B.2). First, note that by Assumption

(A.2), R(ν, n) satisfies the inequality

1− rν
(1 + δn)ν

n
≤ R(ν, n) ≤ 1 + rν

(1 + δn)ν

n
. (3.6)

Moreover, for any ε > 0, we can find ν∗(ε) ∈ N and n∗(ε) ∈ N such that

0 ≤ rν ≤ (1 + ε)ν , ∀ν ≥ ν∗(ε), and 0 ≤ δn ≤ ε, ∀n ≥ n∗(ε). (3.7)

Using Assumptions (A.1) and (A.2), together with the inequality (amax(n))ν ≤
∑n
j=1(aj(n))ν ,

we see that for ν, n ∈ N,

namax(n) ≤ n

 n∑
j=1

(aj(n))ν

 1
ν

= n(sνR(ν, n))
1
ν · (n1−ν)

1
ν

≤ n
1
ν (sν)

1
ν

(
1 + rν

(1 + δn)ν

n

) 1
ν

.

Together with (3.7), this implies that for ε > 0, and ν ≥ ν∗(ε), n ≥ n∗(ε),

namax(n) ≤ (sν)
1
ν

(
n(1 + ε)2ν + (1 + ε)2ν

) 1
ν = (n+ 1)

1
ν (sν)

1
ν (1 + ε)2.

Setting ν = n, for n ≥ max{ν∗(ε), n∗(ε)}, we have

namax(n) ≤ n
√
n+ 1 n

√
sn(1 + ε)2.

Since s = limn→∞ n
√
sn by (A.1), taking first the limit superior as n → ∞ and then as

ε ↓ 0, we see that

lim sup
n→∞

namax(n) ≤ lim
ε↓0

s(1 + ε)2 = s. (3.8)

Next, to bound namax(n) from below, we will make use of the fact that (namax(n))ν ≥
nν−1

∑n
j=1(aj(n))ν . Indeed, then for ε > 0, by (2.3), (2.4) and (3.7), for ν ≥ ν∗(ε) and

n ≥ n∗(ε), we have

namax(n) ≥ (sνR(ν, n))
1
ν

≥ (sν)
1
ν

(
1− rν

(1 + δn)ν

n

) 1
ν

≥ (sν)
1
ν

(
1− (1 + ε)2ν

n

) 1
ν

.
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Large deviations for weighted sums

Taking limits as n→∞ and noting that (1− (1+ε)2ν

n )n ∼ exp{−(1 + ε)2ν} and nν →∞ as

n→∞, we obtain

lim inf
n→∞

namax(n) ≥ (sν)
1
ν lim inf

n→∞

((
1− (1 + ε)2ν

n

)n) 1
nν

≥ (sν)
1
ν , ∀ν ≥ ν∗(ε).

Sending ν →∞ and recalling from (A.1) that s = limν→∞ ν
√
sν , we conclude that

lim inf
n→∞

namax(n) ≥ s. (3.9)

Combining (3.8) and (3.9), we see that the weights {aj(n)}j∈N satisfy (B.2), and thus

Assumption B.

4 Proof of Theorem 1

We will prove a slightly stronger statement than Theorem 1, namely we show in

Section 4.2 that if (3.3) holds for only k = 1, 2 and the first inequality in (3.4) holds, then

the lower bound

lim inf
n→∞

1

b (n)nr
logP

(
S̄n ≥ x

)
≥ −

(x
s
− s1

s
m
)r
, ∀x > s1m, (4.1)

holds; and in Section 4.3 we show that (3.3) and the second inequality in (3.4) imply the

upper bound

lim sup
n→∞

1

b (n)nr
logP

(
S̄n ≥ x

)
≤ −

(x
s
− s1

s
m
)r
, ∀x > s1m. (4.2)

First, in Section 4.1, we summarize some relevant properties of slowly varying func-

tions. Throughout the section, the notation f(x) ∼ g(x) as x → ∞ for two functions

f, g : R → R means that lim
x→∞

f(x)/g(x) = 1. Also, given a set A, 1A will denote the

indicator function of A, which equals 1 on A and 0 on the complement.

4.1 Properties of Slowly Varying Functions

We will need the following preliminaries on slowly varying functions. Proposition

(4.1) corresponds to Proposition 1.3.6 in [1], where Lemma (4.2) refers to (1.4) in [7].

Proposition 4.1 (Properties of Slowly Varying Functions). Let ` : (0,∞) → (0,∞) be a

slowly varying function (at infinity). Then

(i) lim
x→∞

log `(x)

log x
= 0.

(ii) For any α ∈ R, the function f(x) = (`(x))α, x ∈ R, is slowly varying.

(iii) For any α > 0, xαl(x)→∞ and x−αl(x)→ 0 as x→∞.

Furthermore, if m : (0,∞)→ (0,∞) is another slowly varying function then

(iv) the functions f(x) = `(x)m(x) and g(x) = `(x) +m(x), x ∈ R, are slowly varying.

(v) if m(x)→∞ as x→∞, then the function f(x) = `(m(x)), x ∈ R, is slowly varying.

Lemma 4.2 (Representation for Slowly Varying Functions). A function ` : (0,∞) →
(0,∞) is slowly varying if and only if there exist a > 0, η̄ ∈ R and bounded measurable

functions η(·) and ε(·) with η(x) → η̄, ε(x) → 0 as x → ∞ such that, for x ≥ a, ` can be

written in the form

`(x) = exp

η(x) +

x∫
a

ε(u)

u
du

 . (4.3)
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As a direct consequence of Lemma 4.2, we have the following result.

Lemma 4.3. Let ` : (0,∞) → (0,∞) be a slowly varying function and let g : (0,∞) →
(0,∞) be another function such that g(x) → c for some c ∈ (0,∞) as x → ∞. Then we

have

lim
x→∞

` (g(x)x)

`(x)
= 1. (4.4)

4.2 The Lower Bound

For n ∈ N, let j∗(n) := inf{1 ≤ j ≤ n : aj(n) = amax(n)}. For any fixed ε > 0, since

the {Xj}j∈N are i.i.d.,

P(S̄n ≥ x)

= P

 n∑
j=1

aj(n)(Xj −m) ≥ x−
n∑
j=1

aj(n)m


≥ P

amax(n)(Xj∗(n) −m) ≥ x−
n∑
j=1

aj(n)m+ ε,
∑

j∈{1,...,n},j 6=j∗(n)

aj(n)(Xj −m) ≥ −ε


= P (X1 ≥ t1(n))P

 ∑
j∈{1,...,n},j 6=j∗(n)

aj(n)(Xj −m) ≥ −ε

 ,

where t1(n) = tε1(n) is defined by

t1(n) :=
1

namax(n)

n
x− n∑

j=1

aj(n)m+ amax(n)m+ ε

 , n ∈ N. (4.5)

Applying the lower bound of (3.4) with t = t1(n), we obtain

P
(
S̄n ≥ x

)
≥ c1 (t1(n)) exp {−b (t1(n)) (t1(n))r}·P

 ∑
j∈{1,...,n},j 6=j∗(n)

aj(n)(Xj −m) ≥ −ε

 .

(4.6)

Note that by Assumption B, t1(n) ∼
(
x
s −

s1
s m+ ε

s

)
n as n → ∞. Since c1(·) and b(·) are

slowly varying functions, Lemma 4.3 implies that c1 (t1(n)) ∼ c1(n) and b (t1(n)) ∼ b(n)

as n→∞. Moreover, note that for some fixed δ ∈ (0, r), we can express log c1(n)/b(n)nr =

(log c1(n)/ log n)(log n/nδ)(b(n)nr−δ)−1, which goes to zero as n → ∞ by properties (i)

and (iii) of Proposition 4.1. Furthermore, since the {Xj} have finite second moments by

(3.3), and (B.2) implies that
∑n
j=1,j 6=j∗(n) aj(n)2 ≤ n(amax(n))2 → 0 as n → ∞, it follows

that
∑
j∈{1,...,n},j 6=j∗(n) aj(n)(Xj −m) converges to zero in L2. In turn, this implies that

limn→∞P(
∑
j∈{1,...,n},j 6=j∗(n) aj(n)(Xj −m) ≥ −ε) = 1. Thus, taking logarithms of both

sides of (4.6), then dividing by b(n)nr and sending first n→∞, and then ε ↓ 0, we obtain

the lower bound (4.1).

4.3 The Upper Bound

Let t2(n) := n
(
x
s −

s1
s m
)
. Then, we can write

P
(
S̄n ≥ x

)
≤ An1 +An2 , (4.7)

where, for n ∈ N,

An1 := P

(
max

1≤j≤n
Xj ≥ t2(n)

)
, An2 := P

(
S̄n ≥ x, max

1≤j≤n
Xj < t2(n)

)
.
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The union bound and the upper tail bound for X1 in (3.4) imply that

An1 ≤ nP(X1 ≥ t2(n)) ≤ nc2 (t2(n)) · exp {−b (t2(n)) (t2(n))r} .

Since b is slowly varying, b (t2(n)) ∼ b (n) as n→∞, and properties (i) and (iii) of Propo-

sition 4.1 show that limn→∞ log n/b(n)nr = limn→∞ log c2(t2(n))/b(n)nr = 0. Together

with the last display, this implies that

lim sup
n→∞

1

b (n)nr
logAn1 ≤ lim sup

n→∞

−(t2(n))r

nr
= −

(x
s
− s1

s
m
)r
. (4.8)

Next, we turn to An2 . Applying the exponential Chebyshev inequality with a posi-

tive real parameter βζ(n)/s (to be specified later), and using the i.i.d. property of the

sequence {Xj}j∈N, we obtain

An2 ≤ exp
{
−βζ(n)

x

s

}
·
n∏
j=1

E

[
exp

{
βζ(n)

aj(n)

s
Xj

}
· 1{Xj<t2(n)}

]
. (4.9)

Now, for ζ > 0, define

βζ(n) := ζnrb
(
n
(x
s
− s1

s
m
))

= ζnrb(t2(n)). (4.10)

Then, since b(·) is slowly varying, limn→∞ βζ(n)/(b(n)nr) = ζ. Together with (4.9) this

implies that

lim sup
n→∞

1

b(n)nr
logAn2 ≤ −ζ

x

s
+ lim sup

n→∞

1

b(n)nr

n∑
j=1

Λjζ(n), (4.11)

where, for j = 1, . . . , n, n ∈ N, and ζ > 0, we define

Λjζ(n) := logE

[
exp

{
βζ(n)

aj(n)

s
X

(n)
j

}]
, where X(n)

j := Xj1{Xj<t2(n)}. (4.12)

We now show that the upper bound (4.2) is satisfied if the following proposition holds.

Proposition 4.4 (Boundedness of the remainder). For every ζ <
(
x
s −

s1
s m
)r−1

,

lim sup
n→∞

1

b (n)nr

n∑
j=1

Λjζ(n) ≤ ζms1

s
. (4.13)

Indeed, given Proposition 4.4, we can substitute (4.13) into (4.11) and send ζ ↑(
x
s −

s1
s m
)r−1

to conclude that

lim sup
n→∞

1

b(n)nr
logAn2 ≤ −

(x
s
− s1

s
m
)r
.

Together with (4.7), and the analogous bound (4.8) for An1 , we obtain the upper bound

(4.2).

Thus, to prove the upper bound, it only remains to prove Proposition 4.4. We use

similar techniques as in [8].

Proof of Proposition 4.4. Fix ζ < (xs −
s1
s m)r−1 and denote βζ(n) and Λjζ simply as β(n)

and Λj . For the fixed r ∈ (0, 1), we also choose k ∈ N such that r < k/(k + 1). Then,

by the definition (4.12) of Λj , the estimates log x ≤ x − 1 for x > 0 and ex − 1 ≤
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x+ 1
2x

2 + 1
6x

3 + ...+ 1
(k+1)!x

k+1ex, finiteness of the moments of Xj due to (3.3), and the

fact that β(n)/(b(n)nr)→ ζ and
∑n
j=1 aj → s1 as n→∞, we have

lim sup
n→∞

1

b (n)nr

n∑
j=1

Λj(n) ≤ lim sup
n→∞

1

b(n)nr

 n∑
j=1

k∑
i=1

E

[(
β(n)

aj(n)
s X

(n)
j

)i]
i!

+
B0

(k + 1)!
,

with

B0 := lim sup
n→∞

1

b(n)nr

n∑
j=1

(
β(n)

aj(n)

s

)k+1

· E
[(
X

(n)
j

)k+1

exp

(
β(n)

aj(n)

s
X

(n)
j

)]
.

Now, note that due to (3.3) and Assumption B, lim
n→∞

1
b(n)nr

∑n
j=1E[(β(n)

aj(n)
s X

(n)
j )i] is

equal to ζm s1
s if i = 1, and is equal to zero if i 6= 1. This implies that

lim sup
n→∞

1

b (n)nr

n∑
j=1

Λj(n) ≤ ζms1

s
+

B0

(k + 1)!
.

To complete the proof of Proposition 4.4, it suffices to show that B0 = 0. In this regard,

we distinguish between the cases X(n)
j < t∗ and X

(n)
j ≥ t∗, where we recall that for

t ≥ t∗, (3.4) is satisfied. Specifically, we bound B0 by lim sup
n→∞

(B1(n) +B2(n)), where

B1(n) :=
1

b(n)nr

n∑
j=1

(
β(n)

aj(n)

s

)k+1

· (t∗)k+1
exp

(
β(n)

aj(n)

s
t∗
)
, (4.14)

B2(n) :=
1

b(n)nr

n∑
j=1

(
β(n)

aj(n)

s

)k+1

· E
[(
X

(n)
j

)k+1

exp

(
β(n)

aj(n)

s
X

(n)
j

)
1{

X
(n)
j ≥t∗

}] .
(4.15)

We now show that both B1(n) and B2(n) converge to 0 as n → ∞. Note that (B.2), the

definition of β(n) in (4.10) and, since r < k/(k+1), property (iii) of Proposition 4.1 imply

that

lim
n→∞

n

(
β(n)

amax(n)

s

)k+1

= lim
n→∞

(
amax(n)n

s

)k+1 (
ζnr−

k
k+1 b(n)

)k+1

= 0 (4.16)

and

lim
n→∞

(
β(n)

amax(n)

s

)
= 0. (4.17)

Combined with (4.14) and recalling that amax(n) := max1≤j≤n aj(n), this shows that

B1(n)→ 0 as n→∞.

Next, to bound B2(n), first note that by Hölder’s inequality, for any ε > 0 we have

E

[(
X

(n)
1

)k+1

exp

(
β(n)

amax(n)

s
X

(n)
1

)
1{X(n)

1 ≥t∗}

]
≤ E

[(
X

(n)
1

)(k+1)· 1+εε
1{X(n)

1 ≥t∗}

] ε
1+ε

· E
[
exp

(
(1 + ε)β(n)

amax(n)

s
X

(n)
1

)
1{X(n)

1 ≥t∗}

] 1
1+ε

.

(4.18)

Due to the finiteness of the moments of X1 assumed in (3.3), (4.16) yields

lim sup
n→∞

n ·
(
β(n)

amax(n)

s

)k+1

E

[(
X

(n)
1

)(k+1)· 1+εε
1{X(n)

1 ≥t∗}

] ε
1+ε

= 0.
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When combined with (4.15) and (4.18), to prove the convergence of B2(n) to zero, it

clearly suffices to show that

lim sup
n→∞

1

b(n)nr
E

[
exp

(
(1 + ε)β(n)

amax(n)

s
X

(n)
1

)
1{X(n)

1 ≥t∗}

] 1
1+ε

<∞ (4.19)

for ζ < (1+ε)−1
(
x
s −

s1
s m
)r−1

and the claim follows as ε→ 0. To derive an upper bound

for the expectation in (4.19) we will use the following integration-by-parts formula.

Lemma 4.5 (Integration by parts). For any random variable X on a probability space

(Ω,F ,P) and any α > 0, q1, q2 ∈ R with q1 < q2 the following relation holds:

E
[
exp (αX)1{q1≤X≤q2}

]
= α

q2∫
q1

exp (αz)P (X ≥ z) dz + exp (αq1)P (X ≥ q1)

− exp (αq2)P (X > q2) .

Recalling that X(n)
j = Xj1{Xj<t2(n)}, and applying Lemma 4.5 with q1 = t∗ and

q2 = t2(n), we deduce that

1

b(n)nr
E

[
exp

(
(1 + ε)β(n)

amax(n)

s
X

(n)
1

)
1{X(n)

1 ≥t∗}

]

≤ 1

b(n)nr

t2(n)∫
t∗

(1 + ε)β(n)
amax(n)

s
exp

(
(1 + ε)β(n)

amax(n)

s
z

)
P (X1 ≥ z) dz

+
1

b(n)nr
exp

(
(1 + ε)β(n)

amax(n)

s
t∗
)
. (4.20)

Since b(n)nr → ∞, the second term on the right-hand side of (4.20) converges to

zero by (4.17). Now, let ζ∗ := ζ ·
(
x
s −

s1
s m
)
. Inserting the upper bound (3.4) on the tail

of X1, substituting y := (t2(n))−1z and recalling the definition of β(n) from (4.10), we

see that the first term on the right-hand side of (4.20) is bounded above by

(1 + ε)ζ∗
b(t2(n))

b(n)

namax(n)

s
·

1∫
t∗

t2(n)

In(y)dy, (4.21)

where the integrand In(·) is given by

In(y) := c2 (t2(n)y) exp

{
nrb (t2(n))

(
(1 + ε)ζ∗

namax(n)

s
y − b(t2(n)y)

b(t2(n))

(x
s
− s1

s
m
)r
yr
)}

,

y ∈ (0, 1]. Since b(·) is slowly varying and condition (B.2) holds, we see that the coeffi-

cient in front of the integral in (4.21) converges to (1 + ε)ζ∗ as n → ∞. It now remains

to show that, for every ζ∗ < (1 + ε)−1
(
x
s −

s1
s m
)r

, the integral in (4.21) stays bounded

as n → ∞. By the assumption that b(·) is slowly varying and since r < 1, for any fixed

y ∈ (0, 1] and any ζ∗ < (1 + ε)−1
(
x
s −

s1
s m
)r

, it follows that In(y)→ 0 as n→∞. There-

fore, we need to examine the lower limit of integration yn := t∗/(t2(n)) and show that

In(yn) stays bounded as n→∞. Recalling that t2(n) = n(xs −
s1
s m) and ζ∗ = ζ(xs −

s1
s m),

note that

In(yn) = c2(t∗) exp

{
nr−1b(t2(n))(1 + ε)ζ

namax(n)

s
t∗ − b(t∗)(t∗)r

}
.
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Since namax(n) ∼ s, b(t2(n)) ∼ b(n) and nr−1b(n) → 0 as n → ∞, it follows that

lim supn→∞ In(yn) <∞.

Thus, we have shown that Bn2 converges to zero as n → ∞ and hence, that B0 = 0.

This completes the proof of Proposition 4.4, and hence, the upper bound (4.2) and

Theorem 1 follow.

5 Examples

5.1 Example 1: Random Weights

We consider a sequence of strictly positive i.i.d. random variables {θj}j∈N on (Ω,F ,P)

and assume that they are P-almost surely uniformly bounded, that is, their essential

supremum is finite:

M∗ := inf {a ∈ R : P (θ1 > a) = 0} <∞. (5.1)

Furthermore, define the triangular array of weights {aj(n, θ1, ..., θn), j = 1, . . . , n}n∈N
by

aj(n, θ1, ..., θn) :=
θj
n∑
i=1

θi

, j = 1, . . . , n, n ∈ N, (5.2)

let amax(n, θ1, . . . , θn) = maxj=1,...,n aj(n, θ1, . . . , θn) and let {S̄n}n∈N be the correspond-

ing sequence of weighted sums:

S̄n :=

n∑
j=1

aj(n, θ1, ..., θn)Xj =

n∑
j=1

θj
n∑
i=1

θi

Xj , n ∈ N. (5.3)

We prove a large deviation theorem for the sequence of random weighted sums {S̄n}n∈N,

both in the “quenched” (i.e., conditioned on the weight sequence {θj}j∈N), and “an-

nealed” (i.e., averaged over the weight sequence) cases. Note that S̄n is a random con-

vex combination of the data {Xi}. If, instead, we set aj(n, θ1, · · · , θn) = θj/
√∑n

i=1 θ
2
i ,

then a(n) := (a1(n), . . . , an(n)) is a unit vector in Rn and S̄n can be viewed as a one-

dimensional random projection of the data vector (X1, . . . , Xn). The latter case is more

involved and will be considered in a more general setting in forthcoming work.

Theorem 2 (Large Deviations for Random Weights, Stretched Exponential Tails). Let

{Xj}j∈N be a sequence of i.i.d. random variables such as in Theorem 1 and let {θj}j∈N
be a sequence of i.i.d. random variables which is independent of the sequence {Xj}j∈N,

and is almost surely uniformly bounded by M∗ as specified in (5.1). Define S̄n by (5.3).

Then, for x > m, we have

lim
n→∞

1

b (n)nr
logP

(
S̄n ≥ x

∣∣ θ1, θ2, ...) = −
[(
E[θ1]

M∗

)
(x−m)

]r
P-a.s., (5.4)

and

lim
n→∞

1

b (n)nr
logP

(
S̄n ≥ x

)
= −

[(
E[θ1]

M∗

)
(x−m)

]r
. (5.5)

Proof. The proof of (5.4) is a direct application of Theorem 1. First of all, note that for

every n ∈ N,
∑n
j=1 aj(n, θ1, ..., θn) = 1 almost surely, and hence s1 = 1, where s1 is the

quantity defined in (B.1). Furthermore,

n · amax(n, θ1, ..., θn) =
n ·max{θj : 1 ≤ j ≤ n}

n∑
i=1

θi

=
max{θj : 1 ≤ j ≤ n}

1
n

n∑
i=1

θi

. (5.6)
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It is easy to check that almost surely, max{θj : 1 ≤ j ≤ n} → M∗ as n → ∞. By

the strong law of large numbers, it follows that almost surely, n · amax(n, θ1, ..., θn) →
s := M∗/E[θ1] as n → ∞. By Theorem 1 we conclude that, for x > m, the quenched

asymptotics (5.4) are valid.

We now turn to the proof of (5.5). Note that we have

P
(
S̄n ≥ x

)
= P


1
n

n∑
j=1

θjXj

1
n

n∑
i=1

θi

≥ x

 . (5.7)

Now, 1
n

∑n
i=1 θi → E[θ1], P-almost surely, and the probability of a deviation decays expo-

nentially in n, due to Cramér’s Theorem (recall that the {θi} are uniformly bounded!).

We will now show that

lim
n→∞

1

b (n)nr
logP

(
S̄n ≥ x

)
≈ lim
n→∞

1

b (n)nr
logP

 1

n

n∑
j=1

θjXj ≥ E[θ1]x

 , (5.8)

in the sense explained in (5.9) and (5.10) below. Fix δ > 0 and consider the events Fn :=

{ 1
n

∑n
i=1 θi ≥ (1 − δ)E[θ1]} and their complements F cn for n ∈ N. Then, P

(
S̄n ≥ x

)
≤

P( 1
n

∑n
j=1 θjXj ≥ (1 − δ)E[θ1]x) + P(F cn), and since P(F cn) decays exponentially in n, it

follows that for any δ > 0,

lim sup
n→∞

1

b (n)nr
logP(S̄n ≥ x) ≤ lim sup

n→∞

1

b (n)nr
logP

 1

n

n∑
j=1

θjXj ≥ (1− δ)E[θ1]x

 .

(5.9)

On the other hand, with Gn := { 1
n

∑n
i=1 θi ≤ (1+δ)E[θ1]}, we have P(S̄n ≥ x) ≥ P({S̄n ≥

x}∩Gn) ≥ P( 1
n

∑n
j=1 θjXj ≥ (1+δ)E[θ1]x)−P(Gcn), and sinceP(Gcn) decays exponentially

in n, we have

lim inf
n→∞

1

b (n)nr
logP(S̄n ≥ x) ≥ lim inf

n→∞

1

b (n)nr
logP

 1

n

n∑
j=1

θjXj ≥ (1 + δ)E[θ1]x

 .

(5.10)

Looking at the right-hand sides of (5.9) and (5.10) we are in the situation of Theo-

rem 1 with i.i.d. random variables θjXj and weights aj(n) = 1
n , j = 1, . . . , n that

clearly satisfy Assumption B with s = s1 = 1 and R(ν, 1) = 1 for all ν ∈ N. Consid-

ering the tail of θ1X1, we see that due to (3.4), for t ≥ t∗, P(θ1X1 ≥ t) ≤ P(X1 ≥
t/M∗) ≤ c2(t/M∗) exp(−b(t/M∗)tr(M∗)−r). On the other hand, for t ≥ t∗, again by (3.4),

P(θ1X1 ≥ t) ≥ P(θ1 ≥ M∗ − δ)P(X1 ≥ t/(M∗ − δ)) ≥ P(θ1 ≥ M∗ − δ)c1(t/(M∗ −
δ)) exp(−b(t/(M∗ − δ))tr(M∗ − δ)−r). The proof is completed by applying the lower and

upper bounds in (4.1) and (4.2), respectively, and then sending δ ↓ 0 to obtain (5.5).

Remark 5.1. The equality of the quenched and annealed rate functions in (5.4) and

(5.5), respectively, is characteristic of our regime; it is in sharp contrast to the case of

light-tailed random variables Xj , that is, random variables Xj satisfying (1.1). In the

light-tailed case, P
(
S̄n ≥ x

∣∣ θ1, θ2, ...) and P
(
S̄n ≥ x

)
both decay exponentially in n, but

the rate functions will in general not be the same. This was one of the motivations for

the present paper, and will be treated in forthcoming work.
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5.2 Example 2: Kernel Functions

Kernel functions are an important tool to smooth data. For example, they are used

as weighting functions in non-parametric regression. Applications include the approxi-

mation of probability density functions and conditional expectations.

Definition 5.1 (Kernel). A kernel is an integrable function k : [−1, 1]→ [0,∞) satisfying

the following two requirements:

(i)
1∫
−1

k(u)du = 1.

(ii) k(−u) = k(u) ∀u ∈ [0, 1].

Define the triangular array of weights {aj(n), j = 1, . . . , n}n∈N by

aj(n) :=
1

n
· k
(

2 · j − n/2
n

)
, j = 1, . . . , n, n ∈ N, (5.11)

and let {S̄n}n∈N be the corresponding sequence of weighted sums:

S̄n :=
n∑
j=1

aj(n)Xj =
1

n

n∑
j=1

k

(
2 · j − n/2

n

)
Xj , n ∈ N. (5.12)

Theorem 3 (Large Deviations for Kernel Weighted Sums, Stretched Exponential Tails).
Let {Xj}j∈N be a sequence of i.i.d. random variables such as in Theorem 1 and let

k : [−1, 1]→ [0,∞) be a kernel. Define S̄n by (5.12). Then, for x > m, we have

lim
n→∞

1

b (n)nr
logP

(
S̄n ≥ x

)
= −

(
sup

x∈[−1,1]

k(x)

)−r
(x−m)

r
. (5.13)

Proof. The proof is a direct application of Theorem 1. Recall the definition of the quan-

tities {sν}ν∈N from Assumption B. It is straightforward to check that sν =
1∫
−1

(k(u))νdu

(in particular, s1 = 1). Therefore,

s = lim
ν→∞

 1∫
−1

(k(u))νdu

1/ν

.

Using the fact that the p-norm converges to the supremum norm as p→∞, we conclude

that s = sup
x∈[−1,1]

k(x).
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