A counter-example to the central limit theorem in Hilbert spaces under a strong mixing condition

Davide Giraudo* Dalibor Volný ${ }^{\dagger}$

Abstract

We show that in a separable infinite dimensional Hilbert space, uniform integrability of the square of the norm of normalized partial sums of a strictly stationary sequence, together with a strong mixing condition, does not guarantee the central limit theorem.

Keywords: Central limit theorem ; Hilbert space ; mixing conditions ; strictly stationary process.
AMS MSC 2010: 60F05; 60G10.
Submitted to ECP on January 9, 2014, final version accepted on August 24, 2014.

1 Introduction and notations

Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and (S, d) a separable metric space. We say that the sequence of random variables $\left(X_{n}\right)_{n \in \mathbb{Z}}$ from Ω to S is strictly stationary if for all integer d and all integer k, the d - uple $\left(X_{1}, \ldots, X_{d}\right)$ has the same law as $\left(X_{k+1}, \ldots, X_{k+d}\right)$.

Rosenblatt introduced in [18] the measure of dependence between two sub- σ-algebras \mathcal{A} and \mathcal{B} :

$$
\alpha(\mathcal{A}, \mathcal{B}):=\sup \{|\mu(A \cap B)-\mu(A) \mu(B)|, A \in \mathcal{A}, B \in \mathcal{B}\}
$$

Another one is β-mixing, which is defined by

$$
\beta(\mathcal{A}, \mathcal{B}):=\frac{1}{2} \sup \sum_{i=1}^{I} \sum_{j=1}^{J}\left|\mu\left(A_{i} \cap B_{j}\right)-\mu\left(A_{i}\right) \mu\left(B_{j}\right)\right|,
$$

where the supremum is taken over the finite partitions $\left\{A_{1}, \ldots, A_{I}\right\}$ and $\left\{B_{1}, \ldots, B_{J}\right\}$ of Ω, which consist respectively of elements of \mathcal{A} and \mathcal{B}. It was introduced by Volkonskii and Rozanov in [21].

In order to measure dependence of a sequence of random variables, say $X:=$ $\left(X_{j}\right)_{j \in \mathbb{Z}}$ (assumed strictly stationary for simplicity), we define \mathcal{F}_{m}^{n} as the σ-algebra generated by the X_{j} for $m \leqslant j \leqslant n$, where $-\infty \leqslant m \leqslant n \leqslant+\infty$.

Then mixing coefficients are defined by

$$
\begin{equation*}
\alpha_{X}(n):=\alpha\left(\mathcal{F}_{-\infty}^{0}, \mathcal{F}_{n}^{+\infty}\right) \tag{1.1}
\end{equation*}
$$

[^0]A mixing counter-example to the central limit theorem in Hilbert spaces

$$
\begin{equation*}
\beta_{X}(n):=\beta\left(\mathcal{F}_{-\infty}^{0}, \mathcal{F}_{n}^{+\infty}\right), \tag{1.2}
\end{equation*}
$$

which will be simply writen $\alpha(n)$ (respectively $\beta(n)$) when there is no ambiguity.
We say that the strictly stationary sequence $\left(X_{j}\right)_{j}$ is α-mixing (respectively β-mixing) if $\lim _{n \rightarrow \infty} \alpha(n)=0$ (respectively $\lim _{n \rightarrow \infty} \beta(n)=0$). Sequences which are α-mixing are also called strong-mixing. Notice that the inequality $2 \alpha(\mathcal{A}, \mathcal{B}) \leqslant \beta(\mathcal{A}, \mathcal{B})$ for any two sub- σ-algebras \mathcal{A} and \mathcal{B} implies that each β-mixing sequence is strong mixing. We refer the reader to Bradley's book [4] for further information about mixing conditions.

Let $(V,\|\cdot\|)$ be a separable normed space. We can represent a strictly stationary sequence $\left(X_{j}\right)_{j}$ by $X_{j}=f \circ T^{j}$, where $T: \Omega \rightarrow \Omega$ is measurable and measure preserving, that is, $\mu\left(T^{-1}(S)\right)=\mu(S)$ for all $S \in \mathcal{F}$ (see [8], p.456, second paragraph).

Given an integer N, we define $S_{N}(f):=\sum_{j=0}^{N-1} f \circ T^{j}$ and $\left(\sigma_{N}(f)\right)^{2}:=\mathbb{E}\left[\left\|S_{N}(f)\right\|^{2}\right]$.
When $V=\mathbb{R}^{d}, d \in \mathbb{N}^{*}$ it is well-known that if $\left(f \circ T^{j}\right)_{j \geqslant 0}$ satisfies the following assumptions:

1. $\lim _{N \rightarrow+\infty} \sigma_{N}(f)=+\infty$;
2. $\int f d \mu=0$:
3. $\lim _{n \rightarrow+\infty} \alpha(n)=0$;
4. the family $\left\{\frac{\left\|S_{N}(f)\right\|^{2}}{\left(\sigma_{N}(f)\right)^{2}}, N \geqslant 1\right\}$ is uniformly integrable,
then $\left(\frac{1}{\sigma_{N}(f)} S_{N}(f)\right)_{N \geqslant 1}$ converges in distribution to a Gaussian law. It was established for $d=1$ by Denker [7], Mori and Yoshihara [14] using a blocking argument. Volný [22] gave a proof for d arbitrary based on approximation by an array of independent random variables.

A natural question would be: what if we replace \mathbb{R}^{d} by another normed space?
First, we restrict ourselves to separable normed spaces in order to avoid measurability issues of sums of random variables. Corollary 10.9. in [11] asserts that a separable Banach space B with norm $\|\cdot\|_{B}$ is isomorphic to a Hilbert space if and only if for all random variables X with values in B, the conditions $\mathbb{E}[\mathbf{X}]=0$ and $\mathbb{E}\left[\|\mathbf{X}\|_{B}^{2}\right]<\infty$ are necessary and sufficient for X to satisfy the central limit theorem. By " \mathbf{X} satisfies the CLT", we mean that if $\left(\mathbf{X}_{\mathbf{j}}\right)_{j \geqslant 1}$ is a sequence of independent random variables, with the same law as X, the sequence $\left(n^{-1 / 2} \sum_{j=1}^{n} \mathbf{X}_{\mathbf{j}}\right)_{n \geqslant 1}$ weakly converges in B. Hence we cannot expect a generalization in a class larger than separable Hilbert spaces. Such a space is necessarily isomorphic to $\mathcal{H}:=\ell^{2}(\mathbb{R})$, the space of square sumable sequences $\left(x_{n}\right)_{n \geqslant 1}$ endowed with the inner product $\langle x, y\rangle_{\mathcal{H}}:=\sum_{n=1}^{+\infty} x_{n} y_{n}$. We shall denote by $\mathbf{e}_{\mathbf{n}}$ the sequence whose all terms are 0 , except the n-th which is 1 . Bold letters denote both randoms variables taking their values in \mathcal{H} and elements of this space.

General considerations about probability measures and central limit theorem in Ba nach spaces are contained in Araujo and Giné's book [2].
Notation 1. If $\left(a_{n}\right)_{n \geqslant 1},\left(b_{n}\right)_{n \geqslant 1}$ are sequences of non- negative real numbers, $a_{n} \lesssim b_{n}$ means that $a_{n} \leqslant C b_{n}$, where C does not depend on n. In an analogous way, we define $a_{n} \gtrsim b_{n}$. When $a_{n} \lesssim b_{n} \lesssim a_{n}$, we simply write $a_{n} \asymp b_{n}$.

Our main results are

A mixing counter-example to the central limit theorem in Hilbert spaces

Theorem A. There exists a probability space $(\Omega, \mathcal{F}, \mu)$ such that given $0<q<1$, we can construct a strictly stationary sequence $\mathbf{X}=\left(\mathbf{f} \circ T^{k}\right)=\left(\mathbf{X}_{\mathbf{k}}\right)_{k \in \mathbb{N}}$ defined on Ω, taking its values in \mathcal{H}, such that:
a) $\mathbb{E}[\mathbf{f}]=0, \mathbb{E}\left[\|\mathbf{f}\|_{\mathcal{H}}^{p}\right]$ is finite for each p;
b) the limit $\lim _{N \rightarrow \infty} \sigma_{N}(\mathbf{f})$ is infinite;
c) the process $\left(\mathbf{X}_{\mathbf{k}}\right)_{k \in \mathbb{N}}$ is β-mixing, more precisely, $\beta_{\mathbf{X}}(j)=O\left(\frac{1}{j^{q}}\right)$;
d) the family $\left\{\frac{\left\|S_{N}(\mathbf{f})\right\|_{\mathcal{H}}^{2}}{\sigma_{N}^{2}(\mathbf{f})}, N \geqslant 1\right\}$ is uniformly integrable;
e) if $I \subset \mathbb{N}$ is infinite, the family $\left\{\frac{S_{N}(\mathbf{f})}{\sigma_{N}(\mathbf{f})}, N \in I\right\}$ is not tight in \mathcal{H}; furthermore, given a sequence $\left(c_{N}\right)_{N \geqslant 1}$ of real numbers going to infinity, we have either

- $\lim _{N \rightarrow+\infty} \frac{\sigma_{N}(\mathbf{f})}{c_{N}}=0$, hence $\left(\frac{S_{N}(\mathbf{f})}{c_{N}}\right)_{N \geqslant 1}$ converges to $\mathbf{0}_{\mathcal{H}}$ in distribution, or
- $\limsup _{N \rightarrow+\infty} \frac{\sigma_{N}(\mathbf{f})}{c_{N}}>0$, and in this case the collection $\left\{\frac{S_{N}(\mathbf{f})}{c_{N}}, N \geqslant 1\right\}$ is not tight.

Theorem A'. Let $\left(b_{N}\right)_{N \geqslant 1}$ and $\left(h_{N}\right)_{N \geqslant 1}$ be sequences of positive real numbers, with $\lim _{N \rightarrow \infty} b_{N}=0$ and $\lim _{N \rightarrow \infty} h_{N}=\infty$. Then there exists a strictly stationary sequence $\mathbf{X}:=\left(\mathbf{f} \circ T^{k}\right)_{k \in \mathbb{N}}=\left(\mathbf{X}_{\mathbf{k}}\right)_{k \in \mathbb{N}}$ of random variables with values in \mathcal{H} such that A, A, A of Theorem A and the following two properties hold:
b^{\prime}) we have $\sigma_{N}^{2}(\mathbf{f}) \lesssim N \cdot h_{N}$ and $\frac{\sigma_{N}^{2}(\mathbf{f})}{N} \rightarrow \infty$;
c^{\prime}) the process $\left(\mathbf{X}_{\mathbf{k}}\right)_{k \in \mathbb{N}}$ is β-mixing, and there is an increasing sequence $\left(n_{k}\right)_{k \geqslant 1}$ of integers such that for each $k, \beta_{\mathbf{X}}\left(n_{k}\right) \leqslant b_{n_{k}}$.

Remark 2. Theorem A shows that Denker's result does not remain valid in its full generality in the context of Hilbert space valued random variables.

Furthermore, a careful analysis of the proof of Proposition 6 shows that for the construction given in Theorem A, we have $\sigma_{N}^{2}(f)=N \cdot h(N)$ with h slowly varying in the strong sense. Theorem 1 of [12] does not remain valid in the Hilbert space setting. Indeed, the arguments given in pages 654-655 show that the conditions of Denker's theorem together with the assumption that $\sigma_{N}^{2}=N \cdot h(N)$ with h slowly varying in the strong sense imply those of Theorem 1. These arguments are still true in the Hilbert space setting.

Remark 3. Theorem A' gives a control of the mixing coefficients on a subsequence. When $b_{N}:=N^{-2}$ for example, the construction gives a better estimation for the considered subsequence than what we get by Theorem A.

Tone has established in [20] a central limit theorem for strictly stationary random fields with values in \mathcal{H} under ρ^{\prime}-mixing conditions. For sequences, these coefficients are defined by

$$
\rho^{\prime}(n):=\sup \left\{\frac{\left|\mathbb{E}\left[\langle\mathbf{f}, \mathbf{g}\rangle_{\mathcal{H}}\right]-\langle\mathbb{E}[\mathbf{f}], \mathbb{E}[\mathbf{g}]\rangle_{\mathcal{H}}\right|}{\|\mathbf{f}\|_{\mathrm{L}^{2}(\mathcal{H})}\|\mathbf{g}\|_{\mathrm{L}^{2}(\mathcal{H})}}\right\}
$$

where the supremum is taken over all the non-zero functions \mathbf{f} and \mathbf{g} such that \mathbf{f} and \mathbf{g} are respectively $\sigma\left(X_{j}, j \in S_{1}\right)$ and $\sigma\left(X_{j}, j \in S_{2}\right)$-measurable, where S_{1} and S_{2} are such that $\min _{s \in S_{1}, t \in S_{2}}|s-t| \geqslant n$, while $\mathbb{L}^{2}(\mathcal{H})$ denote the collection of equivalence classes of random variables $\mathbf{X}: \Omega \rightarrow \mathcal{H}$ such that $\|\mathbf{X}\|_{\mathcal{H}}^{2}$ is integrable.

So "interlaced index sets" can be considered, which is not the case for α and β mixing coefficient. Taking f and g as characteristic functions of elements of $\mathcal{F}_{-\infty}^{0}$ and
$\mathcal{F}_{n}^{+\infty}$ respectively, one can see that $\alpha(n) \leqslant \rho^{\prime}(n)$, hence ρ^{\prime}-mixing condition is more restrictive than α-mixing condition.

A partial generalization of the finite dimensional result was proved by Politis and Romano [15], namely, the conditions $\mathbb{E}\left\|\mathbf{X}_{\mathbf{1}}\right\|_{\mathcal{H}}^{2+\delta}$ finite for some positive δ and $\sum_{j} \alpha_{\mathbf{X}}(j)^{\frac{\delta}{2+\delta}}$ guarantees the convergence of $n^{-1 / 2} \sum_{j=1}^{n} \mathbf{X}_{\mathbf{j}}$ to a Gaussian random variable \mathcal{N}, whose covariance operator S satisfies

$$
\mathbb{E}\left[\langle\mathcal{N}, h\rangle^{2}\right]=\langle S h, h\rangle_{\mathcal{H}}=\operatorname{Var}\left(\left\langle\mathbf{X}_{\mathbf{1}}, h\right\rangle\right)+2 \sum_{i=1}^{+\infty} \operatorname{Cov}\left(\left\langle\mathbf{X}_{\mathbf{1}}, h\right\rangle,\left\langle\mathbf{X}_{\mathbf{1}+\mathbf{i}}, h\right\rangle\right) .
$$

Similar results were obtained by Dehling [6].
Rio's inequality [16] asserts that given two real valued random variables X and Y with finite two order moments,

$$
|\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]| \leqslant 2 \int_{0}^{\alpha(\sigma(X), \sigma(Y))} Q_{X}(u) Q_{Y}(u) \mathrm{d} u
$$

It was extented by Merlevède et al. [13], namely, if \mathbf{X} and \mathbf{Y} are two random variables with values in \mathcal{H}, with respective quantile function $Q_{\|\mathbf{X}\|_{\mathcal{H}}}$ and $Q_{\|\mathbf{Y}\|_{\mathcal{H}}}$, then

$$
\left|\mathbb{E}\left[\langle\mathbf{X}, \mathbf{Y}\rangle_{\mathcal{H}}\right]-\langle\mathbb{E}[\mathbf{X}], \mathbb{E}[\mathbf{Y}]\rangle_{\mathcal{H}}\right| \leqslant 18 \int_{0}^{\alpha} Q_{\|\mathbf{X}\|_{\mathcal{H}}} Q_{\|\mathbf{Y}\|_{\mathcal{H}}} \mathrm{d} u
$$

where $\alpha:=\alpha(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$.
From this inequality, they deduce a central limit theorem for a stationary sequence $\left(\mathbf{X}_{\mathbf{j}}\right)_{j \in \mathbb{Z}}$ of \mathcal{H}-valued zero-mean random variables satisfying

$$
\begin{equation*}
\int_{0}^{1} \alpha^{-1}(u) Q_{\left\|\mathbf{x}_{0}\right\|_{\mathcal{H}}}^{2}(u) \mathrm{d} u<\infty \tag{1.3}
\end{equation*}
$$

where α^{-1} is the inverse function of $x \mapsto \alpha_{\mathbf{X}}(\lfloor x\rfloor)$.
Discussion after Corollary 1.2 in [17] proves that the later result implies Politis' one.
Relative optimality of condition (1.3) (cf. [9]) can give a finite-dimensional counterexample to the central limit theorem when this condition is not satisfied. Here, the condition of uniform integrability prevents such counter-examples.

Defining $\alpha_{2, \mathbf{X}}(n):=\sup _{i \geqslant j \geqslant n} \alpha\left(\mathcal{F}_{-\infty}^{0}, \sigma\left(\mathbf{X}_{\mathbf{i}}, \mathbf{X}_{\mathbf{j}}\right)\right)$ and $Q_{X_{0}}$ the right-continuous inverse of the function $t \mapsto \mu\left\{\left\|\mathbf{X}_{\mathbf{0}}\right\|_{\mathcal{H}}>t\right\}$ (that is,
$Q \mathbf{X}_{\mathbf{0}}(u):=\inf \left\{t \in \mathbb{R}, \mu\left\{\left\|\mathbf{X}_{\mathbf{0}}\right\|_{\mathcal{H}}>t\right\} \leqslant u\right\}$), Dedecker and Merlevède have shown in [5] that under the assumption

$$
\sum_{k=1}^{+\infty} \int_{0}^{\alpha_{2, \mathbf{x}}(k)} Q_{\mathbf{X}_{\mathbf{0}}}^{2}(u) \mathrm{d} u<\infty
$$

we can find a sequence $\left(\mathbf{Z}_{\mathbf{i}}\right)_{i \in \mathbb{N}}$ of Gaussian random variables with values in \mathcal{H} such that almost surely,

$$
\left\|\mathbf{S}_{\mathbf{n}}-\sum_{i=1}^{n} \mathbf{Z}_{\mathbf{i}}\right\|_{\mathcal{H}}=o(\sqrt{n \log \log n}) .
$$

2 The proof

2.1 Construction of f

In order to construct a counter-example, we shall need the following lemma, which will be proved later.

We will denote U the Koopman operator associated to T, which acts on measurable functions by $U(f)(x):=f(T(x))$.

A mixing counter-example to the central limit theorem in Hilbert spaces

Lemma 4. Let $\left(u_{k}\right)_{k \geqslant 1} \subset(0,1)$ be a sequence of numbers. Then there exists a dynamical system $(\Omega, \mathcal{F}, \mu, T)$ and a sequence of random variables $\left(\xi_{k}\right)_{k \geqslant 1}$ such that

1. for each $k \geqslant 1, \mu\left(\xi_{k}=1\right)=\mu\left(\xi_{k}=-1\right)=\frac{u_{k}}{2}$ and $\mu\left(\xi_{k}=0\right)=1-u_{k}$;
2. the random variables $\left(U^{i} \xi_{k}, k \geqslant 1, i \in \mathbb{Z}\right)$ are mutually independent.

Recall that $\mathbf{e}_{\mathbf{k}}$ is the k-th element of the canonical orthonormal system of $\mathcal{H}=\ell^{2}(\mathbb{R})$. We define

$$
\begin{equation*}
f_{k}:=\sum_{i=0}^{n_{k}-1} U^{-i} \xi_{k} \text { and } \mathbf{f}:=\sum_{k=1}^{+\infty} f_{k} \mathbf{e}_{\mathbf{k}} \tag{2.1}
\end{equation*}
$$

where the ξ_{i} 's are constructed using to Lemma 4 taking $u_{k}:=n_{k}^{-2}$. Conditions on the increasing sequence of integers $\left(n_{k}\right)_{k \geqslant 1}$ will be specified latter.

Then $\mathbf{X}_{\mathbf{k}}:=\mathbf{f} \circ T^{k}$ is a strictly stationary sequence. Note that $\|\mathbf{f}\|_{\mathcal{H}}^{2}$ is an integrable random variable whenever $\sum_{k} \frac{1}{n_{k}}$ is convergent. In the sequel, the choice of n_{k} will guarantee this condition.

2.2 Preliminary results

We express $S_{N}\left(f_{k}\right)$ as a linear combination of independent random variables. By direct computations, we get

$$
\begin{equation*}
f_{k}=n_{k} \xi_{k}+(I-U) \sum_{i=1-n_{k}}^{-1}\left(n_{k}+i\right) U^{i} \xi_{k} \tag{2.2}
\end{equation*}
$$

hence

$$
S_{N}\left(f_{k}\right)=n_{k} \sum_{j=0}^{N-1} U^{j} \xi_{k}+\sum_{i=1-n_{k}}^{-1}\left(n_{k}+i\right) U^{i} \xi_{k}-\sum_{i=N-n_{k}+1}^{N-1}\left(n_{k}+i-N\right) U^{i} \xi_{k}
$$

This formula can be simplified if we distinguish the cases $N \geqslant n_{k}$ and $n_{k}<N$ (we break the third sum at the index $i=0$ if necessary). This gives

$$
\begin{align*}
S_{N}\left(f_{k}\right)=\sum_{j=0}^{N-1}(N-j) U^{j} \xi_{k}+\sum_{j=1-n_{k}}^{N-n_{k}}\left(n_{k}+j\right) U^{j} \xi_{k} & \\
& +N \sum_{j=1+N-n_{k}}^{-1} U^{j} \xi_{k}, \quad \text { if } N<n_{k}, \tag{2.3}
\end{align*}
$$

$S_{N}\left(f_{k}\right)=n_{k} \sum_{j=0}^{N-n_{k}} U^{j} \xi_{k}+\sum_{j=N-n_{k}+1}^{N-1}(N-j) U^{j} \xi_{k}$

$$
\begin{equation*}
+\sum_{j=1-n_{k}}^{-1}\left(n_{k}+j\right) U^{j} \xi_{k}, \quad \text { if } N \geqslant n_{k} \tag{2.4}
\end{equation*}
$$

The computation of the expectation of the square of partial sums gives

$$
\sigma_{N}^{2}\left(f_{k}\right)= \begin{cases}\frac{1}{n_{k}^{2}}\left(2 \sum_{j=1}^{N} j^{2}+\left(n_{k}-N-1\right) N^{2}\right) & \text { if } N<n_{k} \tag{2.5}\\ \frac{1}{n_{k}^{2}}\left(n_{k}^{2}\left(N-n_{k}+1\right)+2 \sum_{j=1}^{n_{k}-1} j^{2}\right) & \text { if } N \geqslant n_{k}\end{cases}
$$

Notation 5. If N is a positive integer and $\left(n_{k}\right)_{k \geqslant 1}$ is an increasing sequence of integers, denote by $i(N)$ the unique integer for which $n_{i(N)} \leqslant N<n_{i(N)+1}$.

Proposition 6. Assume that $\left(n_{k}\right)_{k \geqslant 1}$ satisfies the condition

$$
\begin{equation*}
\text { there is } p>1 \text { such that for each } k, \quad n_{k+1} \geqslant n_{k}^{p} \text {. } \tag{C}
\end{equation*}
$$

Then $\sigma_{N}^{2}(\mathbf{f}) \asymp N \cdot i(N)$.
Proof. Using (2.5), the fact that $M^{3} \asymp \sum_{j=1}^{M} j^{2}$ and $\sigma_{N}^{2}(\mathbf{f})=\sum_{k \geqslant 1} \sigma_{N}^{2}\left(f_{k}\right)$, we have

$$
\begin{equation*}
\sigma_{N}^{2}(\mathbf{f}) \geqslant \sum_{k=1}^{i(N)} \sigma_{N}^{2}\left(f_{k}\right) \asymp N \sum_{j=1}^{i(N)} 1=N \cdot i(N) \tag{2.6}
\end{equation*}
$$

From (2.5) in the case $n_{k} \geqslant N$, we deduce

$$
\begin{equation*}
\sum_{k \geqslant i(N)+1} \sigma_{N}^{2}\left(f_{k}\right) \lesssim \sum_{k \geqslant i(N)+1} \frac{N^{2}}{n_{k}} \leqslant \frac{N^{2}}{n_{i(N)+1}}+\sum_{k \geqslant i(N)+1} \frac{N^{2}}{n_{k}} \frac{1}{n_{k}^{p-1}} . \tag{2.7}
\end{equation*}
$$

Since $n_{i(N)+1} \geqslant N$ and the series $\sum_{k \geqslant 1} n_{k}^{1-p}$ is convergent (by the ratio test), we obtain

$$
\begin{equation*}
\sum_{k \geqslant i(N)+1} \sigma_{N}^{2}\left(f_{k}\right) \lesssim N+N \sum_{k \geqslant i(N)+1} \frac{1}{n_{k}^{p-1}} \lesssim N . \tag{2.8}
\end{equation*}
$$

Combining (2.6) and (2.8), we get

$$
\begin{equation*}
N \cdot i(N) \lesssim \sigma_{N}^{2}(\mathbf{f}) \lesssim \sum_{k=1}^{i(N)} \sigma_{N}^{2}\left(f_{k}\right)+\sum_{k \geqslant i(N)+1} \sigma_{N}^{2}\left(f_{k}\right) \lesssim N \cdot i(N)+N \lesssim N \cdot i(N) \tag{2.9}
\end{equation*}
$$

Proposition 7. Assume that $\sum_{k} n_{k}^{-a}$ is convergent for any positive real number a. Then for each integer $p,\|\mathbf{f}\|_{\mathcal{H}}$ has a finite moment of order p.

Proof. We shall use Rosenthal's inequality (Theorem 3, [19]): there exists a constant C depending only on q such that if M is an integer, Y_{1}, \ldots, Y_{M} are independent real valued zero mean random variables for which $\mathbb{E}\left|Y_{i}\right|^{q}<\infty$ for each i, then

$$
\begin{equation*}
\mathbb{E}\left|\sum_{j=1}^{M} Y_{j}\right|^{q} \leqslant C\left(\sum_{j=1}^{M} \mathbb{E}\left|Y_{j}\right|^{q}+\left(\sum_{j=1}^{M} \mathbb{E}\left[Y_{j}^{2}\right]\right)^{q / 2}\right) \tag{2.10}
\end{equation*}
$$

If $q=2 p$ is given then we have

$$
\begin{equation*}
\mathbb{E}\left|f_{k}\right|^{2 p} \lesssim n_{k}^{-1}+n_{k}^{-p} \lesssim n_{k}^{-1} . \tag{2.11}
\end{equation*}
$$

We provide a sufficient condition for the uniform integrability of the family $\mathcal{S}:=$ $\left\{\frac{\left\|S_{N}(\mathbf{f})\right\|_{\mathcal{H}}^{2}}{\sigma_{N}^{2}(\mathbf{f})}, N \geqslant 1\right\}$.

Proposition 8. If $\left(n_{k}\right)_{k \geqslant 1}$ satisfies (C), then \mathcal{S} is uniformly integrable.

Proof. For $N \geqslant 1$, we have:

$$
\frac{\left\|S_{N}(\mathbf{f})\right\|_{\mathcal{H}}^{2}}{\sigma_{N}^{2}(\mathbf{f})}=\sum_{j=1}^{i(N)-1} \frac{\left|S_{N}\left(f_{j}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}+\frac{\left|S_{N}\left(f_{i(N)}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}+\frac{\left|S_{N}\left(f_{i(N)+1}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}+\sum_{j \geqslant i(N)+2} \frac{\left|S_{N}\left(f_{j}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}
$$

hence it is enough to prove that the families

$$
\begin{aligned}
& \mathcal{S}_{1}:=\left\{\sum_{k=1}^{i(N)-1} \frac{\left|S_{N}\left(f_{k}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}, N \geqslant 1\right\}, \\
& \mathcal{S}_{2}:=\left\{\frac{\mid S_{N}\left(\left.f_{i(N)}\right|^{2}\right.}{\sigma_{N}^{2}(\mathbf{f})}, N \geqslant 1\right\}=:\left\{u_{N}, N \geqslant 1\right\}, \\
& \mathcal{S}_{3}:=\left\{\frac{\left|S_{N}\left(f_{i(N)+1}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}, N \geqslant 1\right\}=:\left\{v_{N}, N \geqslant 1\right\}, \text { and } \\
& \mathcal{S}_{4}:=\left\{\sum_{k \geqslant i(N)+2} \frac{\left|S_{N}\left(f_{k}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}, N \geqslant 1\right\}
\end{aligned}
$$

are uniformly integrable. For \mathcal{S}_{1} and \mathcal{S}_{4}, we shall show that these families are bounded in \mathbb{L}^{p} for $p \in(1,2]$ as in (C).

- for \mathcal{S}_{1} : using the expression in (2.4) and (2.10) with $q:=2 p>2$, we have

$$
\begin{aligned}
\mathbb{E}\left[\left|S_{N}\left(f_{k}\right)\right|^{2 p}\right] & \leqslant C\left(2 \sum_{j=1}^{n_{k}} \frac{j^{2 p}}{n_{k}^{2}}+\frac{n_{k}^{2 p}\left(N-n_{k}\right)}{n_{k}^{2}}\right)+C\left(2 \sum_{j=1}^{n_{k}} \frac{j^{2}}{n_{k}^{2}}+\frac{\left(N-n_{k}\right) n_{k}^{2}}{n_{k}^{2}}\right)^{p} \\
& \lesssim \frac{1}{n_{k}^{2}}\left(n_{k}^{2 p+1}+\left(N-n_{k}\right) n_{k}^{2 p}\right)+\frac{1}{n_{k}^{2 p}}\left(n_{k}^{3}+\left(N-n_{k}\right) n_{k}^{2}\right)^{p} \\
& =\frac{N n_{k}^{2 p}}{n_{k}^{2}}+\frac{N^{p} n_{k}^{2 p}}{n_{k}^{2 p}} \\
& =N n_{k}^{2(p-1)}+N^{p}
\end{aligned}
$$

hence

$$
\left\|S_{N}\left(f_{k}\right)^{2}\right\|_{p} \lesssim N^{1 / p} n_{k}^{2 \frac{p-1}{p}}+N
$$

which gives

$$
\begin{aligned}
\left\|\sum_{k=1}^{i(N)-1} \frac{\left|S_{N}\left(f_{k}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}\right\|_{p} & \lesssim \frac{\sum_{k=1}^{i(N)-1}\left(N^{1 / p} n_{k}^{2 \frac{p-1}{p}}+N\right)}{\sigma_{N}^{2}(\mathbf{f})} \\
& \lesssim \frac{i(N) n_{i(N)-1}^{2 \frac{p-1}{p}}+N i(N)}{\sigma_{N}^{2}(\mathbf{f})}
\end{aligned}
$$

From (2.6), we get

$$
\left\|\sum_{k=1}^{i(N)-1} \frac{\left|S_{N}\left(f_{k}\right)\right|^{2}}{\sigma_{N}^{2}(\mathbf{f})}\right\|_{p} \lesssim \frac{n_{i(N)}^{2 \frac{p-1}{p}}}{n_{i(N)}}+1=n_{i(N)}^{\frac{p-2}{p}}+1
$$

Since $p-2 \leqslant 0$, we obtain that \mathcal{S}_{1} is bounded in \mathbb{L}^{p} hence uniformly integrable.

A mixing counter-example to the central limit theorem in Hilbert spaces

- for \mathcal{S}_{2} : using (2.4) in the case $n_{k} \leqslant N$ and Proposition 6 , we get

$$
\begin{equation*}
\left\|u_{N}\right\|_{1} \lesssim \frac{N}{\sigma_{N}^{2}(\mathbf{f})} \lesssim \frac{1}{i(N)} \tag{2.12}
\end{equation*}
$$

Since $\left\|u_{N}\right\|_{1} \rightarrow 0$ and $u_{N} \in \mathbb{L}^{1}$ for each N, the family \mathcal{S}_{2} is uniformly integrable.

- for \mathcal{S}_{3} : using (2.3) in the case $n_{k}>N$ and Proposition 6, we get

$$
\begin{equation*}
\left\|v_{N}\right\|_{1} \lesssim \frac{N^{2}}{n_{i(N)+1} \sigma_{N}^{2}(\mathbf{f})} \lesssim \frac{N}{N \cdot i(N)} \tag{2.13}
\end{equation*}
$$

Since $\left\|v_{N}\right\|_{1} \rightarrow 0$ and $v_{N} \in \mathbb{L}^{1}$ for each N, the family \mathcal{S}_{3} is uniformly integrable.

- for \mathcal{S}_{4} : as for \mathcal{S}_{1}, we shall show that this family is bounded in \mathbb{L}^{p} with $p \in(1,2]$. We have, using (2.3) and (2.10)

$$
\begin{aligned}
\mathbb{E}\left[\left|S_{N}\left(f_{k}\right)\right|^{2 p}\right] & \lesssim \frac{1}{n_{k}^{2}}\left(N^{2 p+1}+N^{2 p}\left(n_{k}-N\right)\right)+\frac{1}{n_{k}^{2 p}}\left(N^{3}+\left(n_{k}-N\right) N^{2}\right)^{p} \\
& =\frac{N^{2 p}}{n_{k}}+\frac{N^{2 p}}{n_{k}^{p}} \\
& \lesssim \frac{N^{2 p}}{n_{k}}
\end{aligned}
$$

as $N \leqslant n_{k}$. We thus get that

$$
\left\|\sum_{k \geqslant i(N)+2}\left|S_{N}\left(f_{k}\right)\right|^{2}\right\|_{p} \lesssim N^{2} \sum_{k \geqslant i(N)+2} \frac{1}{n_{k}^{1 / p}}
$$

Also, using (2.5), we have

$$
\sigma_{N}^{2}(\mathbf{f}) \gtrsim N^{2} \sum_{k \geqslant i(N)+1} \frac{1}{n_{k}}
$$

The condition $n_{k+1} \geqslant n_{k}^{p}$ gives boundedness in \mathbb{L}^{p} of \mathcal{S}_{4}.
This concludes the proof of A.
Proposition 9. Assume that $\left(n_{k}\right)_{k \geqslant 1}$ is such that \mathcal{S} is uniformly integrable and $\sum_{k} n_{k}^{-1}$ is convergent. Then for each $I \subset \mathbb{N}$ infinite, the collection $\left\{\frac{S_{N}(\mathbf{f})}{\sigma_{N}(\mathbf{f})}, N \in I\right\}$ is not tight in \mathcal{H}. Its finite-dimensional distributions converge to 0 in probability.

Furthermore, if $\left(c_{N}\right)_{N \geqslant 0}$ is a sequence of positive numbers going to infinity, we have either

- $\lim _{N \rightarrow+\infty} \frac{\sigma_{N}(\mathbf{f})}{c_{N}}=0$, hence $\left(\frac{S_{N}(\mathbf{f})}{c_{N}}\right)_{N \geqslant 1}$ converges to $\mathbf{0}_{\mathcal{H}}$ in distribution, or
- $\lim \sup _{N \rightarrow+\infty} \frac{\sigma_{N}(\mathbf{f})}{c_{N}}>0$, and in this case the sequence $\left\{\frac{S_{N}(\mathbf{f})}{c_{N}}, N \geqslant 1\right\}$ is not tight.

Proof. We first prove that the finite dimensional distributions of $\frac{S_{N}(\mathbf{f})}{\sigma_{N}(\mathbf{f})}$ converge weakly to 0 .

For each $d \in \mathbb{N}$, we have $\frac{\left\langle S_{N}(\mathbf{f}), \mathbf{e}_{\mathbf{d}}\right\rangle_{\mathcal{H}}}{\sigma_{N}(\mathbf{f})} \rightarrow 0$ in distribution. Indeed, we have by (2.2) that $\left\langle S_{N}(\mathbf{f}), \mathbf{e}_{\mathbf{d}}\right\rangle_{\mathcal{H}}=n_{d} \sum_{i=0}^{N-1} U^{i} \xi_{d}+\left(I-U^{N}\right) \sum_{i=1-n_{d}}^{-1}\left(n_{d}+i\right) U^{i} \xi_{d}$. We conclude noticing that $\sigma_{N}(\mathbf{f})^{-1}\left(I-U^{N}\right) \sum_{i=1-n_{d}}^{-1}\left(n_{d}+i\right) U^{i} \xi_{d}$ goes to 0 in probability as N goes to infinity, using Proposition 6 and the estimate

$$
\mathbb{E}\left(n_{d} \sum_{i=0}^{N-1} U^{i} \xi_{d}\right)^{2}=N \lesssim \frac{\sigma_{N}^{2}(\mathbf{f})}{i(N)}
$$

A mixing counter-example to the central limit theorem in Hilbert spaces

This can be extended replacing $\mathbf{e}_{\mathbf{d}}$ by any $\mathbf{v} \in \mathcal{H}$ by an application of Theorem 4.2. in [3]. By Proposition 4.15 in [2], the only possible limit is the Dirac measure at $\mathbf{0}_{\mathcal{H}}$.

Assume that the sequence $\left\{\frac{S_{N}(\mathbf{f})}{\sigma_{N}(\mathbf{f})}, N \geqslant 1\right\}$ is tight. The sequence $\left(\frac{\left\|S_{N}(\mathbf{f})\right\|_{\mathcal{H}}^{2}}{\sigma_{N}^{2}(\mathbf{f})}\right)_{N \geqslant 1}$ is a uniformly integrable sequence of random variables of mean 1. A weakly convergent subsequence would go to $0_{\mathcal{H}}$. According to Theorem 5.4 in [3], we should have that the limit random variable has expectation 1. This contradiction gives the result when $I=\mathbb{N} \backslash\{0\}$. Applying this reasonning to subsequences, one can see that for any infinite subset I of $\mathbb{N} \backslash\{0\}$, the family $\left\{\frac{S_{N}(\mathbf{f})}{\sigma_{N}(\mathbf{f})}, N \in I\right\}$ is not tight.

Let $\left(c_{N}\right)_{N \geqslant 1}$ be a sequence of positive real numbers such that $\lim _{N \rightarrow+\infty} c_{N}=+\infty$.

- first case: $\frac{\sigma_{N}(\mathbf{f})}{c_{N}}$ converges to 0 . In this case, the sequence $\left(\frac{\left\|S_{N}(\mathbf{f})\right\|^{2}}{c_{N}^{2}}\right)_{N \geqslant 1}$ converges to 0 in \mathbb{L}^{1}, hence the sequence $\left(\frac{S_{N}(\mathbf{f})}{c_{N}}\right)_{N \geqslant 1}$ converges in distribution to $\mathbf{0}_{\mathcal{H}}$.
- second case: $\lim \sup _{N \rightarrow \infty} \frac{\sigma_{N}(\mathbf{f})}{c_{N}}>0$. Hence there is some $r>0$ and a sequence of integers $l_{i} \uparrow \infty$ such that for each $i, \frac{\sigma_{l_{i}}(\mathbf{f})}{c_{l_{i}}} \geqslant \frac{1}{r}$, that is, $c_{l_{i}} \leqslant r \sigma_{l_{i}}(\mathbf{f})$.
Assume that the family $\left\{\frac{S_{l_{i}}(\mathbf{f})}{c_{l_{i}}}, i \geqslant 1\right\}$ is tight. This means that given a positive ε, one can find a compact set $K=K(\varepsilon)$ such that for each $i, \mu\left\{\frac{S_{l_{i}}(\mathbf{f})}{c_{l_{i}}} \in K\right\}>1-\varepsilon$. We can assume that this compact set is convex and contains 0 (we consider the closed convex hull of $K \cup\{0\}$, which is compact by Theorem 5.35 in [1]). Then we have

$$
\begin{aligned}
\left\{\frac{S_{l_{i}}(\mathbf{f})}{c_{l_{i}}} \in K\right\} & =\left\{\frac{S_{l_{i}}(\mathbf{f})}{\sigma_{l_{i}}(\mathbf{f})} \in \frac{c_{l_{i}}}{\sigma_{l_{i}}(\mathbf{f})} K\right\} \\
& \subset\left\{\frac{S_{l_{i}}(\mathbf{f})}{\sigma_{l_{i}}(\mathbf{f})} \in r K\right\}
\end{aligned}
$$

and we would deduce tightness of $\left\{\frac{S_{l_{i}}(\mathbf{f})}{\sigma_{l_{i}}(\mathbf{f})}, i \geqslant 1\right\}$, which cannot happen.
Remark 10. In the second case, it may happen that the finite dimensional distributions does not converge to degenerate ones, for example with $c_{N}:=N$.

2.3 Proof of Theorem A

Notice that if $n_{k+1} \geqslant n_{k}^{p}$ for some $p>1$ and $n_{1}=2$, then $n_{k} \geqslant 2^{p^{k}}$, hence the condition of Proposition 7 is fulfilled. We get A since each f_{k} has expectation 0 .

We denote $\lfloor x\rfloor:=\sup \{k \in \mathbb{Z}, k \leqslant x\}$ the integer part of the real number x.
Proposition 11. Let $p>1$. With $n_{k}:=\left\lfloor 2^{p^{k}}\right\rfloor$ (which satisfies (C)), we have for each positive integer l,

$$
\beta_{\mathbf{X}}(l) \lesssim \frac{1}{l^{\frac{1}{p}}}
$$

Proof. We define $\beta_{k}(n)$ as the n-th β-mixing coefficient of the sequence $\left(f_{k} \circ T^{i}\right)_{i \geqslant 0}$.
By Lemma 5 of [10], we have the estimate $\beta_{k}(0) \leqslant 4 n_{k}^{-1}$ for each k. Using then Proposition 4 of this paper (cf. [4] for a proof), we get that $\beta_{\mathbf{X}}\left(n_{k}\right) \lesssim \sum_{j \geqslant k} \frac{1}{n_{j}}$ for each integer k. Since $p^{i} \geqslant i$ for i large enough,

$$
\sum_{j \geqslant k} \frac{1}{n_{j}}=\sum_{i=0}^{+\infty} \frac{1}{2^{p^{i+k}}}=\sum_{i=0}^{+\infty} \frac{1}{2^{p^{i} p^{k}}} \lesssim \sum_{i=0}^{+\infty} \frac{1}{2^{i}} \frac{1}{2^{p^{k}}}=\frac{2}{2^{p^{k}}},
$$

we get

$$
\beta_{\mathbf{X}}(N) \leqslant \beta_{X}\left(n_{i(N)}\right) \lesssim \frac{1}{n_{i(N)}}=\frac{1}{n_{i(N)+1}^{1 / p}} \leqslant \frac{1}{N^{1 / p}}
$$

This proves A. For any p, the choice $n_{k}:=\left\lfloor 2^{p^{k}}\right\rfloor$ satisfies the condition of Proposition 8, which proves A. We conclude the proof by Proposition 9.
Remark 12. For each of these choices, $\sigma_{N}^{2}(\mathbf{f})$ behaves asymptotically like $N \log \log N$. Theorem A' shows that we can construct a process which satisfies the same asymptotic behavior of partial sums and has a variance close to a linear one.

A question would be: can we construct a strictly stationary sequence with all the properties of Theorem A, except A which is replaced by an assumption of linear variance?

2.4 Proof of Theorem A^{\prime}

Let $\left(h_{N}\right)_{N \geqslant 1}$ be the sequence involved in Theorem A'. We define for an integer u the quantity $h^{-1}(u):=\inf \left\{j \in \mathbb{N}, h_{j} \geqslant u\right\}$.

If $\left(b_{k}\right)_{k \geqslant 1}$ is the given sequence (that can be assumed decreasing), we define inductively

$$
\begin{equation*}
n_{k+1}:=\max \left\{n_{k}^{2},\left\lfloor\frac{2^{k}}{b_{n_{k}}}\right\rfloor, h^{-1}(k)\right\} . \tag{2.14}
\end{equation*}
$$

Let N be an integer. We assume without loss of generality that the growth of the sequence $\left(h_{N}\right)_{N \geqslant 1}$ is slow enough in order to guarantee that there exists k such that $N=h^{-1}(k)$. We then have $i(N) \leqslant k+1 \leqslant h_{N}+1$, hence using Proposition 6, we get b').

We have $n_{k} \geqslant 2^{2^{k}}$ hence by a similar argument as in the proof of Theorem A, A is satisfied.

By a similar argument as in [10], we get $\beta_{\mathbf{X}}\left(n_{k}\right) \leqslant b_{n_{k}}$, hence c') holds.
Remark 13. By (1.3), we cannot expect the relationship $\beta_{\mathbf{X}}(\cdot) \leqslant b$. for the whole sequence.

Since for each $k, n_{k+1} \geqslant n_{k}^{2}$, Proposition 8 and 9 apply. This concludes the proof of Theorem A'.

Proof of Lemma 4. Let $\Omega:=[0,1]^{\mathbb{N}^{*}} \times \mathbb{Z}$, where $[0,1]$ is endowed with Borel σ - algebra and Lebesgue measure, and Ω with the product structure.

For $(k, j) \in \mathbb{N}^{*} \times \mathbb{Z}$ and $S \subset[0,1]$, let $P_{k, j}(S):=\prod_{\left(i_{1}, i_{2}\right) \in \mathbb{N}^{*} \times \mathbb{Z}} S_{i_{1}, i_{2}}$, where $S_{i_{1}, i_{2}}=S$ if $\left(i_{1}, i_{2}\right)=(k, j)$ and $[0,1]$ otherwise. Then we define

$$
\begin{gathered}
A_{k, j}^{+}:=P_{k, j}\left(\left[0,2^{-1}\left(u_{k}\right)^{-1}\right]\right), \\
A_{k, j}^{-}:=P_{k, j}\left(\left[2^{-1}\left(u_{k}\right)^{-1},\left(u_{k}\right)^{-1}\right]\right), \\
A_{k, j}^{(0)}:=P_{k, j}\left(\left[\left(u_{k}\right)^{-1}, 1\right]\right)
\end{gathered}
$$

the map T by $T\left(\left(x_{k, j}\right)_{(k, j) \in \mathbb{N} * \times \mathbb{Z}}\right):=\left(x_{k, j+1}\right)_{(k, j) \in \mathbb{N}^{*} \times \mathbb{Z}}$, and

$$
\xi_{k}:=\chi_{A_{k, 0}^{+}}-\chi_{A_{k, 0}^{-}}
$$

A mixing counter-example to the central limit theorem in Hilbert spaces

References

[1] C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, third ed., Springer, Berlin, 2006, A hitchhiker's guide. MR-2378491
[2] A. Araujo and E. Giné, The central limit theorem for real and Banach valued random variables, John Wiley \& Sons, New York-Chichester-Brisbane, 1980, Wiley Series in Probability and Mathematical Statistics. MR-576407
[3] P. Billingsley, Convergence of probability measures, John Wiley \& Sons Inc., New York, 1968. MR-0233396
[4] R. C. Bradley, Introduction to strong mixing conditions. Vol. 1, Kendrick Press, Heber City, UT, 2007. MR-2325294
[5] J. Dedecker and F. Merlevède, On the almost sure invariance principle for stationary sequences of Hilbert-valued random variables, Dependence in probability, analysis and number theory, Kendrick Press, Heber City, UT, 2010, pp. 157-175. MR-2731073
[6] H. Dehling, Limit theorems for sums of weakly dependent Banach space valued random variables, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 3, 393-432. MR-705631
[7] M. Denker, Uniform integrability and the central limit theorem for strongly mixing processes, Dependence in probability and statistics (Oberwolfach, 1985), Progr. Probab. Statist., vol. 11, Birkhäuser Boston, Boston, MA, 1986, pp. 269-289. MR-899993
[8] J. L. Doob, Stochastic processes, John Wiley \& Sons, Inc., New York; Chapman \& Hall, Limited, London, 1953. MR-0058896
[9] P. Doukhan, P. Massart, and E. Rio, The functional central limit theorem for strongly mixing processes, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 1, 63-82. MR-1262892
[10] D. Giraudo and D. Volný, A strictly stationary -mixing process satisfying the central limit theorem but not the weak invariance principle, Stochastic Processes and their Applications 124 (2014), no. 11, 3769-3781.
[11] M. Ledoux and M. Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, SpringerVerlag, Berlin, 1991, Isoperimetry and processes. MR-1102015
[12] F. Merlevède and M. Peligrad, On the weak invariance principle for stationary sequences under projective criteria, J. Theoret. Probab. 19 (2006), no. 3, 647-689. MR-2280514
[13] F. Merlevède, M. Peligrad, and S. Utev, Sharp conditions for the CLT of linear processes in a Hilbert space, J. Theoret. Probab. 10 (1997), no. 3, 681-693. MR-1468399
[14] T. Mori and K. Yoshihara, A note on the central limit theorem for stationary strong-mixing sequences, Yokohama Math. J. 34 (1986), no. 1-2, 143-146. MR-886062
[15] D. N. Politis and J. P. Romano, Limit theorems for weakly dependent Hilbert space valued random variables with application to the stationary bootstrap, Statist. Sinica 4 (1994), no. 2, 461-476. MR-1309424
[16] E. Rio, Covariance inequalities for strongly mixing processes, Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), no. 4, 587-597. MR-1251142
[17] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants, Mathématiques \& Applications (Berlin) [Mathematics \& Applications], vol. 31, Springer-Verlag, Berlin, 2000. MR-2117923
[18] M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U. S. A. 42 (1956), 43-47. MR-0074711
[19] H. P. Rosenthal, On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. MR-0271721
[20] C. Tone, Central limit theorems for Hilbert-space valued random fields satisfying a strong mixing condition, ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), 77-94. MR-2754401
[21] V. A. Volkonskiĭ and Y. A. Rozanov, Some limit theorems for random functions. I, Teor. Veroyatnost. i Primenen 4 (1959), 186-207. MR-0105741

A mixing counter-example to the central limit theorem in Hilbert spaces
[22] D. Volný, Approximation of stationary processes and the central limit problem, Probability theory and mathematical statistics (Kyoto, 1986), Lecture Notes in Math., vol. 1299, Springer, Berlin, 1988, pp. 532-540. MR-936028

Acknowledgments. The authors would like to thank both referees for helpful comments, and for suggesting Remark 2.

[^0]: *Université de Rouen, France. E-mail: davide.giraudo1@univ-rouen.fr
 †Université de Rouen, France.
 E-mail: dalibor.volny@univ-rouen.fr

