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Abstract

The totally disconnectedness of support for superBrownian motion in high dimen-
sions is well known. In this paper, we prove that similar results also hold for Λ-
Fleming-Viot processes with Brownian spatial motion provided that the associated
Λ-coalescent comes down from infinity fast enough. Our proof is another application
of the lookdown particle representation for Λ-Fleming-Viot process. We also discuss
the disjointness of independent Λ-Fleming-Viot supports and ranges in high dimen-
sions. The disconnectedness of the Λ-Fleming-Viot support remains open in certain
low dimensions.
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1 Introduction

It is well known that in dimension one superBrownian motion is absolutely continu-
ous with respect to Lebesgue measure, and in dimensions two and above it is a singular
random measure with its support of Hausdorff dimension two. The connectedness of the
superBrownian motion support at a fixed time is a question asked by Donald Dawson;
see Section 1 of Tribe [24] for the remark.

For a d-dimensional superBrownian motion with binary branching, it is shown by
Perkins [18] that at any fixed positive time its support is totally disconnected, i.e. the
support contains no nontrivial connected component, in dimension four or above and
its support is totally disconnected, uniformly for all positive times, in dimension six
or above; also see Section III.6 of Perkins [19]. The proof in [19] uses the cluster
decomposition and historical modulus of continuity for superBrownian motion.

The disconnectedness of support for superBrownian motion with general branching
mechanism is studied in Delmas [10] using a snake representation and a subordination
method. It is shown in [10] that at any fixed positive time the support of a d-dimensional
superBrownian motion with (1 +α)-stable branching mechanism is totally disconnected
if dα > 4.

For superBrownian motion X with binary branching in dimension three, a partial
disconnectedness result is obtained by [24] which states that for any t > 0, with prob-
ability one for Xt almost all x, the connected component of its support containing x is
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exactly {x}, the set consisting of a single element x; also see Abraham [1] for a proof of
this result with the approach of Brownian snake representation. The disconnectedness
of superBrownian motion support remains an open problem in certain low dimensions.

Fleming-Viot processes belong to another important class of probability-measure-
valued superprocesses arising from population genetics. The Λ-Fleming-Viot process is
a Fleming-Viot process with a more general reproduction mechanism that is associated
with Λ-coalescent of multiple collisions. In this paper we want to study the disconnect-
edness of support for the Λ-Fleming-Viot processes with Brownian spatial motion in Rd,
which to our best knowledge has not been studied before. We are going to show that
its support is totally disconnected in high dimensions when the associated Λ-coalescent
comes down from infinity fast enough. In particular, if the associated Λ-coalescent is a
Beta(2− β, β)-coalescent, our main results state that the corresponding Beta(2− β, β)-
Fleming-Viot support is totally disconnected at any fixed positive time for d(β − 1) > 4

and it is totally disconnected uniformly in positive time for d(β − 1) > 4 + 2α.

The celebrated lookdown representation, initially proposed by Donnelly and Kurtz
[11, 12], is a powerful technique in the study of Fleming-Viot processes. Applying the
lookdown representation, it is pointed out in Blath [8] that at any positive time the sup-
port of a Λ-Fleming-Viot process with d-dimensional Brownian spatial motion is always
the whole space Rd provided the associated Λ-coalescent stays infinite. On the other
hand, in Liu and Zhou [15, 16] this representation is applied to establish the compact
support property for a class of Λ-Fleming-Viot processes with Brownian spatial motion
whose associated Λ-coalescents come down from infinity. Hausdorff dimensions for
supports of these Fleming-Viot processes are studied in [15, 16], which suggest that
the faster the corresponding coalescent comes down from infinity, the smaller the di-
mension of the support is. A (one-sided) modulus of continuity for the ancestry process
recovered from the lookdown representation is also found in [16] to describe the speed
at which the support propagates locally in time.

Another interesting representation of motionless Λ-Fleming-Viot processes via sto-
chastic flows of bridges is due to Bertoin and Le Gall. We refer to papers [3, 4, 5] for
more details and its applications.

The proofs of this paper also rely on the above mentioned lookdown representation
of Donnelly and Kurtz. Our approach, which is inspired by that for superBrownian
motion, can be sketched as follows. Consider the lookdown particle representation
of the Λ-Fleming-Viot process X. For any fixed current time T > 0 and any n > 0,
by considering the ancestors of those particles present at previous times T − n−1 and
T − n−ε for small 0 < ε < 1/2, respectively, we first group the particles at time T

according to their respective ancestors at time T −n−1 and then group those ancestors
at time T − n−1 together according to their respective ancestors at the earlier time
T − n−ε.

On one hand, in space Rd of higher dimension d any two ancestors at time T −
n−1 who belong to two different groups typically do not stay very close to each other
since, by the lookdown representation, given positions of the ancestors at time T −n−ε,
positions of these two ancestors at time T − n−1 are determined by two conditionally
independent d-dimensional Brownian motions starting at positions of their respective
ancestors at time T − n−ε and running up to time n−ε − n−1. For our purpose we only
need to show that the pair of particles are more than a distance of n−1/2 away from
each other. But we want this to be true for all pairs of particles with distinct ancestors
at time T − n−ε.

On the other hand, a typical distance of a particle at time T from its respective
ancestor at time T − n−1 is of the order n−1/2, and from its ancestor at time T − n−ε is
of the order n−ε/2 due to the modulus of continuity for the ancestry process obtained in

ECP 19 (2014), paper 53.
Page 2/16

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3208
http://ecp.ejpecp.org/


On criteria of disconnectedness for Λ-Fleming-Viot support

[16].

Therefore, if the associated Λ-coalescent comes down from infinity fast enough to
allow us a control over the total numbers of ancestors at different previous times, and
if the dimension d is high so that the d-dimensional Brownian spatial motion is transient
enough, we can show that for large n and at time T the different groups of particles with
different ancestors at time T−n−ε typically stay away from each other, and the maximal
distance among particles at time T with the same ancestors at time T−n−ε are typically
of the order n−ε/2. Consequently each connected component of the support SuppX(T ),
whenever exists, typically contains particles from the same ancestor at time T − n−ε
and has a diameter at most of the order n−ε/2. As a result, when dimension d is high
enough, we can show the disconnectedness of support at time T via the Borel-Cantelli
arguments.

To show the disconnectedness of support uniformly in time we need to, under a
stronger condition on the rates of coalescence and for higher dimensions, carry out
the above argument simultaneously for a collection of positive times and we need an
estimate obtained in [16] on the number of ancestors present in a time interval.

In some sense the lookdown particle representation for the Fleming-Viot process
plays the role of the cluster decomposition for superBrownian motion.

These ideas are also implemented to obtain results on the disjointness of indepen-
dent Λ-Fleming-Viot supports.

The paper is structured as follows. After the introduction in Section 1, we first
present the lookdown representation of Λ-Fleming-Viot processes with Brownian spatial
motion and then present the associated Λ-coalescent. We later introduce the ancestry
process and the result on its modulus of continuity. In Section 3 we prove the two
main theorems. The first theorem concerns the disconnectedness of the Fleming-Viot
support at a fixed positive time. The second theorem concerns the uniform (in time)
disconnectedness of the support. Additional results on the disjointness of independent
Fleming-Viot supports and ranges are also proved in this section.

2 The Donnelly-Kurtz lookdown representation and Λ-coalescent

The lookdown particle representation for Fleming-Viot process was first introduced
by Donnelly and Kurtz [11]. A modified lookdown particle representation for Fleming-
Viot process with general reproduction mechanism was later proposed in Donnelly and
Kurtz [12]. Intuitively, in the lookdown model each particle is attached a level taking a
value from {1, 2, . . .}. The evolution of a particle at level n only depends on the evolu-
tion of a finite number of particles at lower levels. This projective property allows us to
construct approximating particle systems, and their limit in the same probability space.
Such coupled particle systems naturally result in a genealogy for the Fleming-Viot pro-
cess, which turns out to be very useful in studying Fleming-Viot support properties.

Following Birkner and Blath [6] and Blath [8], we briefly introduce the modified
lookdown representation of the Λ-Fleming-Viot process with underlying Brownian mo-
tion. Let (X1(t), X2(t), X3(t), . . .) , t ≥ 0, be an (Rd)∞-valued stochastic process with
exchangeable initial values (X1(0), X2(0), . . .), where for any i = 1, 2, . . ., Xi(t) repre-
sents the spatial location of the particle at level i and at time t.

Let Λ be a finite measure on [0, 1]. The reproduction of the particle system consists
of two kinds of birth events: the events of single birth that are determined by measure
Λ({0})δ0 and the events of multiple births that are determined by the measure Λ re-
stricted to (0, 1], which is denoted by Λ0. The particle system undergoes lookdowns and
spatial motions.

To describe the evolution of the system during events of single birth, let {Nij(t) :
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1 ≤ i < j < ∞} be independent Poisson processes with common rate Λ({0}). At a
jump time t of the process Nij , the particle at level j looks down at the particle at
level i and assumes its location, and values of particles at levels above j are shifted
accordingly (another way of looking at it is that the particle at level i gives birth to a
new particle at level j and levels of the other particles are rearranged according to their
pre-reproduction levels). More precisely, for any i, j and t with Nij(t)−Nij(t−) = 1, we
have

Xk(t) =


Xk(t−), if k < j,

Xi(t−), if k = j,

Xk−1(t−), if k > j.

For those events of multiple births we can construct an independent Poisson point
process Ñ on R+×(0, 1] with intensity measure dt⊗x−2Λ0 (dx). For [∞] := {1, 2, . . .}, let
{Uij , i, j ∈ [∞]} be i.i.d. random variables uniformly distributed on [0, 1]. Write {(ti, xi)}
for the collection of all the jump points of Ñ. Put [n] := {1, . . . , n}. For any t ≥ 0, n and
J ⊂ [n] with |J | ≥ 2, define a counting process

Nn
J(t) ≡

∑
i:ti≤t

∏
j∈J

1{Uij≤xi}
∏

j∈[n]\J

1{Uij>xi}. (2.1)

Then Nn
J(t) counts the number of the kind of birth events up to time t among the parti-

cles at levels {1, 2, . . . , n} such that exactly those at levels in J are involved. Intuitively,
ti represents the coalescing time and xi stands for the proportion of particles that coa-
lesce into one particle at time ti. More precisely, all the particles at levels j with Uij ≤ xi
participate in the lookdown event. Those particles involved jump to the location of the
particle at the lowest level involved, and the spatial locations of particles on the other
levels, keeping their original order, are shifted accordingly (another way of looking at it
is that the particle at the lowest level involved gives births to particles at all the other
levels involved and the pre-reproduction levels are rearranged). If t = ti is the jump
time and j is the lowest level involved, then

Xk(t) :=


Xk(t−), for k ≤ j,
Xj(t−), for k > j with Uik ≤ xi,
Xk−Jkt (t−), otherwise,

where Jkti := #{m < k : Uim ≤ xi} − 1.
Between the jump times of the above mentioned Poisson or Poisson point processes,

particles at different levels move independently according to Brownian motions in Rd.
We assume that the above-mentioned lookdown representation is carried out in

a probability space (Ω,F ,P) equipped with the filtration generated by the processes
(Nij), Ñ and the Brownian motions of the particles in the lookdown representation.

For each t > 0, X1(t), X2(t), . . . are known to be exchangeable random variables in
Rd so that the random measure

X(t) = lim
n→∞

X(n)(t) := lim
n→∞

1

n

n∑
i=1

δXi(t)

exists almost surely by the de Finetti theorem and follows the probability law of the
Λ-Fleming-Viot process with Brownian spatial motion. Further, we have that X(n) con-
verges to X in the path space DM1(Rd)([0,∞)) equipped with the Skorohod topology,
where M1

(
Rd
)

denotes the space of probability measures on Rd equipped with the
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topology of weak convergence; see Theorem 3.2 of [12] and Section 5 of [8]. In the
sequel we always write X for such a Λ-Fleming-Viot process with Brownian spatial mo-
tion.

The lookdown representation induces a Λ-coalescent of multiple collisions that we
briefly introduce in the following. An ordered partition of D ⊂ [∞] is a countable
collection π = {πi, i = 1, 2, . . .} of disjoint blocks such that ∪iπi = D and minπi < minπj
for i < j. Denote by Pn the set of ordered partitions of [n] and by P∞ the set of
ordered partitions of [∞]. Write 0[n] ≡ {{1}, . . . , {n}} for the partition of [n] consisting
of singletons and 0[∞] for the partition of [∞] consisting of singletons.

Kingman’s coalescent, a special case of the Λ-coalescent, is a P∞-valued time ho-
mogeneous Markov process such that all the different pairs of the existing blocks inde-
pendently merge at the same rate. Pitman [20], Sagitov [22] and Donnelly and Kurtz
[12] generalize the Kingman’s coalescent to the Λ-coalescent which allows multiple col-
lisions, i.e., more than two blocks could merge at a time. The Λ-coalescent is defined as
a P∞-valued Markov process Π ≡ (Π(t))t≥0 such that for each n ∈ [∞], its restriction to
[n], Πn ≡ (Πn(t))t≥0 is a Pn-valued Markov process whose transition rates are described
as follows: if there are currently b blocks in the partition, then each k-tuple of blocks
(2 ≤ k ≤ b) independently merges to form a single block at rate

λb,k =

∫ 1

0

xk−2(1− x)b−kΛ(dx), (2.2)

where Λ is a finite measure on [0, 1], which we call the coalescence measure. Conse-
quently, (λb,k) satisfies the following consistency condition

λb,k = λb+1,k + λb+1,k+1. (2.3)

The Kingman coalescent is the Λ-coalescent with Λ = δ0, the delta measure at point
0. We call a Λ-coalescent Beta(2 − β, β)-coalescent with parameter β ∈ (0, 2) if the
coalescence measure Λ on [0, 1] is given by

Λ(dx) =
Γ(2)

Γ(2− β)Γ(β)
x1−β(1− x)β−1dx.

For n = 2, 3, . . ., denote by

λn =

n∑
k=2

(
n

k

)
λn,k (2.4)

the total coalescence rate starting with n blocks. From the consistency condition (2.3)
it is clear that (λn)n≥2 is an increasing sequence, i.e., λn ≤ λn+1 for any n ≥ 2. In
addition, denote by

γn =

n∑
k=2

(k − 1)

(
n

k

)
λn,k

the rate at which the number of blocks decreases.
Given any Λ-coalescent Π ≡ (Π(t))t≥0 with Π(0) = 0[∞], let #Π(t) be the number of

blocks in the partition Π(t). The Λ-coalescent Π comes down from infinity if

P{#Π(t) <∞} = 1

for all t > 0 and it stays infinite if

P{#Π(t) =∞} = 1

ECP 19 (2014), paper 53.
Page 5/16

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3208
http://ecp.ejpecp.org/


On criteria of disconnectedness for Λ-Fleming-Viot support

for all t > 0. It is shown by Schweinsberg [23] that if Λ({1}) = 0, the Λ-coalescent
comes down from infinity if and only if

∑∞
n=2 γ

−1
n < ∞ and stays infinite if and only if∑∞

n=2 γ
−1
n =∞.

Consequently, Kingman’s coalescent comes down from infinity, and the Beta(2−β, β)-
coalescent comes down from infinity if and only if 1 < β < 2.

For q > 0 put

ψΛ(q) :=

∫
[0,1]

(e−qx − 1 + qx)Λ(dx).

It is found in Bertoin and Le Gall [5] that the Λ-coalescent comes down from infinity if
and only if ∫ ∞

a

1

ψΛ(q)
dq <∞

for some (and then for all) a > 0; see Section 4 of [5] and Section 2 of Berestycki et al.
[2].

The genealogy of the particles recovered from the lookdown representation natu-
rally leads to the partition-valued Λ-coalescent. Given T > 0, for any 0 ≤ s ≤ T and
i ∈ [∞], let LTi (s) denote the ancestor’s level at time s of the particle with level i at
time T . Then XLTi (s) (s−) represents that ancestor’s location. Write

(
ΠT (t)

)
0≤t≤T for

the P∞-valued process such that i and j belong to the same block of ΠT (t) if and only if
LTi (T − t) = LTj (T − t), i.e., i and j belong to the same block if and only if the two parti-
cles with levels i and j, respectively, at time T share a common ancestor at time T − t.
It is known from the lookdown representation that the process

(
ΠT (t)

)
0≤t≤T follows the

same probability law as that of a Λ-coalescent with coalescence measure Λ running up
to time T . We thus call

(
ΠT (t)

)
0≤t≤T the associated Λ-coalescent.

For any T > 0 and m > 0 write

Tm ≡ T (m) := inf{0 ≤ t ≤ T : #ΠT (t) ≤ m}

with the convention inf ∅ := T . To prove the results in this paper we introduce two
conditions concerning the rates of coalescence. The first condition is that there exists
a constant α > 0 such that

lim sup
m→∞

mαETm <∞. (2.5)

The second condition is that there exists a constant α > 0 such that

lim sup
m→∞

mα
∑
i≥m

1

λi
<∞. (2.6)

It is known that condition (2.6) implies condition (2.5), which is sufficient for the coa-
lescent to come down from infinity; see [16].

Condition (2.6) holds for Kingman’s coalescent with α = 1. For β > 1 it holds for
the Beta(2 − β, β)-coalescent with α = β − 1. Further, for the class of Beta coalescents
both conditions (2.5) and (2.6) are sufficient and necessary conditions for coming down
from infinity; see [16] for more details. More generally, if the coalescence measure Λ

allows a density function f(x) for x near 0 that is regularly varying at 0 with index −γ
for a constant γ ∈ (0, 1), i.e. f(x) = x−γL(x) for x close to 0 for some function L(x) that
is slowly varying at 0, then one can show that the condition (2.6) holds for any α < γ;
see a related estimate on the so called Λ-coalescent with the (c, ε, γ)-property in Lemma
4.13 of [15].

A useful observation from Lemma 3.1 of [15] is that given t ∈ [0, T ] and the ordered
random partition

ΠT (t) :=
{
πTl (t) : l = 1, . . . ,#ΠT (t)

}
,
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where #ΠT (t) denotes the number of blocks in ΠT (t) and the blocks are ordered by
their least elements, we have

LTj (T − t) = l for any j ∈ πTl (t). (2.7)

In the sequel we often write πi(t) for πTi (t) for ease of notation.
For any T > 0, denote by

(X1,t, X2,t, X3,t, . . .)0≤t≤T

a C(Rd)
∞

-valued ancestry process with each coordinate Xi,t defined by

Xi,t (s) := XLti(s)
(s−) for 0 ≤ s ≤ t.

Intuitively, the process Xi,t, running backwards in time, keeps track of locations for all
the ancestors of the particle with level i at the present time t.

For any 0 ≤ s < t let H(s, t) be the maximal dislocation between the particles at time
t and their respective ancestors at time s. More precisely, we have

H (s, t) := max
i∈[∞]

|Xi(t)−Xi,t(s)|

= max
i∈[∞]

∣∣∣Xi(t)−XLti(s)
(s−)

∣∣∣
= max

1≤l≤N(s,t)
max

j∈πl(t−s)
|Xj(t)−Xl(s−)| ,

(2.8)

where
N(s, t) := #Πt(t− s),

{πl(t− s) : 1 ≤ l ≤ #Πt (t− s)} = Πt (t− s)

and we need property (2.7) for the last equation of (2.8).
A modulus of continuity for the ancestry process under condition (2.5) is found in

Theorem 4.1 of [16], which states that for any T > 0 there exist a constant C(d, α) and
a positive random variable θ(T, d, α) such that P-a.s.

H(s, t) ≤ C(d, α)
√

(t− s) log(1/(t− s)) (2.9)

for all 0 ≤ s < t ≤ T with t− s ≤ θ.
The above modulus of continuity for the ancestry process leads to a modulus of

continuity at a fixed time for the Λ-Fleming-Viot support process in Theorem 4.2 of [16]
with the same modulus function. One can compare it with Theorem 1.3 of Dawson
and Vinogradov [9], where a similar modulus of continuity is obtained for the support
process of the superBrownain motion with a stable branching mechanism. Note that
the modulus functions from both [16] and [9] are of the same order.

3 Main results

For any nonempty compact sets A and B in Rd, let

ρ1(A,B) := sup
x∈A

d(x,B) ∧ 1

and
ρ(A,B) := ρ1(A,B) + ρ1(B,A),

where d(x,B) denotes the distance from x to B; i.e. ρ is the Hausdorff metric on the
space of compact subsets of Rd.
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Until the end of this paper we always assume that the coalescence measure Λ for
the associated Λ-coalescent has no atom at 1, i.e. Λ({1}) = 0.

Write Suppµ for the closed support of measure µ. We first present a result on
the disconnectedness of support at a fixed time for the Λ-Fleming-Viot process X with
Brownian spatial motion in Rd.

Theorem 3.1 (Disconnectedness at a fixed time). Suppose that condition (2.5) holds
for the associated Λ-coalescent with α satisfying dα > 4. Then for any T > 0, SuppX(T )

is totally disconnected P-a.s.

Proof of Theorem 3.1. Note that the associated Λ-coalescent ΠT comes down from in-
finity under condition (2.5). Fix time T > 0. For any 0 < ε < 1/2, any m > 1 large
enough such that m−ε < T and i = 1, 2, . . . write

xi ≡ xi(m−ε) := Xi((T −m−ε)−).

Intuitively, by observation (2.7), {xi, i = 1, . . . , N(T −m−ε, T )} is the finite collection of
all the positions of ancestral particles at time T −m−ε for those particles at time T .

Recall that

ΠT (m−1) =
(
π1(m−1), . . . , πN(T−m−1,T )(m

−1)
)

and

ΠT (m−ε) =
(
π1(m−ε), . . . , πN(T−m−ε,T )(m

−ε)
)
.

For each i = 1, 2, . . . , N(T −m−ε, T ) write

Ai ≡ Ai (m) := {j : πj(m
−1) ⊂ πi(m−ε)}

and

xij ≡ xij(m) := Xj((T −m−1)−), j ∈ Ai.

Intuitively, because of property (2.7), {xij , j ∈ Ai} stands for the finite collection of po-
sitions of the ancestors of X(T ) at time T −m−1 who, at the same time, are descendants
of the ancestor situated at position xi at time T −m−ε.

By condition (2.5),

P{N(T −m−1, T ) > m
1+ε
α } = P{T (m

1+ε
α ) > m−1}

≤ mET (m
1+ε
α )

≤ C(m−
1+ε
α )αm

≤ Cm−ε

(3.1)

for m large enough.
Given X(T −m−ε), N(T −m−ε, T ) = kε ≥ 2, N(T −m−1, T ) = k and values in Pkε

and Pk, respectively, of the random partitions

(π1(m−ε), . . . , πk(m−ε)) = (πε1, . . . , π
ε
kε)

and

(π1(m−1), . . . , πk(m−1)) = (π1, . . . , πk),

for any i 6= i′ with i∨ i′ ≤ kε, by the lookdown representation xi and xi′ are independent
samples from the probability measure X(T − m−ε); in addition, for any j ∈ Ai and
j′ ∈ Ai′ , the points xij and xi′j′ are connected to xi and xi′ , respectively, by independent
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Brownian motion paths. Using an estimate on d-dimensional Brownian motion, for the
following event specifying the configurations of the random partitions

D(kε, k, (π
ε
l ), (πl))

:=
{
N(T −m−ε, T ) = kε, N(T −m−1, T ) = k, (πl(m

−ε)) = (πεl ), (πl(m
−1)) = (πl)

}
,

we have

P
{
D(kε, k, (π

ε
l ), (πl)), |xij − xi′j′ | ≤ m−

1
2 +ε
}

=

∫
P{D(kε, k, (π

ε
l ), (πl)), XT−m−ε ∈ d(µ)}

∫
µ(dxi)

∫
µ(dxi′)

× P
{∣∣Wxi(m

−ε −m−1)−Wxi′ (m
−ε −m−1)

∣∣ ≤ m− 1
2 +ε
}

= P{D(kε, k, (π
ε
l ), (πl))}

∫
P{X(T −m−ε) ∈ d(µ)}

∫
µ(dxi)

∫
µ(dxi′)

×
∫
|y|≤m−

1
2
+ε

(
4π(m−ε −m−1)

)−d/2
e
−
|y−(xi−xi′ )|

2

4(m−ε−m−1) dy

≤ C(d)m
dε
2 md(− 1

2 +ε)P{D(kε, k, (π
ε
l ), (πl))},

(3.2)

where Wxi and Wxi′ denote two independent d-dimensional Brownian motions with ini-
tial values xi and xi′ , respectively, and we have used the independence between the
random measure X(T −m−ε) and the collection of random variables together with ran-
dom partitions {N(T−m−ε, T ), N(T−m−1, T ), (πi(m

−ε)), (πi(m
−1))} that are determined

by the Poisson processes (Nij) and the Poisson point process Ñ over the time interval
[T −m−ε, T ) in the lookdown representation.

Therefore, writing

Dm :=
⋃

i,i′≤N(T−m−ε,T ),i6=i′

⋃
j∈Ai,j′∈Ai′

{
|xij(m)− xi′j′(m)| ≤ m− 1

2 +ε
}

for the event that there exist two ancestors from different groups at time T −m−1 that
are within a distance of m−

1
2 +ε from each other, we have by (3.1) and (3.2)

P{Dm} ≤ P


⋃
kε≥2

⋃
k≤m

1+ε
α

⋃
(πl(m−ε))

⋃
(πl(m−1))

D(kε, k, (π
ε
l ), (πl))

⋂ ⋃
i,i′≤kε,i6=i′

⋃
j∈Ai,j′∈Ai′

{
|xij(m)− xi′j′(m)| ≤ m− 1

2 +ε
}


+ P{N(T −m−1, T ) > m
1+ε
α }

≤
∑
kε≥2

∑
k≤m

1+ε
α

∑
(πl(m−ε))

∑
(πl(m−1))

∑
i,i′≤kε,i6=i′

∑
j∈Ai,j′∈Ai′

C(d)m
dε
2 md(− 1

2 +ε)P{D(kε, k, (π
ε
l ), (πl))}

+ Cm−ε

≤ m
2(1+ε)
α C(d)m

dε
2 md(− 1

2 +ε)
∑
kε≥2

∑
k≤m

1+ε
α

∑
(πl(m−ε))

∑
(πl(m−1))

P{D(kε, k, (π
ε
l ), (πl))}

+ Cm−ε

≤ C(d)m
2(1+ε)
α m

dε
2 md(− 1

2 +ε) + Cm−ε

≤ C(d)m−ε
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for d > 4/α and for ε small enough. Applying the Borel-Cantelli lemma to a sequence of
events {Dn2/ε , n = 1, 2, . . .} we have P-a.s. for n big enough,

|xij(n2/ε)− xi′j′(n2/ε)| > (n2/ε)−
1
2 +ε (3.3)

for all i, i′ ≤ N(T − n−2, T ) with i 6= i′ and all j ∈ Ai(n2/ε), j′ ∈ Ai′(n2/ε).

On the other hand, by the modulus of continuity (2.9) for the ancestry process, P-a.s.
for m big enough, for any i and for j ∈ Ai(m), we have

|Xk(T )− xij(m)| < m−
1
2 + ε

2 for all k ∈ πj(m−1). (3.4)

Put

Bi(n) :=

Xk(T ) : k ∈ πi(n−2) =
⋃

j∈Ai(n2/ε)

πj(n
−2/ε)


for the set of positions of all the descendants at time T from the i-th particle at time
T − n−2. It then follows from the previous arguments for (3.3) and (3.4) that P-a.s. for
all i, i′ ≤ N(T − n−2, T ) with i 6= i′, we have

ρ(Bi(n), Bi′(n)) > (n2/ε)−
1
2 + ε

2

for all n large enough. Consequently, each connected component of SuppX(T ) can at
most result from the offspring of the same ancestor at time T − n−2 for a large n.

By the modulus of continuity (2.9) again, for large n the diameter of the set Bi(n) is
uniformly bounded from above by

C(d, α)
√
n−2 lnn2 = C(d, α)n−1

√
lnn,

which converges to 0 as n→∞. Therefore, SuppX(T ) is totally disconnected P-a.s.

The arguments in the proof for Theorem 3.1 can be applied to study the intersection
of two independent Fleming-Viot supports. Let X and Y be independent ΛX -Fleming-
Viot process and ΛY -Fleming-Viot process, respectively, both with Brownian spatial mo-
tion.

Proposition 3.2. Suppose that condition (2.5) holds with constants αX and αY , respec-
tively, for the associated ΛX -coalescent and ΛY -coalescent. If d > 2

αX
+ 2

αY
, we then

have for any T > 0,

SuppX(T ) ∩ SuppY (T ) = ∅ P-a.s.

Proof of Proposition 3.2. Similar to the proof of Theorem 3.1, for n > 0 define from
their respective lookdown representations

NX := NX(T − 1/n, T ), NY := NY (T − 1/n, T )

and

xi := Xi(T − 1/n), i = 1, . . . , NX ,

yi := Yi(T − 1/n), i = 1, . . . , NY .

Given ε > 0, for n large enough we have

P
{
NX > n

1+ε
αX

}
∨ P

{
NY > n

1+ε
αY

}
≤ Cn−ε.
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On criteria of disconnectedness for Λ-Fleming-Viot support

Since Xi and Yi are independent Brownian motions with initial distributions X0 ≡ X(0)

and Y0 ≡ Y (0), respectively, we have

P
{
∪NXi=1 ∪

NY
j=1 {|xi − yj | < n−1/2+ε}

}
≤ n

1+ε
αX n

1+ε
αY E

∫
|x−y|<n−1/2+ε

∫
X0(dx0)PT−1/n(x0, x)dx

∫
Y0(dy0)PT−1/n(y0, y)dy + Cn−ε

≤ n
1+ε
αX

+ 1+ε
αY E

∫
Y0(dy0) sup

x

∫
|x−y|<n−1/2+ε

PT−1/n(y0, y)dy + Cn−ε

≤ n
1+ε
αX

+ 1+ε
αY C(d, T )n−d(1/2−ε) + Cn−ε,

where Pt(x, y) denotes the Brownian transition function. Then the desired result follows
from the modulus of continuity and the Borel-Cantelli lemma.

Increasing the dimension allows us to show a result on the disconnectedness uniform
in time for the Λ-Fleming-Viot support.

Theorem 3.3 (Disconnectedness uniform in time). Suppose that condition (2.6) holds
for the associated Λ-coalescent with α satisfying dα > 4 + 2α. Then P-a.s. SuppX(t) is
totally disconnected for all t > 0.

Proof of Theorem 3.3. We proceed with the argument of proof for Theorem 3.1 uni-
formly in time. For any 0 < δ < 1 and any positive integer n, let

In := {k : δ − 2−n+1 ≤ k2−n ≤ δ−1}.

Recall that N(k−1
2n ,

k
2n ) denotes the number of ancestors at dyadic time (k − 1)/2n for

the particles at time k/2n. By Lemma 5.8 of [16], Tn is stochastically dominated by a
sum of independent exponential random variables with rate (λi) where λi is specified
in (2.4). It then follows from condition (2.6) and the proof for Lemma 5.9 of [16] that

P

{
max
k∈In

N(
k − 1

2n
,
k

2n
) ≥ 2

n
αn

2
α

}
≤ C(α, δ)(

2

e
)n. (3.5)

Further, for small 0 < ε < 1 let

Iεn := {k : δ − 2−εn ≤ k2−εn ≤ δ−1}.

Similar to the proof of Theorem 3.1, for any kε ∈ Iεn and integer k satisfying kε2
−εn ≤

k2−n < (kε + 1)2−εn, write

xkεi := Xi((kε − 1)/2εn−), i = 1, . . . , N(
kε − 1

2εn
,
k + 1

2n
).

Then by (2.7), {xkεi } is the collection of locations of all those ancestors at time (kε −
1)/2εn of the particles at time (k + 1)/2n. In addition, at the risk of abusing notation, in
the present proof we also write

Π
k+1
2n

(
k + 1

2n
− kε − 1

2εn

)
:=
(
πε,k1 , . . . , πε,k

N( kε−1
2εn , k+1

2n )

)
,

Π
k+1
2n (1/2n) :=

(
πk1 , . . . , π

k
N( k

2n ,
k+1
2n )

)
and

Aki := {j : πkj ⊂ π
ε,k
i }, i = 1, . . . , N(

kε − 1

2εn
,
k + 1

2n
).
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For each i = 1, . . . , N(kε−1
2εn ,

k+1
2n ) write

xkij := Xj(k/2
n−), j ∈ Aki .

Then by (2.7), {xkij , j ∈ Aki } is the collection of locations of particles at time k/2n that
are both the offspring of the ith ancestor at time (kε− 1)/2εn and the ancestors of some
particles at the later time (k + 1)/2n.

For any kε/2εn ≤ k/2n < (kε+ 1)/2εn, given the probability measure X((kε − 1)/2εn),
the random variables N(kε−1

2εn ,
k+1
2n ) and N( k

2n ,
k+1
2n ), and the random partitions

Π
k+1
2n

(
k + 1

2n
− kε − 1

2εn

)
and Π

k+1
2n (1/2n), by the lookdown representation again for i 6= i′ and j ∈ Aki , j′ ∈ Aki′ , the

values of xkij and xki′j′ are obtained by two independent d-dimensional Brownian motions

starting at xkεi and xkεi′ , respectively, and evaluated at time k/2n−(kε−1)/2εn, where xkεi
and xkεi′ are chosen independently according to the probability measure X((kε − 1)/2εn)

on Rd. By the above description, similar to (3.2) we have

P

 ⋃
kε∈Iεn

⋃
kε2(1−ε)n≤k<(kε+1)2(1−ε)n

⋃
i 6=i′

⋃
j,j′

{|xkij − xki′j′ | ≤ 2n(− 1
2 +ε)}


≤
∑
kε∈Iεn

∑
kε2(1−ε)n≤k<(kε+1)2(1−ε)n

P


⋃
i6=i′

⋃
j,j′<2

n
α n

2
α

{|xkij − xki′j′ | ≤ 2n(− 1
2 +ε)}


+ P

{
max
k∈In

N(
k − 1

2n
,
k

2n
) ≥ 2

n
αn

2
α

}
≤
∑
kε∈Iεn

∑
kε2(1−ε)n≤k<(kε+1)2(1−ε)n

C(d, α)
(

2
n
αn

2
α

)2

(2εn)
d
2

(
2n(− 1

2 +ε)
)d

+ C(α, δ)(
2

e
)n

≤ C(d, α, δ)2n ×
(

2
n
αn

2
α

)2

2d(− 1
2 + 3ε

2 )n + C(α, δ)(
2

e
)n,

(3.6)

where in the above expressions i, i′ = 1, . . . , N(kε−1
2εn ,

k+1
2n ) and the union is taken for

j ∈ Aki and j′ ∈ Aki′ .
Clearly, for d > 2 + 4/α and ε small enough, the right hand side of inequality (3.6) is

summable in n. By the Borel-Cantelli lemma, P-a.s. for all n large enough we have

|xkij − xki′j′ | > 2n(− 1
2 +ε) (3.7)

for all kε ∈ Iεn, all k with kε2
(1−ε)n ≤ k < (kε + 1)2(1−ε)n, all i, i′ = 1, . . . , N(kε−1

2εn ,
k+1
2n )

with i 6= i′, and all j ∈ Aki , j′ ∈ Aki′ .
Given t ∈ (δ, δ−1), for n large enough there exist k ∈ In and kε ∈ Iεn such that

t− 1/2n ∈ [k/2n, (k + 1)/2n) ⊂ [kε/2
εn, (kε + 1)/2εn). (3.8)

For any m ∈ πti(t− (kε − 1)/2εn) and m′ ∈ πti′(t− (kε − 1)/2εn) with i 6= i′, observe that

N((kε − 1)/2εn, t) ≤ N((kε − 1)/2εn, (k + 1)/2n),

Xm,t(k/2
n) := XLtm(k/2n)(k/2

n−) ∈ {xkij , j ∈ Aki }

and
Xm′,t(k/2

n) = XLt
m′ (k/2

n)(k/2
n−) ∈ {xki′j , j ∈ Aki′}.
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It follows from estimate (3.7) that P-a.s. for n large enough we have

sup
t∈(δ,δ−1)

|Xm(t)−Xm′(t)|

≥ sup
t∈(δ,δ−1)

|Xm,t(k/2
n)−Xm′,t(k/2

n)|

− sup
t∈(δ,δ−1)

|Xm(t)−Xm,t(k/2
n)| − sup

t∈(δ,δ−1)

|Xm′(t)−Xm′,t(k/2
n)|

> 2n(− 1
2 + ε

2 ),

where we have used the fact that

sup
t∈(δ,δ−1)

(|Xm(t)−Xm,t(k/2
n)| ∨ |Xm′(t)−Xm′,t(k/2

n)|) < Cn2−n

due to the modulus of continuity (2.9) for the ancestry process. Therefore, for all t ∈
(δ, δ−1) satisfying (3.8), writing

Bi(t) :=
{
Xm(t) : m ∈ πti(t− (kε − 1)/2εn)

}
, i = 1, . . . N((kε − 1)/2εn, t),

we have P a.s.
ρ(Bi(t), Bi′(t)) > 2n(− 1

2 + ε
2 )

for all i, i′ = 1, . . . , N((kε − 1)/2εn, t) and i 6= i′.
Applying the modulus of continuity again, the diameter of Bi(t) converges to 0 as

n → ∞ uniformly for all t ∈ (δ, δ−1) and all i. So, similar to the proof for Theorem 3.1
one can conclude that P-a.s. for all t ∈ (δ, δ−1), SuppX(t) cannot contain any connected
component with positive diameter.

Letting δ → 0+, the desired result follows.

The speed of coming down from infinity for the Λ-coalescent is discussed in [2].
It is shown that for any Λ-coalescent Π that comes down from infinity, there exists a
deterministic speed function ν : (0,∞)→ (0,∞) such that #Π(t)/ν(t)→ 1 as t→ 0 both
almost surely and in Lp for p ≥ 1. The speed of coming down from infinity is certainly
relevant to the estimate (3.5). Since (3.5) concerns the probability that the number
of blocks is off from the speed function, the results of [2] do not seem to be directly
applicable in showing (3.5). Perhaps the martingale arguments in [2] could be a useful
alternative in proving estimate (3.5).

Corollary 3.4. For the d-dimensional Beta(2−β, β)-Fleming-Viot process X with Brow-
nian spatial motion, if d(β−1) > 4, then for any T > 0, SuppX(T ) is totally disconnected
P-a.s.; if d(β − 1) > 4 + 2(β − 1), then P-a.s. SuppX(t) is totally disconnected for all
t > 0.

More generally, for the d-dimensional Λ-Fleming-Viot process X with Brownian spa-
tial motion whose coalescence measure Λ has a density that is regularly varying at 0

with index −γ, if dγ > 4, then for any T > 0 SuppX(T ) is totally disconnected P-a.s.; if
dγ > 4 + 2γ, then P-a.s. SuppX(t) is totally disconnected for all t > 0.

We now remark on the connection between the Perkins disintegration theorem and
our results. It is well known that a superBrownian motion, when re-normalized and
conditioned on non-extinction, can be transformed into a Fleming-Viot like process. We
refer to Konno and Shiga [14], Etheridge and March [13] and Perkins [17] for such
relations between the superBrownian motion with binary branching and the classical
Fleming-Viot process associated with Kingman coalescent, and Birkner et al [7] for a
similar relationship between non-spacial superBrownian motion with stable branching

ECP 19 (2014), paper 53.
Page 13/16

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3208
http://ecp.ejpecp.org/


On criteria of disconnectedness for Λ-Fleming-Viot support

and non-spacial Λ-Fleming-Viot process associated with Beta coalescent. Also see Sec-
tion II.6 of Ruscher [21] for more detailed discussions. But such a transform typically
results in a Fleming-Viot process with either time-changed reproduction mechanism or
time inhomogeneous spatial motion, which have not been well studied before. There
is still a lot of work to be done in order to make use of this relationship to establish
the Fleming-Viot support properties from those known support properties for the corre-
sponding superBrownian motion.

Further, notice that a continuous-state (1+α)-stable branching process is associated
to a motionless and time-changed Beta(2−β, β)-Fleming-Viot process with β = 1 +α via
a non-spatial Perkins’ disintegration type result in [7]. In this sense, the condition of
Theorem 3.1 for the Beta(2 − β, β)-Fleming-Viot process with Brownian spatial motion
exactly corresponds to the condition of Theorem 2.4 of [10] for the superBrownian
motion with (1 + α)-stable branching mechanism.

We do not expect the results of Theorems 3.1 and 3.3 in this paper to be sharp.
Similar to the superBrownian motions, the disconnectedness of the Λ-Fleming-Viot sup-
ports remains an open problem in low dimensions except dimension one. For the d-
dimensional Λ-Fleming-Viot process with Λ being the Kingman coalescent, we conjec-
ture that its support is totally disconnected at any fixed positive time for d ≥ 2.

The next result concerns the uniform disjointness of independent ΛX -Fleming-Viot
process X and ΛY -Fleming-Viot process Y both with Brownian spatial motion in Rd. Its
proof combines the ideas from those of Theorem 3.2 and Theorem 3.3.

Proposition 3.5. Suppose that the Fleming-Viot processes X and Y are independent
and condition (2.6) holds with constants αX and αY , respectively, for the associated
ΛX -coalescent and ΛY -coalescent. If d > 2 + 2

αX
+ 2

αY
, we have P-a.s.

SuppX(t) ∩ SuppY (t) = ∅ for all t > 0.

Proof of Proposition 3.5. For any 0 < δ < 1, by first estimating

P

 ⋃
δ2n−2<k<δ−12n

NX( k
2n ,

k+1
2n )⋃

i=1

NY ( k
2n ,

k+1
2n )⋃

j=1

{|Xi(k/2
n)− Yj(k/2n)| < 2n(−1/2+ε)}


similarly to Proposition 3.2 and then applying the Borel-Cantelli lemma and the modulus
of continuity (2.9) for the ancestry process, we can show that uniformly in t ∈ (δ, δ−1)

and for any i, j,

|Xi(t)− Yj(t)| > 2n(−1/2+ε/2)

for n large enough. Then we finish the proof by letting δ → 0.

Write

RX(t1, t2) :=
⋃

t1<s<t2

SuppX(s), 0 ≤ t1 < t2,

for the range process of X. We can define the range process RY (t1, t2) similarly for the
process Y .

Proposition 3.6. If the Fleming-Viot processes X and Y are independent and condition
(2.6) holds with constants αX and αY , respectively, for the associated ΛX -coalescent
and ΛY -coalescent. If d > 4 + 2/αX + 2/αY , we have

RX(0,∞) ∩RY (0,∞) = ∅ P-a.s.
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Proof of Proposition 3.6. We only need to show that for any 0 < δ < 1,

RX(δ, δ−1) ∩RY (δ, δ−1) = ∅ P-a.s.

To this end, one needs to estimate the probability

P


⋃

δ2n−2<k,k′<δ−12n

NX( k
2n ,

k+1
2n )⋃

i=1

NY ( k
′

2n ,
k′+1
2n )⋃

j=1

{|Xi(k/2
n)− Yj(k′/2n)| < 2n(−1/2+ε)}


using estimates on Λ-coalescents and modulus of continuity for the ancestry processes.
We leave the details to interested readers.

We omit the proof for the following result.

Corollary 3.7. For independent d-dimensional Beta(2 − βX , βX)-Fleming-Viot process
X and Beta(2 − βY , βY )-Fleming-Viot process Y both with Brownian spatial motion, if
d > 2

βX−1 + 2
βY −1 , then for any T > 0

SuppX(T ) ∩ SuppY (T ) = ∅ P-a.s.;

if d > 2 + 2
βX−1 + 2

βY −1 , then P-a.s.

SuppX(t) ∩ SuppY (t) = ∅ for all t > 0;

if d > 4 + 2
βX−1 + 2

βY −1 , then

RX(0,∞) ∩RY (0,∞) = ∅ P-a.s.

More generally, for two independent d-dimensional Λ-Fleming-Viot processes X and
Y with Brownian spatial motion whose coalescence measures have densities that are
regularly varying at 0 with indices −γX and −γY , respectively, if d > 2

γX
+ 2

γY
, then for

any T > 0

SuppX(T ) ∩ SuppY (T ) = ∅ P-a.s.;

if d > 2 + 2
γX

+ 2
γY

, then

SuppX(t) ∩ SuppY (t) = ∅ for all t > 0;

if d > 4 + 2
γX

+ 2
γY

, then

RX(0,∞) ∩RY (0,∞) = ∅ P-a.s.
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