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Mixing under monotone censoring”
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Abstract

Consider critical percolation on a rhombus in the hexagonal lattice, and let A the
event of a left to right crossing (by 1’s). Suppose we sample configurations from A
by starting from some fixed configuration in A, and then at each step a uniformly
random hexagon is resampled as long as the resulting configuration is in A. It is easy
to see that this sampling procedure converges to the uniform distribution on A. How
long would it take? In this short note we will analyze the mixing properties of this
chain and, more generally, initiate the study of mixing times of Markov chains under
monotone censoring. A number of open problems are presented.
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1 Introduction

1.1 A motivating example

Consider critical percolation on a rhombus in the hexagonal lattice. Formally this is
given by the probability space {0, 1}~ with the uniform distribution, where we denote
by H, the hexagons in the hexagonal lattice in the rhombus. It is trivial to sample
a configuration from this model by sampling each hexagon independently. Let A be
the event of a left to right crossing (by 1's). It is well known, by duality, that P[A] =
0.5. Suppose we want to sample a configuration of A. One natural way to do so is by
rejection sampling: sampling a random configuration and accepting it if and only if it is
in A. A different natural way to sample is to start with a particular left to right crossing
configuration and then repeatedly re-sample hexagons uniformly at random as long as
the resulting configuration is in A. It is not hard to see that the second procedure will
also converge to the uniform distribution on A. However, how long would it take to
converge?

1.2 Monotone sampling in {0, 1}"

We will study a more general question. Consider the partial order on {0,1}"™ where
x < y if and only if x; < y; for all ¢ € [1,n]. We say a set A C {0,1}" is monotone if
z € Aand z < y imply that y € A. For a monotone set A and zy € A4, let M;° denote the
following Markov chain started at .
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Mixing under monotone censoring

e Given the current state z, pick a coordinate ¢ uniformly at random and re-randomize
z; to obtain y.
* Let the next state of the chain be y if y € A. Otherwise let it be .

The monotonicity of A implies that the chain is irreducible, and therefore the chain
converges to the uniform distribution on A. We aim to analyze the mixing time for the
chain M7°. We recall that the mixing time for a Markov chain X = (X;);=01,.. on a
countable space () with stationary distribution 7 is defined to be

Tmiz(X) = meaé(min{t P(Xy €| Xo =) —7()|lrv < 1/4},

where |[p — v|tv = $ 3 ,cq (@) — v(z)| is the total variation distance between two
probability measures p and v (on space 2). For more background on mixing times, see,
e.g., [1, 9].

In order to bound the mixing time, we will use a standard geometric bound on the
mixing time given by the conductance of the underlying graph for a Markov chain.
Given a graph G = G(V, E), the conductance ¢(G) is defined to be

» |089|
~ vol(S)’

?(Q) in ®(S),whered(S)

- m (1.1)
SCV:|vol(S)|<|E|

where vol(S) is the sum of degrees over vertices in S and 9g(S) = {(z,y) e E: 2 € S,y &
S} denotes the edge boundary set of S. For a subset A of the hypercube, we let G4 be
the graph corresponding to the Markov chain M. More precisely, G4 is the induced
subgraph of the hypercube {0, 1}" restricted to A with a self-loop added to vertex x for
each edge (z,y) € EN A x A° (we use the convention that each self-loop is counted as
degree 1).

In what follows, we denote by PP the uniform probability measure on {0, 1}".

Theorem 1.1. For any monotone set A C {0,1}", we have

P[A]

¢(GA) = 167 .

Combined with standard results in the theory of Markov chains [8, Theorem 2.1]
and [12, Lemma 3.3] (see also [9, Theorem 13.14]), Theorem 1.1 yields the following
corollary on the mixing time of M 4.

Corollary 1.2. For any monotone set A C {0,1}", the mixing time for the chain M4
satisfies

Timia(Ma) < 2(pgh;)? log(4 - 2"P(4)).

Note that this implies that the mixing time is polynomial in n as long as A is large
(of measure at least inverse polynomial in n). In particular, our motivating example
of sampling a critical percolation configuration with a left to right crossing has mixing
time at most O(n?). Our conductance bound in Theorem 1.1 is tight up to polynomial
factors in n as the following example shows:

Example 1.3. Assumen > 2mandlet A={z: 21 =29... = 2y, = 1} U{x : @1 =
... = Tg,, = 1}. Clearly A is monotone and P[A] = 2=™+1 — 2=2™  Considering ®(B) for
B={x:21=22... =z, =1} C A, we see that (G 4) < 27™. Similarly starting from

the point x = (x;) for x; = 1,c 4 it is easy to see that the mixing time is lower bounded
by the time to hity = (y;) for y;, = 1,caup with probability at least 1/4, which is lower
bounded by 24,
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1.3 Property Testing

Our proof uses a new ingredient in the context of mixing of Markov chain, a result
from the theory of property testing. Property testing, explicitly defined in [11], plays a
central role in probabilistically checkable proofs. However, it was extended and exten-
sively studied on its own right for checking properties such as graph properties with
fascinating connections to many areas of combinatorics including, in particular, regular-
ity lemmas. One concrete question on this topic is to test the monotonicity of a boolean
function f : {0,1}™ — {0,1} (this is equivalent to testing the monotonicity of a subset
of a hypercube). A natural algorithm for testing monotonicity is to sample a number of
random neighboring pairs (z,y) in the hypercube, and to reject the monotonicity if and
only if f(z) > f(y) while x < y for at least one of the sampled pairs. It was proved in
[6] that this natural algorithm works well with high probability. The key to the success
of this algorithm, which is also the key to our proof of Theorem 1.1, is the following
structural theorem on approximately monotone sets.

Theorem 1.4. [6, Theorem 2] For any set S C {0,1}", define

() = (n2") " {(z,y) € {0,1}" x {0,1}" : [x —y| = Lw <y,z € S,y & S},
€(S) = min{P(S ¢ A) : A is monotone } .

where @ denotes the symmetric difference of two sets. Then we have 6(S) > ¢(S)/n.

1.4 Proof of Theorem 1.1

Recall that P is the uniform measure on {0, 1}". In light of definition (1.1), it suffices
to prove that

for all B C A such that P(B) < P(A)/2. (1.2)

It is clear that (1.2) holds if P(A)P(B) < 8 - 27", since in this case, by connectivity of
G 4, we have that

I | P(A)
®(B)> vol(B)  P(B)n2"  8n

It remains to consider the case when P(A)P(B) > 8 -27". Denote by C = A\ B and by
Q the collection of monotone sets in the hypercube {0, 1}". We claim that

either P(B® F) > %](?(B), forall FeQ,orP(C F) > %E(B), forall F € Q.
(1.3)
Otherwise, there exist monotone sets B’ and C’ such that
P(AP(B P(AP(B
]P(B@B’)<Mand]P(O®C’)<M. (1.4)

16 16

In particular, we have P(B’) > P(B)/2 and P(C’) > P(C) — %E(B) > % - %g) =
%]P(A). An application of FKG inequality [5] gives that

P(B'NC")=P(B) -P(C) > 3121P(A)IP(B).
Combined with (1.4), it follows that
P(BNC) > P(B'NC)—P(B& B)—P(CaC') > 312IP(A)IP(B) _ 21—16IP(A)IP(B) >0,

contradicting with the fact that B N C' = (). Thus, we completed verification of (1.3).
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Without loss of generality we assume now that P(B® F) > %163(3)’ forall F € Q
(if the same holds for C, we just apply the following analysis to C' in the same manner,
with the observation that 0g B = g (). By Theorem 1.4, we get that

w(B)| > 2"P(A)P(B)
- 16

where
W(B) £ {(z,y) €{0,1}" x {0,1}" : |o —y| = La <y,x € B,y & B}.

For (z,y) € ¥(B), we have z € B and = < y, and thus y € A since A is a monotone
set. Therefore, we get (z,y) € JgB, yielding that ¥(B) C JdgB. This implies that
|OpB| > %ﬁ})ﬂB). Combined with the fact that vol(B) = n2"IP(B), it completes the
proof of (1.2) and thus the proof of the theorem.

1.5 Discussions and open problems

It seems plausible that the bound on the mixing time obtained in Corollary 1.2 is not
sharp. A case of particular interest is when P(A4) > 1/2. Indeed, we ask the following
open question.

Question 1.5. Suppose that there exists a constant ¢ > 0 such that a monotone subset
A C {0,1}™ has measure P(A) > c. Is it true that 7,,;,(Ma) < Cnlogn, where C' > 0 is a
constant depending only on c?

In a different direction, our results suggest testing non-product measures. For ex-
ample, suppose we wish to reproduce Theorem 1.1 for the Ising model on some graph
G, where we denote by u the stationary measure. For this to work, we will need an
analogue of the testing result. In this setup it is natural to define for a set S C {0,1}"
(identifying 0 with — and 1 with +)

o= 5

(z,y)€X(S)
where
\IJ(S) = {(xay) € {Ovl}n X {071}71 : |$_y| =lLz<y,zeSy¢ 5}7
and
e(S) = min{u(S @ A) : A is monotone}.
We then ask

Question 1.6. Consider the ferromagnetic Ising model on a graph G = (V, E). Under
what assumptions is it the case that 6(S) > (¢(S)/n)®* for all S C {0,1}"™ and a fixed
constant a > 0?

The following example suggests that some assumptions are needed. Consider the
Curie-Weiss model (Ising model on the complete graph) at low temperature (so the sta-
tionary measure admits double wells, see [2, 3]) with n sites. For convenience, suppose
that n is odd. Let A = {z : Y1 | z; < 2;1}. We claim that e(A) > 1/6. In order to see
this, let A, = {z: Y! &, =k} and A}, = {z: Y x; =n —k} for k < 251, For z € A,
and y € A€, define

lycar ysoi()
a(x7y) = B : 7 :
Hz:ze A,z > x}

Thus, >, c 4c a(z,y) = p(z) for all 2 € A. In addition, by symmetry we see that

alo.y) = Lyeay ysait(y)
Y= Hz:z€ Ar,y > 2}
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Thus for every y € A¢ we have

> alx,y) = uly)

z€A
(so a(-,-) is a mass transportation from A to A with respect to measure u). Therefore,
for any monontone set B we have

pBNAY=>" > a@y)z Y, Y aly)

€A yEBNA® z€BNA yeAc

where the last inequality follows from the fact that 1,cpa(z,y) > liepa(z,y) for all
xz € Aand y € A¢, due to the monotonicity of B. Thus, we obtain

WBNA)> > plx)=p(ANB).
r€EBNA

This implies that u(B N A¢) > u(B)/2. Combined with the simple fact that pu(A4) = 1/2,
it follows that

(A @ B) = max(u(A) — u(B), u(B)/2) > 1/6,

as desired. However, it is clear that

6(A) < p(Am=1)/2) s

which is exponentially small in n at low temperature [2, 3].

Finally, we note that the effect of censoring on mixing times was studied in [10],
where it was shown that the mixing can only be delayed for Glauber dynamics on mono-
tone spin systems by censoring some updates (the censoring is prescribed without in-
formation on what is the proposed update). In [7], an example was given to demonstrate
that censoring can indeed speed up the mixing for proper coloring. This question was
then studied in [4] in much more general settings, which introduced a certain par-
tial order on the class of stochastically monotone Markov kernels and proved that the
monotonicity of Markov chains implies monotonicity of mixing times. These results
are different from ours in at least the following two senses: (1) They focus on Markov
chains with the same stationary measure while the censoring considered here changes
the state space of the Markov chain; (2) They aim at qualitative results which ensure
monotonicity for mixing times of Markov chains under consideration, while ours aims
to give a quantitative bound on the mixing time for the censored Markov chain.
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to a significant improvement on exposition.

References

[1] D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs. In prepara-
tion, available at http://www.stat.berkeley.edu/ aldous/RWG/book.html.

[2] R. S. Ellis and C. M. Newman. Limit theorems for sums of dependent random variables
occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete, 44(2):117-139, 1978. MR-
0503333

[3] R. S. Ellis, C. M. Newman, and J. S. Rosen. Limit theorems for sums of dependent random
variables occurring in statistical mechanics. II. Conditioning, multiple phases, and metasta-
bility. Z. Wahrsch. Verw. Gebiete, 51(2):153-169, 1980. MR-0566313

[4] J. Fill and J. Kahn. Comparison inequalities and fastest-mixing Markov chains. Ann. Appl.
Probab., 23(5):1778-1816, 2013. MR-3114917

[5] C. M. Fortuin, P. W. Kasteleyn, and ]J. Ginibre. Correlation inequalities on some partially
ordered sets. Comm. Math. Phys., 22:89-103, 1971. MR-0309498

ECP 19 (2014), paper 46. ecp.ejpecp.org
Page 5/6


http://www.ams.org/mathscinet-getitem?mr=0503333
http://www.ams.org/mathscinet-getitem?mr=0503333
http://www.ams.org/mathscinet-getitem?mr=0566313
http://www.ams.org/mathscinet-getitem?mr=3114917
http://www.ams.org/mathscinet-getitem?mr=0309498
http://dx.doi.org/10.1214/ECP.v19-3157
http://ecp.ejpecp.org/

Mixing under monotone censoring

[6] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing monotonicity.
Combinatorica, 20(3):301-337, 2000. MR-1774842

[71 A. E. Holroyd. Some circumstances where extra updates can delay mixing. J. Stat. Phys.,
145(6):1649-1652, 2011. MR-2863724
[8] G. F. Lawler and A. D. Sokal. Bounds on the L? spectrum for Markov chains and Markov
processes: a generalization of Cheeger’s inequality. Trans. Amer. Math. Soc., 309(2):557-
580, 1988. MR-0930082
[9] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American Math-
ematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B.
Wilson. MR-2466937
[10] Y. Peres and P. Winkler. Can Extra Updates Delay Mixing? Comm. Math. Phys., 323(3):1007-
1016, 2013. MR-3106501
[11] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM J. Comput., 25(2):252-271, 1996. MR-1379300
[12] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing
Markov chains. Inform. and Comput., 82(1):93-133, 1989. MR-1003059

ECP 19 (2014), paper 46. ecp.ejpecp.org
Page 6/6


http://www.ams.org/mathscinet-getitem?mr=1774842
http://www.ams.org/mathscinet-getitem?mr=2863724
http://www.ams.org/mathscinet-getitem?mr=0930082
http://www.ams.org/mathscinet-getitem?mr=2466937
http://www.ams.org/mathscinet-getitem?mr=3106501
http://www.ams.org/mathscinet-getitem?mr=1379300
http://www.ams.org/mathscinet-getitem?mr=1003059
http://dx.doi.org/10.1214/ECP.v19-3157
http://ecp.ejpecp.org/

	Introduction
	A motivating example
	Monotone sampling in {0,1}n
	Property Testing
	Proof of Theorem 1.1
	Discussions and open problems

	References

