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Abstract

Distributional findings are obtained relative to various quantities arising in Bernoulli
arrays {Xk,j , k ≥ 1, j = 1, . . . , r + 1}, where the rows (Xk,1, . . . , Xk,r+1) are in-
dependently distributed as Multinomial(1, pk,1, . . . , pk,r+1) for k ≥ 1 with the ho-
mogeneity across the first r columns assumption pk,1 = · · · = pk,r. The quanti-
ties of interest relate to the measure of the number of runs of length 2 and are
Sn = (Sn,1, . . . , Sn,r), S = limn→∞ Sn, Tn =

∑r
j=1 Sn,j , and T = limn→∞ Tn, where

Sn,j =
∑n
k=1Xk,jXk+1,j . With various known results applicable to the marginal

distributions of the Sn,j ’s and to their limiting quantities Sj = limn→∞ Sn,j , we in-
vestigate joint distributions in the bivariate (r = 2) case and the distributions of
their totals Tn and T for r ≥ 2. In the latter case, we derive a key relationship be-
tween multivariate problems and univariate (r = 1) problems opening up the path
for several derivations and representations such as Poisson mixtures. In the for-
mer case, we obtain general expressions for the probability generating functions,
the binomial moments and the probability mass functions through conditioning, an
analysis of a resulting recursive system of equations, and again by exploiting con-
nections with the univariate problem. More precisely, for cases where pk,j = 1

b+k

for j = 1, 2 with b ≥ 1, we obtain explicit expressions for the probability gener-
ating function of Sn, n ≥ 1, and S, as well as a Poisson mixture representation :
S|(V1 = v1, V2 = v2) ∼ind. Poisson(vi) with (V1, V2) ∼ Dirichlet(1, 1, b−1) which nicely
captures both the marginal distributions and the dependence structure. From this,
we derive the fact that S1|S1 + S2 = t is uniformly distributed on {0, 1, . . . , t} for all
b ≥ 1. We conclude with yet another mixture representation for pk,j =

1
b+k

for j = 1, 2

with b ≥ 1, where we show that S|α ∼ pα, α ∼ Beta(1, b) with pα a bivariate mass

function with Poisson(α) marginals given by pα(s1, s2) = e−ααs1+s2

(s1+s2+1)!
(s1 + s2 +1−α) .
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1 Introduction

Consider Bernoulli arrays (Ait Aoudia and Marchand, 2010) {Xk,j , k ≥ 1, j = 1, . . . , r+

1}, where the rowsXk = (Xk,1, . . . , Xk,r+1) are independently distributed as Multinomial
(1, pk,1, . . . , pk,r+1) for k ≥ 1 and which arise for instance in sampling with replacement
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On runs and Bernoulli arrays

one object at a time from an urn with r + 1 colours. Quantities of interest include
the number of runs Sn,j =

∑n
k=1Xk,jXk+1,j of length 2 in the jth column, their to-

tal Tn =
∑r
j=1 Sn,j among the first r columns, and the limits Sj = limn→∞ Sn,j and

T = limn→∞ Tn. A fascinating result is as follows.

Result A. For the case r = 1 with pk,1 = 1
k , the distribution of S1 is Poisson(1).

This was recognized in the mid 1990’s by Persi Diaconis, as well as Hahlin (1995),
and earlier versions are due to Arratia, Barbour, Tavaré (1992), Kolchin (1971), and
Goncharov (1944). This elegant result has inspired much interest and lead to various
findings relative to the distributions of Sn,j and Sj for various other configurations of
the {pk,j}’s, relationships and implications for Pólya urns, records, matching problems,
marked Poisson processes, etc, as witnessed by the work of Chern, Hwang and Yeh
(2000), Csörgó and Wu (2000), Holst (2007,2008), Huffer, Sethuraman and Sethura-
man (2009), Joffe et al. (2004, 2000), Mori (2001), Sethuraman and Sethuraman (2004),
among others. As an exemplar, a lovely generalization of Result A is the Poisson mix-
ture representation

S1|U ∼ Poisson(aU) withU ∼ Beta(a, b) , for pk,1 =
a

a+ b+ k − 1
, a > 0, b ≥ 0 , (1.1)

as obtained by Mori (2001), as well as Holst (2008).

With known marginal distributions for the Sn,j ’s and the Sj ’s for various configura-
tions of the pk,j ’s and a clearly negative pairwise dependence, further questions of inter-
est concern the joint distribution of the vectors Sn = (Sn,1, . . . , Sn,r) and S = limn→∞ Sn.
As well, the distribution of the totals Tn and T are also of related interest. With such
Poisson distributions and Poisson mixtures arising naturally in these univariate (r = 1)
situations, it seems natural to investigate multivariate versions of such results. Said
otherwise, in what sense and for which configurations of the {pk,j}’s, can analytical
extensions of Result A and (1.1) be obtained?

In this paper, we obtain multivariate generalizations for the homogeneous along
column case (i.e., first r row components identically distributed) where pk,1 = · · · =

pk,r. As in Joffe et al. (2004) and Ait Aoudia and Marchand (2010), we first obtain
by conditioning a recursive system of equations involving the probability generating
functions of the Sn,j ’s in Section 2.1. This permits us, in Section 3, to obtain key result
(Theorem 3.1) linking the multivariate r ≥ 2 distributions of Tn and T to univariate
(r = 1) analogs. This is especially useful given that results like (1.1) are available
and, hence, corollaries are derived. As an illustration, for pk,j = λ

λr+k−1 , we show that
the distribution of T is Poisson(λ) and, for pk,j = a

k−1+rb , we obtain a Poisson mixture
representation for the distribution of T with a Beta mixing variable.

In Section 4, we obtain (Theorems 4.1 and 4.3) for the bivariate case with pk,j = 1
b+k ,

b ≥ 1, explicit expressions and representations for the distributions of Sn, n ≥ 1, and S.
For instance, we show ( Theorem 4.3 (b)) that the distribution of S is the mixture of two
independent Poisson(Vi), i = 1, 2 with (V1, V2) having a Dirichlet distribution, with some
definitions and preliminary results on such mixtures given earlier in Section 2.2. This
represents a natural extension of (1.1) for a = 1 as one recovers the univariate result
with the Beta marginals of the Dirichlet and the sought-after dependence structure as
reflected by the dependence of the Dirichlet components V1 and V2. Yet another mixture
representation is given in part (c) of Theorem 4.3. But it is quite different as the mixing
parameter is univariate and the dependence is reflected otherwise through a bivariate
distribution with Poisson and non-independent marginals.
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2 Preliminary results, definitions and notations

2.1 Definitions, recurrences for pgf’s and binomial moments

We work with the quantities Xk, Sn,j , Sj , Tn, T , Sn and S as defined in the Introduc-
tion. Ait Aoudia and Marchand (2010) studied the distribution of Tn for the bivariate
case (r = 2) and the homogeneous (in k) case with pk,1 = p, pk,2 = 1 − p (and pk,3 = 0)
for all k. We obtain here representations and relationships for the distributions of the
vectors Sn and S as well as those of the totals Tn and T for various non-homogeneous
in k configurations of the pk,j ’s but with identically distributed components of Xk, in
other words

pk,1 = · · · = pk,r = pk (say). (2.1)

We pursue by setting S0,j = 0 for all j and by introducing the auxiliary random
variables Wn,1, . . . ,Wn,r where

Wn,j := Sn−1,j +Xn,j , n ≥ 1, j ∈ {1, . . . , r} . (2.2)

By conditioning, we obtain the following recurrence for the probability generating func-
tions (pgf) G0, G1, G2, . . . of the random vectors S0, S1, S2, . . ., which also involves the
array of pgf’s

Hn,j(t1, . . . , tr) = E[t
Wn,j

j

∏
i 6=j

t
Sn−1,i

i ] ;n ≥ 1, j ∈ {1, . . . , r} .

Lemma 2.1. We have for all t = (t1, . . . , tr), n ≥ 1, j ∈ {1, . . . , r},

(1) Gn(t) = (1−
r∑
i=1

pn+1,i)Gn−1(t) +

r∑
i=1

pn+1,iHn,i(t)

(2) Hn+1,j(t) = (1−
r∑
i=1

pn+1,i)Gn−1(t) +

r∑
i=1

pn+1,i t
1{i=j}
i Hn,i(t) ,

with G1(t) = 1 +
∑r
j=1 p1,j p2,j (tj − 1) and H1,j(t) = 1 + p1,j(tj − 1).

Proof. We condition on Xn+1. We obtain with the independence of the Xk’s and the
definitions of the sequences Sn and Wn,j

L
(
Sn | Xn+1 = (0, 0, . . . , 0)

)
= L

(
Sn−1

)
,

L
(
Sn | Xn+1 = (1, 0, . . . , 0)

)
= L (Wn,1, Sn−1,2, . . . , Sn−1,r) ,

L
(
Sn | Xn+1 = (0, 1, 0, · · · , 0)

)
= L (Sn−1,1,Wn,2, . . . , Sn−1,r) ,

...

L
(
Sn | Xn+1 = (0, . . . , 0, 1)

)
= L (Sn−1,1, . . . , Sn−1,r−1,Wn,r) .

Result (1) follows since

Gn(t) = E(

r∏
i=1

t
Sn,i
i ) = E

(
E

(
r∏
i=1

t
Sn,i
i |Xn+1

))
.

Equations (2) follow along the same lines by conditioning again on Xn+1. Finally, the
initial values for n = 1 follow from definitions.

A rearrangement of the above system of equations is as follows.
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Lemma 2.2. We have for all t = (t1, . . . , tr), n ≥ 2, j ∈ {1, . . . , r}:

(1′) Gn(t) = Gn−1(t) +

r∑
j=1

pn,j pn+1,j (tj − 1)Hn−1,j(t)

(2′) Hn,j(t) = Gn−1(t) + pn,j (tj − 1)Hn−1,j(t) .

Proof. Equation ( 2 ′) follows at once from the difference (2) - (1) in Lemma 2.1, while
(1 ′) follows by rewriting (1) in Lemma 2.1 as Gn(t) = Gn−1(t ) +

∑r
j=1 pn+1,j(Hn,j(t ) −

Gn−1(t )) and making use of (2 ′ ).

As in Holst (2008), we will make use of probability generating function and proba-
bility mass function representations of a non-negative integer valued random variable
Z which involve the binomial moments E

(
Z
k

)
; k ∈ {0, 1, 2, . . .}; where

(
z
r

)
is taken to be

equal to 0 for r > z. Indeed, the Taylor series expansion about 1 of the probability
generating function ψZ , of an non-negative integer-valued random variable Z, having
radius of convergence greater than 1 can be expressed as

ψZ(t) = E(tZ) =
∑
k≥0

E

(
Z

k

)
(t− 1)k , t ∈ [0, 1], (2.3)

and the probability function of Z can be written as

P (Z = i) =

∞∑
k=i

(−1)k−i
(
k

i

)
E

(
Z

k

)
. (2.4)

For the bivariate case with non-negative integer valued components Z1 and Z2, analo-
gous relationships are

E(tZ1
1 tZ2

2 ) =
∑

k≥0,l≥0

E

(
Z1

k

)(
Z2

l

)
(t1 − 1)k(t2 − 1)l , (t1, t2) ∈ [0, 1]2 , (2.5)

and P (Z1 = x1, Z2 = x2) =
∑

k≥x1,l≥x2

(−1)k+l−x1−x2 E

[(
Z1

k

)(
Z2

l

)] (
k

x1

)(
l

x2

)
, (2.6)

as long as the Taylor series expansion at (t1, t2) = (1, 1) of the probability generating
function converges on an open set containing the origin.

2.2 Bivariate Poisson mixtures

We elaborate here on bivariate Poisson mixtures which will arise in the limiting
distribution of Sn in Section 4. We denote (γ)k as an ascending factorial with (γ)0 = 1

and (γ)k =
∏k−1
j=0 (γ + j) for k = 1, 2, . . .. As well, we denote 1F1(γ1, γ2; z) as the Gauss

hypergeometric function given by
∑
k≥0

(γ1)k
(γ2)k

zk

k! ; z ∈ R.

Definition 2.3. We will say that the distribution U = (U1, U2) is a bivariate Poisson
mixture with mixing parameter F whenever there exists a bivariate random vector V =

(V1, V2) on [0,∞)× [0,∞) with cdf F such that Ui|V ∼indep. Poisson(Vi) .

The next lemma brings into play bivariate Dirichlet(a1, a2, a3); ai > 0; densities sup-
ported on the simplex S = {(v1, v2) : v1 ≥ 0, v2 ≥ 0, v1 + v2 ≤ 1} and given by

Γ(
∑
i ai)∏

i Γ(ai)
va1−11 va2−12 (1− v1 − v2)a3−1 IS(v1, v2) ,
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as well as Dirichlet(a1, a2, 0) distributions defined as (V1, V2, V3) = (V1, 1 − V1, 0) with
V1 ∼ Beta(a1, a2), and the bivariate hypergeometric or Humbert Φ2 function given by

Φ2(a, b, c, x, y) =
∑
j,k≥0

(a)j(b)k
(c)j+k

xjyk

j!k!
.

The connection between these two entities, which we exploit in the following lemma,
is that the probability generating function of a Dirichlet(a1, a2, a3) random vector V is
given by (Lee, 1971)

ψV (t1, t2) = E(tV1
1 tV2

2 ) = Φ2(a1, a2, a1 + a2 + a3, log(t1), log(t2)) , for t1, t2 > 0 . (2.7)

This is obtained in a straightforward manner by expanding the exponential terms in the
evaluation of the moment generating function and is also valid for cases where a3 = 0

by a direct evaluation of E(tV1
1 t1−V1

2 ).

Lemma 2.4. Consider a bivariate Poisson mixture distribution U with mixing variable
V ∼ Dirichlet(a1, a2, a3), and a1 > 0, a2 > 0, a3 ≥ 0. Then,

(a) U has probability generating function Φ2(a1, a2, a1 + a2 + a3, t1 − 1, t2 − 1), and
probability mass function given by

P (U1 = i, U2 = j) =
1

i!j!

∑
k≥0,l≥0

(−1)k+l

k! l!

(a1)k+i(a2)l+j
(a1 + a2 + a3) k+l+i+j

. (2.8)

(b) For cases where a1 = a2 = 1, the distribution of U1 + U2 is: (i) a Poisson mixture
with U1 + U2|W ∼ Poisson(W ), W ∼ Beta(2, a3) for a3 > 0; and (ii) Poisson(1) for
a3 = 0.

Proof. (a) With the conditional Poisson representation of U and (2.7), we haveE[tU1
1 tU2

2 ] =

EV
(
E[tU1

1 tU2
2 |V ]

)
= EV [eV1(t1−1)+V2(t2−1)] = ψV (et1−1, et2−1) = Φ2(a1, a2, a1+a2+a3, t1−

1, t2 − 1).1 The probability function is obtained with the help of (2.5) and (2.6).
(b) With the conditional Poisson representation, we have U1 + U2|V ∼ Poisson(V1 + V2)

so that the result is immediate when a3 = 0. For a3 > 0, the result follows by verifying
directly that V1 + V2 ∼ Beta(2, a3) whenever (V1, V2) ∼ Dirichlet(1, 1, a3).

3 Distribution of the totals Tn and T

For studying the distribution of Tn, it suffices to consider the probability generating
function Gn(t1, . . . , tr) of S n evaluated at t1 = · · · = tr. Simplifications will thus follow
when applying Lemma 2.2. Moreover, in the particular cases where we have assumption
(2.1), the components Sn,1, . . . , Sn,r are equidistributed for a given n, and the same is
true for the Wn,j ’s, j = 1, . . . , r. As a consequence, the quantities Hn,j(t, . . . , t) will
be, for fixed t and n ≥ 1 constant in j, j = 1, . . . , r. And this also leads to further
simplifications when applying Lemma 2.2.

Our key finding, which we now proceed to describe, establishes a link between a
multivariate problem with r ≥ 2 and an univariate problem where r = 1. This will be
especially useful given the known results in the literature applicable to the distribution
of Tn and T for r = 1.

1We note here the general relationship between the probability generating function of the Poisson mixture
U with the moment generating function of the mixing variable V , which also illustrates that the Poisson
mixtures in Definition 2.3 are identifiable.
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Theorem 3.1. Let ψrn,p1,p2, ... ,pn+1
(·) be the probability generating function of Tn with

assumption (2.1). Let ψ1
n,rp1,rp2, ... ,rpn+1

(·) be the probability generating function of

Sn
′ =

∑n
k=1XkXk+1 where Xk ∼ind. Ber(rpk), k ≥ 1.2 Then, we have for all n ≥ 1,

r ≥ 2:

ψrn,p1,p2, ... ,pn+1
(u) = ψ1

n,rp1,rp2, ... ,rpn+1
(1 +

u− 1

r
) ;u ∈ [0, 1] ; (3.1)

E

(
Tn
k

)
= E

(
S′n
k

)
1

rk
; k ∈ {0, 1, 2, . . .} ; (3.2)

P (Tn = j) =

n∑
k=j

(−1)k−j
(
k

j

)
E

(
S′n
k

)
1

rk
; j ∈ {0, 1, . . . , n} . (3.3)

Furthermore, the above applies to T = limn→∞ Tn by replacing Tn by T , Sn
′ by S′ =

limn→∞ S′n, and taking n→∞; for u ∈ [−1, 1] in (3.1) and with (3.2) and (3.3) applicable
as long as the probability generating function of S′ has radius of convergence about 1

greater than 1/r.

Proof. (3.2) and (3.3) follow from (3.1), (2.3) and (2.4). There remains (3.1). As re-
marked upon above, we have for fixed t: Gn(t, . . . , t) = ψrn,p1,p2, ... ,,pn+1

(t) = ψn(t) (say,
for short), and Hn,j(t, . . . , t) = hn(t) (say) by virtue of assumption (2.1). Rewrite Lemma
2.2’s system of equations as

ψn(t) = ψn−1(t) + (rpn) (rpn+1)
t− 1

r
hn−1(t) ,

hn(t) = ψn−1(t) + rpn
t− 1

r
hn−1(t) ,

for n ≥ 2, and with the initial values ψ1(t) = 1 + rp1p2(t − 1) and h1(t) = 1 + p1(t − 1).
Now, we set ψn(t) = an( t−1r ), hn(t) = bn( t−1r ), and pn

′ = rpn, so that the above system
of equations becomes

an(u) = an−1(u) + pn
′ pn+1

′ u bn−1(u)

bn(u) = an−1(u) + pn
′ u bn−1(u) ,

for n ≥ 2, u ∈ R. The last two systems of equations tell us that ψrn,p1,p2, ... ,pn+1
(ru+ 1) =

an(u) = ψ1
n,rp1,rp2, ... ,rpn+1

(u + 1), for all n ≥ 2 and the result follows. Finally, results
carry over to T in the same manner by making use of (2.3) and (2.4), and with a radius
of convergence greater than 1/r for the pgf of S′ implies a radius of convergence greater
than 1 for the pgf of T .

Theorem 3.1 describes a powerful relationship between our r ≥ 2 problem of iden-
tifying the distribution of Tn, or of T , and a corresponding univariate or r = 1 problem
for which there exists already a certain number of results in the literature. We conclude
this section with applications of Theorem 3.1.

Example 3.2. (Constant case pk = p) For the constant case pk = p, p ≤ 1
r , we have

p′k = rp and (e.g., Hirano et al, 1991; Holst, 2008)

E

(
S′n
k

)
= (rp)k

k∑
i=1

(
k − 1

k − i

)(
n+ 1− k

i

)
(rp)i ,

2Note that we must have rpk ≤ 1 for all k ∈ {1, . . . , n+ 1} given (2.1).
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for k ≥ 1, with (3.2) and (3.3) yielding the binomial moments and probability mass
function of Tn. For instance, we obtain for j = 0, 1, . . . , n,

P (Tn = j) =

n∑
k=j

(−1)k−j
(
k

j

)
pk{I{k=0} + (

k∑
i=1

(
k − 1

k − i

)(
n+ 1− k

i

)
(rp)i)I{k≥1}} .

To conclude, observe that for p = 1
r , we have p′k = 1 so that P (S′n = n) = 1 and

E(tS
′
n) = tn. Theorem 3.1 still applies and (3.1) yielding E(uTn) = (1 + u−1

r )
n
, i.e.,

Tn ∼ Bin(n, 1r ). This serves more as an illustration as the result here for the distribution
of Tn follows at once from the representation Tn =

∑n
k=1 I{Xk=Xk+1} with the indicator

variables I{Xk=Xk+1} independently distributed as Bernoulli( 1
r ).

Example 3.3. (Case where pk = a
r(a+b+k−1) )

In the setup for Tn with assumption (2.1), consider cases where pk = a
r(a+b+k−1) with

a > 0, b ≥ 0. The analysis for general a, b will cover many interesting particular cases
which we will point out below. First, following Theorem 3.1, we consider the univariate
sequence S′n with p′k = rpk = a

a+b+k−1 . From Holst (2008), we have for k ∈ {1, . . . , n}:

E

(
S′n
k

)
=

ak

(a+ b+ n)k

k∑
j=1

(
k − 1

k − j

)(
n+ 1− k

j

)
(a)j

(a+ b)j
, (3.4)

and E

(
S′

k

)
=

ak

k!

(a)k
(a+ b)k

. (3.5)

Theorem 3.1 along with expressions (2.3) and (2.4) yield immediate expressions for
the binomial moments, the probability generating function and the probability mass
function of Tn through the binomial moment identity (3.2). Similarly, for the distribution
of T , we obtain

E

(
T

k

)
=

ak

rk k!

(a)k
(a+ b)k

, k = 0, 1, . . . ;

E(uT ) = 1F1(a, a+ b;
a(u− 1)

r
) ;

P (T = j) =
∑
k≥j

(−1)k−j
(
k

j

)
ak

rk k!

(a)k
(a+ b)k

.

Moreover, it is straightforward to verify the following representation from the above,
which constitutes a multivariate (r > 1) generalization of (1.1).

Corollary 3.4. For cases where pk = a
r(a+b+k−1) with a > 0, b ≥ 0, the distribution of T

admits the following Poisson mixture representation:

T |L = l ∼ Poisson(
a l

r
) , L ∼ Beta(a, b) . (3.6)

We signal the following further applications.

(I) With b = 0 and a = rλ; λ > 0; , i.e., pk = λ
λ r+k−1 , we obtain that T has a Poisson

distribution with mean equal to λ. When r = 1, this corresponds to result (1.1)
with b = 0.

(II) For the distributions of Tn and T with the configuration pk = a′

k−1+rb′ with b′ ≥ a′,
the results above also apply by taking a = ra′ and b = r(b′ − a′). Corollary 3.4
hence yields the representation T |L = l ∼ Poisson(a′ l), L ∼ Beta(ra′, r(b′ − a′)) ,
for such pk’s.
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4 Distributions of Sn and S: bivariate case with pk =
1

b+k

In this section, we obtain the probability generating functions of Sn , n ≥ 1, and S

in the bivariate case (r = 2) with pk = 1
b+k , b ≥ 1. Moreover, by taking n → ∞ and by

making use of a representation (Lemma 4.2) for the pgf of S in terms of the marginal
binomial moments, we arrive at explicit forms for the probability generating and mass
functions of S, as well as mixture representations (Theorem 4.3). This is achieved by
first solving the recurrence given in Lemma 2.2 yielding explicit expressions for the
probability generating functions Gn, Hn+1,1 and Hn+1,2 for n ≥ 1 (Theorem 4.1).

Theorem 4.1. Under assumption (2.1) with r = 2 and pk = 1
b+k , the probability gen-

erating functions Gn(t) = E[t
Sn,1
1 t

Sn,2
2 ], Hn+1,1(t) = E[t

Wn+1,1

1 t
Sn,2
2 ], and Hn+1,2(t) =

E[t
Sn,1
1 t

Wn+1,2

2 ] are given by

Gn(t) =
b

s1 − s2

∑
k≥1

[I(k ≤ n+ 1)− s1 + s2
n+ 1 + b

I(k ≤ n)

+
s1s2

(b+ n)(b+ n+ 1)
I(k ≤ n− 1)]

sk1 − sk2
(b)k

Hn+1 j(t) =
sn+1
j

(1 + b)n+1
+

b

s1 − s2

∑
k≥1

[I(k ≤ n+ 1)− s3−j
n+ 1 + b

I(k ≤ n)]
sk1 − sk2

(b)k
,

for s1 6= s2, j = 1, 2, n ≥ 1, and si = ti − 1.

Proof. We proceed by induction. A direct evaluation yields G1(t1, t2) = 1+ 1
(1+b)2

(s1+s2)

and H2,j(t1, t2) = 1 + 1
(1+b)sj + 1

(1+b)2
s2j + 1

(1+b)2
s3−j , j = 1, 2, which matches the given

formulas for n = 1. Now suppose the above formulas hold for n = 1, . . . ,m. A slight
reorganization of Lemma 2.2 tells us that

Gn+1(t) = pn+2,3Gn(t) +

2∑
j=1

pn+2,j Hn+1,j(t)

Hn+1, j(t) = Gn(t) + pn+1,j sjHn,j(t), j = 1, 2,

for n ≥ 1, recalling that by definition pn+2,3 = 1− pn+2,1 − pn+2,2 = 1− 2
b+n+2 . With the

following decomposition, which is verified directly,

sm+1
j

(b+ 1)m+2
=

b

sj − s3−j

[ sm+2
j

(b)m+2
− s1 + s2
m+ b+ 2

sm+1
j

(b)m+1
+

s1s2
(m+ b+ 1)(m+ b+ 2)

smj
(b)m

]
,

a calculation of pm+2,3Gm +
∑2
j=1 pm+2,jHm+1,j yields the desired expression for Gm+1.

Similarly, an evaluation of Gm+1 + pm+2,jsjHm+1,j leads to the desired expression for
Hm+2.

Lemma 4.2. Suppose ψ is the probability generating function of a random vector
(Z1, Z2) on N2 satisfying the equation

ψ(t1, t2)(t1 − t2) = (t1 − 1)ψ(t1, 1) − (t2 − 1)ψ(1, t2) , (4.1)

(t1, t2) ∈ [−1, 1]2, and that the Taylor series development at (1, 1) of ψ converges on an
open set containing the origin. Then, ψ is given by

ψ(t1, t2) =
∑
k,l≥0

E

(
Z1

k + l

)
(t1 − 1)k (t2 − 1)l . (4.2)
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Proof. With the series representation (2.5) and the uniqueness of the coefficients, it
suffices to show that

E

(
Z1

k

)(
Z2

l

)
= E

(
Z1

k + l

)
, for all k, l ≥ 0 . (4.3)

Now, equation (4.1) implies, for all (t1, t2), with ck,l = E
(
Z1

k

) (
Z2

l

)
and si = ti − 1,∑

k,l≥0

ck,l s
k+1
1 sl2 −

∑
k,l≥0

ck,l s
k
1 s

l+1
2 =

∑
k≥0

ck,0s
k+1
1 −

∑
l≥0

c0,ls
l+1
2

=⇒
∑
k,l≥1

ck−1,l s
k
1 s

l
2 =

∑
k,l≥1

ck,l−1 s
k
1 s

l
2 .

But the above is equivalent to ck−1,l = ck,l−1 for all k, l ≥ 1, which implies c0,k+l−1 =

· · · = ck−1,l = ck,l−1 = · · · = ck+l−1,0 for all k, l ≥ 1, which is (4.3).

The key result that follows concerns the limiting distribution of Sn for the homo-
geneous bivariate case pk,1 = pk,2 = 1

b+k . A first explicit form (equation 4.8) for the
probability generating function is easily derived from Theorem 4.1. A second explicit
form is obtained via Lemma 4.2 by verifying directly that the probability generating
function of S verifies (4.1). This permits to write down the probability generating func-
tion of S in terms of the binomial moments of S1, that either can be derived from our
expressions or taken from known results in the univariate case.

Theorem 4.3. Under assumption (2.1) with r = 2 and with pk = 1
b+k , b ≥ 1,

(a) The probability generating and probability mass functions of S are given by

G(t1, t2) = Φ2(1, 1, b+ 1, t1 − 1, t2 − 1) , (4.4)

P (S1 = x1, S2 = x2) =
1

x1!x2!

∑
k,l≥0

(−1)k+l

(b+ 1)k+l+x1+x2

(k + 1)x1 (l + 1)x2 .(4.5)

(b) The distribution of S is a bivariate Poisson mixture, as in Definition 2.3 and Lemma
2.4, with V ∼ Dirichlet (a1 = 1, a2 = 1, a3 = b− 1).

(c) The distribution of S admits the representation

S|α ∼ pα , α ∼ Beta(1, b) , (4.6)

with pα the bivariate probability mass function on N 2 given by

pα(s1, s2) =
e−ααs1+s2

(s1 + s2 + 1)!
(s1 + s2 + 1− α) ; α ∈ (0, 1] . (4.7)

(d) For t ∈ N, the distribution of S1|S1 + S2 = t is uniform on {0, 1, . . . , t}.

Proof. (a) The probability function in (4.5) follows from (4.4) and part (a) of Lemma
2.4. For establishing (4.4), start with Theorem 4.1, where we obtain (for t1 6= t2):

G(t1, t2) = E(tS1
1 tS2

2 ) = lim
n→∞

Gn(t1, t2) =
b

t1 − t2
(1F1(1, b, t1 − 1)− 1F1(1, b, t2 − 1)) .

(4.8)
From this expression, or alternatively from Holst (2008) and (2.3), we obtain

(t1 − 1)G(t1, 1) = b [1F1(1, b, t1 − 1) − 1] and (t2 − 1)G(1, t2) = b [1F1(1, b, t2 − 1) − 1] .
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Now, observe that ψ ≡ G satisfies (4.1), so that (4.2) applies with E
(
S1

k+l

)
= 1

(b+1)k+l
;

again derived from Holst (2008) or (4.8); yielding G(t1, t2) =
∑
k,l≥0

1
(b+1)k+l

(t1−1)k(t2−
1)l = Φ2(1, 1, b+ 1, t1 − 1, t2 − 1) .

(b) Part (a) paired with Lemma 2.4 imply the given representation.
(c) Given that the probability generating function of S is necessarily expressible as in
(2.5), it will suffice given part (a) to show that

E

(
S1

k

)(
S2

l

)
=

1

(b+ 1)k+l
, (4.9)

under representation (4.6)-(4.7). In turn, it will suffice to show that the mixed binomial
moments of (S1, S2) under probability function pα are given by

E

[(
S1

k

)(
S2

l

)
|α
]

=
αk+l

(k + l)!
, for non negative integers k, l, (4.10)

since this would imply along with representation (4.6) that E
[(
S1

k

)(
S2

l

)]
= E( αk+l

(k+l)! ) =
1

(b+1)k+l
, which is (4.9). Finally, manipulations lead to (4.10) as follows:

E

[(
S1

k

)(
S2

l

)
|α
]

=
∑

s1≥0,s2≥0

(
s1 + k

k

)(
s2 + l

l

)
pα(s1 + k, s2 + l)

=
∑
y≥0

e−α αy+k+l

(y + k + l + 1)!
(y + l + k + 1− α)

y∑
x=0

(
x+ k

k

)(
y − x+ l

l

)

=
∑
y≥0

e−α αy+k+l

(y + k + l + 1)!
(y + l + k + 1− α)

(
y + l + k + 1

y

)

=
e−α αk+l

(k + l + 1)!

∑
y≥0

αy

y!
(y + k + l + 1− α) =

αk+l

(k + l)!
.

(d) It suffices to show that P (S1 = s1, S2 = s2) is a function of s1 + s2, s1, s2 ≥ 0. From
part (c), we have P (S1 = s1, S2 = s2) =

∫ 1

0
pα(s1, s2) b (1 − α)b−1 dα, with pα given in

(4.7), and which indeed depends on (s1, s2) only through the sum s1 + s2.

The bivariate Poisson mixture representation of S extends in a most interesting way
the known marginal distribution representation for S1 and S2 (i.e., (1.1)) expressible as
a Beta mixture of Poisson distributions. Here S1 and S2 are clearly dependent but the
representation tells us that they are conditionally independent and the dependence is
reflected through the dependence of the mixing components of the Dirichlet. Similarly,
we obtain from part (b) of the Theorem and Lemma 2.4 the mixture representation

T |W = w ∼ Poisson(w) , W ∼ Beta(2, b− 1) ,

with this, alternatively, following also from Corollary 3.4. In contrast to the Dirichlet
mixing (when b > 1), the dependence in representation (d) is reflected through the con-
ditional distributions of (S1, S2), and the mixing variable α is univariate. Furthermore,
it is readily verified that the conditional marginal distributions of Si|α are Poisson(α),
which is consistent with the univariate result in (1.1). We conclude with some observa-
tions on the probability functions pα in (4.7).

Remark 4.4. The bivariate probability function in (4.7) has a simple enough form so
that it possibly has arisen in previous work, but we cannot identify such a source. Any-
how, it is most interesting that it arises here in a natural way from the Bernoulli array in
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the representation of S for r = 2 and the configuration pk = 1
b+k , b ≥ 1. The probability

generating function, using the binomial moments at the end of the proof of Theorem
4.3 and (2.5), may be written as

ψα(t1, t2) = Eα(tS1
1 tS2

2 ) =
∑
k,l≥0

αk+l
(t1 − 1)k (t2 − 1)l

(k + l)!
.

As seen above, the marginals are Poisson(α) distributed. These distributions, as ex-
panded on by Ait Aoudia and Marchand (2013), possess at least two other interesting
properties:

(i) the distribution of S1 + S2 (conditional on α) is given by the convolution of a
Poisson(α) with a Bernoulli(α);

(ii) the correlation coefficient between S1 and S2 (conditional on α) is equal to −α2 .

Concluding Remarks

The main findings in this paper concern the numbers of runs of length 2 in Bernoulli
arrays with independently distributed multinomial distributed rows and identically dis-
tributed row components. Exploiting the structure of the problem through a recurrence
involving probability generating functions and building on known marginal distribution
results in the literature, we have explored the distributions of totals across columns
and joint distributions of column sums. Elegant representations have been obtained:
(i) through Section 3’s correspondence between multivariate and univariate problems
to describe the distribution of a total, and (ii) with Section 4’s bivariate distributions,
where we have for instance obtained in a specific situation a bivariate Poisson mixture
with a Dirichlet mixing parameter. Many other open and interesting problems can be
envisioned. These include an analysis of the distributions of Sn and S for r > 2, closed
form distributional results in the absence of assumption (2.1), and an extended frame-
work for probability models other than multinomial.
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