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Introduction

The main object of the present paper are the limit properties of the following product
of a random and deterministic matrices

X
(d)
N = H

(d)
N WN ,

where WN stands for a real Wigner matrix,

H
(d)
N =

[
d 0

0 IN

]
and d is a nonrandom real parameter. Note that for d ≥ 0 the matrix X(d)

N is similar to
the symmetric matrix

H
(
√
d)

N WNH
(
√
d)

N ,

and hence, it has real spectrum only. The statistical properties of perturbed symmetric
random matrices were studied in many papers e.g. [4, 5, 6, 10, 11, 14, 17] and the
theory is well established. However, to our knowledge there is very less known about
the spectral properties of X(d)

N in the case d < 0. Note that in this case X(d)
N is H(1/d)

N -
selfadjoint, which allows to apply the indefinite linear algebra theory. We refer the
reader to [16] as a basic reference for H-selfadjoint matrices and to [28], where the
indefinite linear algebra was linked with randomness.
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On spectral properties of H-selfadjoint random matrices

To track the (possibly complex) eigenvalues of the matrix X(d)
N the Weyl function

QN(d)(z) = −
(
e∗0H

(d)
N

(
X

(d)
N − z

)−1
e0

)−1
= −1

d

(
e∗0

(
X

(d)
N − z

)−1
e0

)−1
is considered, where e0 is the first vector of the canonical basis of CN+1. The zeros of
QN(d)(z) are necessarily eigenvalues of X(d)

N by the Schur complement reasoning. This
approach corresponds to the technique of Weyl function, or m–function in operator
theory, see e.g. [12, 13, 18, 19, 21, 26] for the applications in the indefinite inner
product setting.

Note that as X(d)
N is a random matrix, the function QN(d)(z) is random as well. The

main object of the present paper are properties of the function QN(d)(z) for large matri-

ces. In particular, Theorem 3.2 says that QN(d)(z) converges in probability with N → ∞
to

Q(d)(z) = σ̂(z) +
z

d
=

(2− d)z + d
√
z2 − 4

2d
,

where µ̂(z) denotes the Stieltjes transform of a measure µ, i.e.

µ̂(z) =

∫
1

t− z
dµ(t)

and σ the Wigner semicircle measure. This allows to determine the limit behavior of
the eigenvalues of X(d)

N outside [−2, 2] as a functions of the real parameter d. Namely,
for d ∈ (−∞, 0) the equation Q(d)(z) = 0 has two complex solutions

z±(d) = ± d√
1− d

i .

For d ∈ [0, 2] the equation Q(d)(z) = 0 has no solutions outside [−2, 2]. For d ∈ (2,∞) the
equation Q(d)(z) = 0 has two real solutions outside [−2, 2]

z±(d) = ± d√
d− 1

.

Summarizing, it follows that for d ∈ (−∞, 0)∪(2,∞) there are precisely two eigenvalues
of XN

(d) with limits in C \ [−2, 2], the limits being z±(d), see Theorem 3.2 for details.

The idea of the present paper is to provide a combinatorial interpretation of Q(d)(z)

in the spirit of the original Wigner’s calculations. This includes, in particular, providing
the following expansion

−1

Q(d)(z)
= −d

z

∞∑
n=0

1

z2n
π(d)
n .

The numbers π(d)
n are a generalization of the Catalan numbers and have a natural inter-

pretation in terms of Dyck paths or noncrossing partitions. They appear in the study of
the t–transformation of a measure or a free convolution [8, 9] and deformation of free
Gaussian random variables [29, 30]. This issue is further discussed in Section 1 and in
the closing remarks.

The paper is organized in a reverse order, compared to the presentation above.
In Section 1 we define the numbers π(d)

n and show their basic properties: generating
function, relation to Catalan numbers and closed formulas as polynomials in d. Section 2
is devoted to computing the limit in probability of the moments of the function −1/Q

(d)
N .

Namely, it is shown in Theorem 2.1 that e∗0

(
X

(d)
N

)n
e0 converges to zero if n is odd and

to π
(d)
n/2 if n is even. The result is then used in Section 3 to prove the aforementioned
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On spectral properties of H-selfadjoint random matrices

Theorem 3.2 on the limit of QN(d) and the behavior of the eigenvalues of X(d)
N for large

N . In the last section we discuss the limitations of this method of study of spectra of
H-selfadjoint random matrices. The main results of the paper are Theorem 2.1 and
Theorem 3.2.

The authors are grateful to Marek Bożejko, Anna Wysoczańska–Kula and Janusz
Wysoczański for inspiring discussions and helpful comments and to the anonymous ref-
eree for valuable remarks.

1 The numbers π(d)
n and their relation to Catalans

A Dyck path of order n is a walk from (0, 0) to (2n, 0) in the upper-half plane, con-
sisting of vectors [1, 1] and [1,−1]. The set of all Dyck paths of order n will be denoted
by Dn. A classical result says that the cardinality cn of Dn satisfies

cn =
1

n+ 1

(
2n

n

)
, (1.1)

which can be seen by the recurrence formula

c0 = 1, cn =

n∑
j=1

cj−1cn−j , n = 1, 2, . . . . (1.2)

The numbers cn are called the Catalan numbers.
If w is a Dyck path then by ξ(w) we denote the number of meetings of w with the

x-axes, excluding the point (2n, 0). We define

π
(d)
0 = 1, π(d)

n =
∑
w∈Dn

dξ(w), n = 1, 2, . . . . (1.3)

Clearly, π(1)
n = cn, for π(−1)

n see the end of this section.
The numbers π(d)

n can be interpreted in the language of non-crossing 2-partitions
as follow. Let NC2(2n) denote the set of all non-crossing partitions with two-elements
blocks only. For a non-crossing partition ν ∈ NC2(2n) with blocks ν = {B1, B2, ..., Bn} a
blockBj = {s1, s2} is called outer if there is no blockBi = {s3, s4} such that s3 < s1, s2 <

s4. Blocks which do not enjoy this property are called inner. By ] ou(ν) (] in(ν)) we
denote the number of outer (respectively inner) blocks of a partition ν. Recall that Dyck
paths Dn are in a one-to-one natural correspondence with non-crossing 2-partitions
NC2(2n), see e.g. [2, Chapter 2.1.1] or [15, Chapter 1.1]. Furthermore the number of
meetings of the x-axes ξ(w) of a Dyck path w equals the number of outer blocks ] ou(v)

in the corresponding partition v, see e.g. [15, Chapter 1.1]. Thus we get

π(d)
n =

∑
ν∈NC2(2n)

d] ou(ν). (1.4)

In [8] the numbers
Cn(d) =

∑
ν∈NC2(2n)

d] in(ν) (1.5)

were considered as moments of the central limit measure for the t-transformed free
convolution, see [7] for a general form of a non-commutative central limit theorem
and [9] for other examples. One sees that both π

(d)
n and Cn(d) are polynomials in d.

Furthermore, by in(w) + ou(w) = n one has

π(d)
n = rev(Cn(d)), (1.6)

where rev(
∑n
i=0 aid

i) =
∑n
i=0 aid

n−i.

The basic recurrence relation for the numbers π(d)
n is the following.
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On spectral properties of H-selfadjoint random matrices

Lemma 1.1. For d ∈ R \ {0}

π(d)
n = d

n∑
k=1

ck−1π
(d)
n−k, n = 1, 2 . . . . (1.7)

Proof. We use a standard argument of considering the first intersection with the x–axes.
Each Dyck path w ∈ Dn is uniquely determined as a concatenation a Dyck path w1 of
order k ≤ n with ξ(w1) = 1 and a Dyck path w2 from (2k, 0) to (2n, 0). The path w1

consists of the vector [1, 1], some Dyck path w′1 from (1, 1) to (2k − 1, 1) of order k − 1

and the vector [1,−1]. The Dyck paths w′1 ∈ Dk−1 and w2 ∈ Dn−k uniquely determine w.
Hence

π(d)
n =

n∑
k=1

∑
w′1∈Dk−1

∑
w2∈Dn−k

d · dξ(w2) = d

n∑
k=1

ck−1π
(d)
n−k.

The following result can be easily obtained from the results in [29], where similar
calculations were derived for d in the operator theory setting, see also [30] for general-
izations. For the completeness of the presentation we include an elementary proof.

Proposition 1.2. Let d ∈ R \ {0}. The generating function G(d)(z) of the sequence(
π
(d)
n

)∞
n=0

satisfies

G(d)(z) =
1

1− zdF (z)
=

2

2− d+ d
√

1− 4z
,

where F (z) = 1−
√
1−4z
2z is the generating function for the Catalan numbers.

Proof. Using the formula (1.7) we obtain

G(d)(z)− 1 =

∞∑
n=1

π(d)
n zn = d

∞∑
n=1

n∑
k=1

π
(d)
n−kck−1z

n−1z = dG(d)(z)F (z)z.

Using the Lemma 1 we can show a simpler recurrence formula for π(d)
n .

Lemma 1.3. For d ∈ R \ {0, 1} one has

π(d)
n =

−d2

1− d
π
(d)
n−1 +

d

1− d
cn−1, n = 1, 2 . . . . (1.8)

Proof. First observe that

−d2

1− d
π
(d)
0 +

d

1− d
c0 =

−d2

1− d
+

d

1− d
= d = π

(d)
1 .

Now let us assume that (1.8) holds for all j ≤ n, where n ≥ 1 is fixed. Then

π
(d)
n+1 = d

n∑
j=0

cn−j π
(d)
j = d

n∑
j=1

cn−j π
(d)
j + dcn

= d

n∑
j=1

cn−j

( −d2
1− d

π
(d)
j−1 +

d

1− d
cj−1

)
+ dcn

=
−d2

1− d
d

n∑
j=1

cn−j π
(d)
j−1 + d

d

1− d

n∑
j=1

cn−jcj−1 + dcn

=
−d2

1− d
π(d)
n + d

d

1− d
cn + dcn

=
−d2

1− d
π(d)
n +

d

1− d
cn.

ECP 19 (2014), paper 7.
Page 4/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3066
http://ecp.ejpecp.org/
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The following proposition shows a closed formula for π(d)
n . The Catalan triangle

[tn,k]∞n,k=0 (see [25, A009766]) is defined as

t0,k = δ0,k, tn,k =

k∑
j=0

tn−1,j =

((
n+ k

k + 1

)
−
(
n+ k

k

))
.

Proposition 1.4. The numbers π(d)
n satisfy

π
(d)
0 = 1, π(d)

n =

n∑
k=1

tn−1,n−k d
k, n = 1, 2, . . . .

The proof can be obtained from the relation (1.6) and the formula

Cn(d) = 1 +

n−2∑
k=0

dk+1tn,k,

see Proposition 6.1 in [9]. However, we present a simple argument using Lemma 1.3.

Proof. By formula (1.7) it is clear that

π(d)
n =

n∑
k=1

an−1,n−k d
k, n = 1, 2, . . . ,

with some coefficients an,k. Since π(1)
n−1 = cn−1, we have

n−1∑
k=1

an−2,n−1−k = cn−1, n = 2, 3, . . . .

Using this and Lemma 1.3 we obtain for n = 2, 3, . . .

π(d)
n =

−d2

1− d
π
(d)
n−1 +

d

1− d
cn−1

=
−d2

1− d

n−1∑
k=1

an−2,n−1−k d
k +

d

1− d
cn−1

=

n−1∑
k=1

(
−dk+2

1− d
+

d

1− d

)
an−2,n−1−k

=

n−1∑
k=1

(
d+ d2 + · · ·+ dk+1

)
an−2,n−1−k.

Comparing the coefficients of polynomials on the left and right hand side of the above
we obtain for l = 1, . . . , n

an−1,n−l =

n−1∑
k=l−1

an−2,n−1−k =

n−l∑
j=0

an−2,j .

This, together with the information that π(d)
1 = d, proves the result.
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On spectral properties of H-selfadjoint random matrices

To finish the section, let us show that π(−1)
n = (−1)nan (n = 0, 1 . . . ), where

an =

(
1

2

)n(
1 +

n−1∑
k=0

ck(−2)k

)
, n = 0, 1 . . . ,

are the generalized Catalan numbers C(−1, n) (see [3] and the OEIS database [25]
number A064310). Indeed, for d = −1 the formula (1.8) is of the form

π(−1)
n = −

π
(−1)
n−1 + cn−1

2
.

On the other hand, we have

(−1)nan = −1

2

((
−1

2

)n−1(
1 +

n−2∑
k=0

ck(−2)k

)
+

(
−1

2

)n−1
cn−1(−2)n−1

)

= − (−1)n−1an−1 + cn−1
2

.

Finally, to conclude π(−1)
n = (−1)nan it is enough to see that π(−1)

0 = 1 = a0.

2 Wigner matrices with one negative square

In what follows

WN =
1√
N

[xij ]
N
ij=0

stands for the Wigner matrix, that is a random symmetric matrix with entries xij (0 ≤
i ≤ j ≤ N ) being real, independent, zero mean, the off-diagonal entries xij (0 ≤ i <

j ≤ N ) being identically distributed, and the diagonal entries xii (0 ≤ i ≤ N ) being
identically distributed. For simplicity we assume that the variance of the off-diagonal
entries is one. Moreover, we assume that

rk := max
{
E|x00|k,E|x11|k

}
< +∞ k = 1, 2, . . . . (2.1)

We set

H
(d)
N =

[
d 0

0 IN

]
, X

(d)
N = H

(d)
N WN ,

where d is a nonrandom, nonzero, real parameter. Denote by e0 the first vector of the
canonical basis of CN+1.

Theorem 2.1. Let the random matrix X
(d)
N satisfies the above probabilistic assump-

tions. Then, for d ∈ R \ {0}

e∗0

(
X

(d)
N

)n
e0 →

{
π
(d)
n/2 : n even

0 : n odd
(N →∞)

in L2(P) and, in particular, in probability.

A basis for our considerations is the combinatorial proof of the Wigner’s result,
mainly as presented in [2]. Before the proof of Theorem 2.1 we review the classical
proof, also introducing notations needed later on. Lemma 2.1.6 of [2] shows that

E
tr(WN )n

N
→

{
cn/2 : n even

0 : n odd
(N →∞).
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The proof is based on passage to the limit in the formula

E
tr(WN )n

N
=

1

N

N∑
i1,i2,...,in=0

EWN (i1, i2)WN (i2, i3)...WN (in, i1). (2.2)

To analyze the above expression the set W of all closed words (i1, . . . , in, i1) over
the alphabet {1, . . . , N} is introduced. On this set an equivalence relation ∼ is defined
by saying that two words are equivalent if there exists a bijection on the alphabet that
maps one word to the other. We denote the set of all equivalence classes by [W]∼.
The weight of a word is the number of its distinct letters. Note that all words in one
equivalence class A ∈ [W]∼ have the same weight, and the number of elements of the
class equals

CN,t = N(N − 1) · · · (N − t+ 1) = O(N t),

where t is the common weight of the words.
Observe that we can rewrite the right hand side of (2.2) as

1

N

∑
A∈[W]∼

∑
(i1,i2,...,in,i1)∈A

EWN (i1, i2)WN (i2, i3)...WN (in, i1). (2.3)

It was shown in [2, Subsection 2.1.3] that the number of equivalence classes is
bounded from above for all N . In consequence, the limit of (2.3) is zero for n odd. For
n even the passage to infinity with N in formula (2.3) is survived only by the equiv-
alence classes that are in one-to-one correspondence with Dyck paths, the canonical
correspondence is described in [2, p.15]. Each of such classes contains words of weight
n/2 + 1 and consequently its power equals CN,n/2+1 = O(Nn/2+1). In consequence,

lim
N→∞

E
tr(WN )n

N
= lim

N→∞

1

N

1

Nn/2

∑
w∈Dn/2

CN,n/2+1E(x21,2)n/2

=
∑

w∈Dn/2

1 = cn/2.

Having this classical argument recalled, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. The proof consists of three usual steps.
Step 1.

Ee∗0

(
X

(d)
N

)n
e0 →

{
π
(d)
n
2

, for n even,

0 , for n odd.

We begin the proof with an analogue of (2.2)

E (e∗0(XN )ne0) =

N∑
i1,i2,...,in−1=0

EXN (0, i1)XN (i1, i2)...XN (in−1, 0)

=

N∑
i1,i2,...,in−1=0

dη(0,i1,...,in−1)EWN (0, i1)WN (i1, i2)...WN (in−1, 0),

where η(j1, . . . , jk) is the number of zeros in the sequence (j1, . . . , jk). We introduceW0

as the set of words over {0, . . . , N} of the form (0, i1, . . . , in−1, 0). Note that all words in
one equivalence class A ∈ [W0]∼ have the same weight, and the number of elements of
the class equals CN,t−1, where t is the common weight of the words. Then, analogously
to (2.3), one has

Ee∗0

(
X

(d)
N

)n
e0 (2.4)
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=
∑

A∈[W0]∼

∑
(0,i1,i2,...,in−1,0)∈A

dη(0,i1,...,in−1)E (WN (0, i1)WN (i1, i2)...WN (in−1, 0)) .

As in the proof of the Wigner’s result, the limit in the case n is odd is zero, and in
the case n is even the passage to infinity with N in formula (2.4) is survived only by the
equivalence classes that are in one-to-one correspondence with Dyck paths of order n/2.
Each of such classes contains words of weight n/2 + 1 and consequently has precisely
CN,n/2 elements. Hence,

lim
N→∞

Ee∗0

(
X

(d)
N

)n
e0 = lim

N→∞

1

Nn/2

∑
w∈Dn/2

dξ(w)CN,n/2E(x21,2)n/2. (2.5)

We used in the above equality the fact, that for all words (0, i1, . . . , in−1, 0) from class
A ∈ [W0]∼ we have

η(0, i1, . . . , in−1) = ξ(w), (2.6)

where w is the Dyck word corresponding to the class A. Indeed, in the canonical bijec-
tion described in [2] meeting of the Dyck path with the x-axes corresponds to a zero on
the corresponding position in the word. Finally, by (2.5),

lim
N→∞

Ee∗0

(
X

(d)
N

)n
e0 =

∑
w∈Dn/2

dξ(w) = πn/2.

Step 2.

E
(
e∗0

(
X

(d)
N

)n
e0

)2
→

{ (
π
(d)
n
2

)2
, for n even,

0 , for n odd.

We start the proof similarly as in Step 1

E (e∗0(WN )ne0)
2

=

N∑
i1,...,in−1, j1,...,jn−1=0

E (XN (0, i1) · · ·XN (in−1, 0)XN (0, j1) · · ·XN (jn−1, 0))

=

N∑
i1,...,in−1, j1,...,jn−1=0

dη(I
′)E (WN (0, i1) · · ·WN (in−1, 0)WN (0, j1) · · ·WN (jn−1, 0)) ,

with
I ′ = (0, i1, . . . , in−1, 0, j1, . . . , jn−1).

We introduceW00 as the set of words over {0, . . . , N} of the form

I = (0, i1, . . . , in−1, 0, j1, . . . , jn−1, 0).

Note that the power of each equivalence class A ∈ [W00]∼ equals CN,t−1, where t is the
common weight of the words in A. Furthermore,

E
(
e∗0

(
X

(d)
N

)n
e0

)2
(2.7)

=
∑

A∈[W00]∼

∑
I∈A

dη(I
′) · E (WN (0, i1) · · ·WN (in−1, 0)WN (0, j1) · · ·WN (jn−1, 0)) ,

with

I = (0, i1, . . . , in−1, 0, j1, . . . , jn−1, 0), I ′ = (0, i1, . . . , in−1, 0, j1, . . . , jn−1).
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The passage with N to infinity is again survived by the equivalence classes correspond-
ing to Dyck paths D0

n of order n, which meet the x axes after n steps. Since there is no
word inW00 of length 2n+ 1 corresponding to a Dyck path, the limit with N →∞ of the
expression above is zero for n odd. For n even the words in equivalence classes that
survive passage N →∞ have weight n+ 1. Consequently,

lim
N→∞

E
(
e∗0

(
X

(d)
N

)n
e0

)2
(2.8)

= lim
N→∞

1

Nn

∑
w∈D0

n

dξ(w)CN,nE(x21,2)n =
∑
w∈D0

n

dξ(w).

Note that each Dyck path w ∈ D0
n is a concatenation of two Dyck paths w1, w2 ∈ Dn/2

and ξ(w) = ξ(w1) + ξ(w2). Hence,

lim
N→∞

E
(
e∗0

(
X

(d)
N

)n
e0

)2
=

∑
w1,w2∈Dn/2

dξ(w1)+ξ(w2) =
(
π
(d)
n/2

)2
. (2.9)

Step 3. The application of Chebyshev’s inequality finishes the proof.

3 Representation and convergence of the Weyl functions

As it was mentioned in the Introduction, we define the Weyl function as

QN(d)(z) = −
(
e∗0H

(d)
N

(
X

(d)
N − z

)−1
e0

)−1
= −

(
d e∗0

(
X

(d)
N − z

)−1
e0

)−1
, (3.1)

where e0 is the first vector of the canonical basis of CN+1 and H(d)
N , X(d)

N are defined as

in Section 2. It is clear that the zeros of QN(d)(z) are eigenvalues of X(d)
N , the converse

is not necessarily true. Nevertheless, the Weyl function will allow us to determine the
part of the spectrum of X(d)

N lying in C \ [−2, 2] for large values of N . For this aim we
prove that QN(d)(z) converges in probability to the function

Q(d)(z) := σ̂(z) +
z

d
=

(2− d)z + d
√
z2 − 4

2d
, (3.2)

where σ is the Wigner semicircle measure.
The function −1

Q(d)(z)
is for d > 0 an ordinary Nevanlinna function and for d < 0 a

generalized Nevanlinna function with one negative square. In both cases the general
theory (see e.g. [1, 20]) admits an expansion at infinity. More precisely, we have the
following.

Lemma 3.1. For Q(d)(z) defined by (3.2) one has

−1

Q(d)(z)
= −d

z

∞∑
n=0

1

z2n
π(d)
n , (3.3)

where the series absolutely converges for z ∈ C such that

|z| >

2 : |d| < 2
|d|√
|d−1|

: |d| ≥ 2
.
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Proof. Note that by Proposition 1.2 the right hand side of (3.3) equals

−d
z
G(d)

(
1

z2

)
=

−2d

(2− d)z + d
√
z2 − 4

=
−1

Q(d)(z)
.

The claim on convergence follows from the fact that the function −1
Q(d)(z)

is holomorphic

in C \
(

[−2, 2] ∪ {z±(d)}
)

for

z±(d) =


± d√

1−d i : d < 0

± d√
d−1 : d > 2

0 : d ∈ [0, 2]

,

see Introduction.

We formulate now the second main theorem of the paper. Statement (i) is a new
result, (ii), (iii) and (iv) were already proved in [28] with a different method that allowed
to omit the assumption (3.4). A perturbation problem, similar to the one described in
(v), is widely discussed in the literature, see e.g. [4, 5, 6, 10, 11, 14, 17]. Nevertheless,
(v) is stated for completeness of the analysis of the change of the spectrum of X(d)

N with
the parameter d.

Theorem 3.2. Assume that X(d)
N satisfies the probabilistic assumption of Section 2,

then

(i) the function QN(d)(z) defined by (3.1) has the following representation

QN(d)(z) = −aN +
z

d
+ µ̂N (z),

where aN is a real, random variable, aN → 0 with N → 0 in probability, µN is a
random, discrete, probability measure on R and∫

R

tndµN (t)→
∫
R

tndσ(t), n = 0, 1, . . . ,

with N →∞ in probability.

If, additionally, the moments rk defined by (2.1) satisfy

rk ≤ kCk, k = 1, 2, . . . , (3.4)

for some constant C ≥ 0 then

(ii) µN → σ with N →∞ weakly in probability;

(iii) for z ∈ C+ the number QN(d)(z) converges in probability with N →∞ to Q(d)(z);

(iv) if d < 0 the (unique) eigenvalue of nonpositive type of X(d)
N converges in probabil-

ity to z+(d);

(v) if d > 2 then the minimal (maximal) eigenvalue of X(d)
N converges with N →∞ to

z−(d)(z
+
(d), respectively).

Proof. (i) Writing X(d)
N as [

daN db∗N
bN CN

]
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and using the Schur complement argument we see, that

QN(d)(z) = −
(
e∗0H

(d)
N (X

(d)
N − z)−1e0

)−1
= −aN +

z

d
+ b∗N (CN − z)−1bN .

Observe that with a discrete, random measure

µN :=

N∑
j=1

|fNj |2δλNj ,

where UNCNU
∗
N = diag(λN1 , . . . , λ

N
j ) is the unitary diagonalization of CN and fN =

[fN1 , . . . , f
N
N ]> = UNbN , one has

QN(d)(z) =
z

d
− aN + µ̂N (z). (3.5)

Expanding the Stieltjes transform of µ̂(z) at infinity

µ̂N (z) = −
∞∑
n=1

αNn z
−n

with (random) real coefficients αNn =
∫
tn−1dµN (t), n = 1, 2 . . . . Consequently, we

obtain the following Laurent series expansion at infinity of −QN(d)(z)

−QN(d)(z) =

∞∑
n=−1

αNn z
−n, (3.6)

with αN−1 := − 1
d , αN0 := aN (N = 1, 2, . . . ). On the other hand consider the expansion of

−1/QN(d)(z) given by (3.1)

− 1/QN(d)(z) = d e∗0

(
X

(d)
N − z

)−1
e0 =

∞∑
n=1

γNn z
−n, (3.7)

with γNn := −d e∗0(X
(d)
N )n−1e0. Observe that, by the Cauchy product rule, the random se-

quences (αNn )∞n=−1, (γNn )∞n=1 satisfy surely for each N = 0, 1, . . . the following equalities

αN−1γ
N
1 = 1,

k∑
i=0

αNi−1γ
N
k−i+1 = 0, k = 1, 2, . . . . (3.8)

Furthermore, the nonrandom sequences (αn)∞n=−1, (γn)∞n=1 defined by α−1 := − 1
d , α0 :=

0

αn :=

{
c(n−1)/2 : n odd

0 : n even
γn :=

{
−d π(d)

(n−1)/2 : n odd

0 : n even
, n = 1, 2, . . .

satisfy by Lemma 3.1

α−1γ1 = 1,

k∑
i=0

αi−1γk−i+1 = 0, k = 1, 2 . . . . (3.9)

By Theorem 2.1 , for each n = 0, 1, . . .

γNn → γn (N →∞), in probability. (3.10)

Employing (3.8), (3.9) and (3.10) in a simple induction argument with respect to n

we obtain that for each n = 0, 1, . . . , αNn → αn (N → ∞), in probability. Since αn =∫
R
tn−1dσ(t) the proof of (i) is complete.
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(ii) Note that by [2, Theorem 2.1.22], P(suppµN ⊂ [−3, 3]) → 1 (N → ∞). Conse-
quently, for each ε > 0

lim
N→∞

P

(∫
|x|>3

|x|kdµN > ε

)
→ 0.

A standard approximation argument (cf. e.g. [2] formula (2.1.9) and below) shows that
µN converges to σ weakly in probability. This, together with (3.2) and (3.5), finishes the
proof of (ii).

Statement (iii) follows directly from (ii), statement (iv) follows from (ii) and the con-
tinuity of the eigenvalue of nonpositive type as a function of µN and aN , see [28]. To
see (v) assume d > 2. Let M denote the set of pairs (µ, a) of a positive, finite measures
µ on R with

suppµ ⊂

[
−2 + z−(d)

2
,

2 + z+(d)

2

]
, (3.11)

and a ∈ R such that the equation a + z
d + µ̂(z) = 0 has a solution in each of the half

axes (−∞,min suppµ), (max suppµ,+∞). Note that these both solutions are necessarily
unique, we denote them by ζ−N and ζ+N , respectively. Note that (σ, 0) ∈ M and that the
pair (µN , a) belongs to M for some (equivalently: for every) a ∈ R if and only if (3.11)
is satisfied. We endow M with the topology inherited from the product of the weak and
natural topology. Thanks to (3.11) the mapping M 3 (µ, a) 7→ ζ−N is continuous at (σ, 0).

Let ΞN stand for the event that µ = µN satisfies (3.11). Observe that

P
(
|ζ−N − z

−
(d)| > ε

)
≤ P (ΞcN ) + P

(
ΞN , |ζ−N − z

−
(d)| > ε

)
,

and the first summand converges with N → ∞ to zero by [2, Theorem 2.1.22]. The
second summand converges to zero since, by (i), (µN , aN ) converges to (σ, 0) in M .
Thanks to the afore-mentioned continuity at (σ, 0), ζ−N converges in probability to z−(d).

Analogously one obtains the convergence of ζ+N .

4 Final remarks

One should mention that infinite tridiagonal matrices of the form

J(d) =



√
d

√
d 1

1 1

1
. . .

. . .


(4.1)

are in some sense operator analogues of the matrices H(
√
d)

N WNH
(
√
d)

N , namely the func-
tions e∗0(J(d) − z)−1e0 and −1/Q(d)(z) coincide. The family (4.1) was studied in [29], see
therein and [8, 9] for a relation with non-commutative probability and t–transformations
of convolutions. Also the representation of the function −1/Q(d)(z) for d > 0 as a Stielt-
jes transform of a measure was derived in [29].

However, for random matrices, contrary to the operator case (4.1), the function
−1/Q(d)(z) does not provide information about the limit of the empirical measure of
eigenvalues. Namely, using the intertwining principle one may easily show that the
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empirical measure of spectrum of the matrix X(d)
N converges for all d > 0 to the Wigner

measure σ, while −1/Q(d)(z) 6= σ̂(z).
Now let us discuss the limitations of the combinatorial methods in computing the

spectra of H-selfadjoint Wigner matrices. For a fixed k ∈ N consider the following
matrices

H
(d),k
N =

Ik 0 0

0 d 0

0 0 IN−k

 ∈ C(N+1)×(N+1), N = k, k + 1, . . . .

First observe that the spectrum of X(d),k
N = H

(d),k
N WN coincides for large N with the

spectrum of X(d)
N . Indeed, the unitary matrix

Uk,N =


0 0 1 0

0 Ik−1 0 0

1 0 0 0

0 0 0 IN−k

 .
satisfies Uk,NH

(d)
N Uk,N = H

(d),k
N . Hence, the spectrum of X(d),k

N coincides with the spec-

trum of H(d)
N Uk,NWNUk,N . Since Uk,NWNUk,N is again a Wigner matrix, we get that the

limit distributions of real eigenvalues as well as the limit of the eigenvalue of nonposi-
tive type of X(d),k

N coincide with, respectively, the limit distributions of real eigenvalues

and the limit of the eigenvalue of nonpositive type of X(d)
N .

However, for the above matrices the combinatorial interpretation given in the proof
of Theorem 2.1 is no longer true. Namely, repeating the proof it is not possible to show
that after dividing into equivalence classes and passing to the limit each Dyck path
w ∈ Dn contributes precisely dξ(w) to the total sum, since formula (2.6) is no longer
true. Although for the above ensemble of matrices X(d),k

N this does not seem to be a
large drawback, the real problem appears while considering matrices as

H
(d1,...,dκ)
N = diag(d1, . . . , dκ)⊕ IN−κ+1, X

(d1,...,dκ)
N = H

(d1,...,dκ)
N WN .

For the calculation of spectrum of those matrices one needs to develop a different
method, the topic will be treated in a subsequent paper.
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