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Abstract

In this text, we consider an random N × N matrix X such that all but o(N) rows of
X have W non identically zero entries, the other rows having less than W entries
(such as, for example, standard or cyclic band matrices). We always suppose that
1 � W � N . We first prove that if the entries are independent, centered, have
variance one, satisfy a certain tail upper-bound condition and W � (logN)6(1+α),
where α is a positive parameter depending on the distribution of the entries, then
the largest eigenvalue of X/

√
W converges to the upper bound of its limit spectral

distribution, that is 2, as for Wigner matrices. This extends some previous results by
Khorunzhiy and Sodin where less hypotheses were made on W , but more hypothe-
ses were made about the law of the entries and the structure of the matrix. Then,
under the same hypotheses, we prove a delocalization result for the eigenvectors of
X. More precisely we show that eigenvectors associated to eigenvalues “far enough”
from zero cannot be essentially localized on less than W/ log(N) entries. This lower
bound on the localization length has to be compared to the recent result by Steiner-
berger, which states that the localization length in the edge is � W 7/5 or there is
strong interaction between two eigenvectors in an interval of length W 7/5.
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Random band matrices (i.e. random Hermitian matrices with independent entries
vanishing out of a band around the diagonal) have raised lots of attention recently. In-
deed, varying the bandwidth W from 1 to the full size shows (in the large size limit)
a crossover between a strongly disordered regime, with localized eigenfunctions and
weak eigenvalue correlation, and a weakly disordered regime, with extended eigen-
functions and strong eigenvalue repulsion. It is conjectured (and explained on a Physics
level of rigor by Fyodorov and Mirlin in [9]) that for Gaussian band matrices, the local-
ization strength (i.e. the typical number of coordinates bearing most of the `2 mass) of
a typical eigenvector in the bulk of the spectrum shall be of order L ∼ N ∧W 2, so that
eigenvectors of the bulk should be localized (resp. extended) ifW �

√
N (resp. �

√
N ).

The only rigorous result in the direction of localization is by Schenker [13]. Therein it
is proved that L�W 8 for Gaussian band matrices. On the other hand, delocalization
in the bulk is proved by Erdös, Knowles, Yau and Yin [7] when W � N4/5. In both
regimes, it is known from Erdös and Knowles [5, 6] that typically (i.e. disregarding a
negligible proportion of eigenvectors) L�W 7/6 ∧N for a certain class of random band
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matrices (with sub-exponential tails and symmetric distribution). We refer the reader
to Spencer [15] and Erdös, Schlein and Yau [8] for a more detailed discussion on the
localized/delocalized regime.

Regarding the edges of the spectrum, little is known about the behavior of the ex-
treme eigenvalues and the typical localization length of the associated eigenvectors.
As far as the limit of the largest eigenvalue is concerned, Khorunzhiy proved in [11]
that for Gaussian band matrices, if (logN)3/2 �W � N , then the extreme eigenvalues
converge to the bounds u± of the support of the limiting spectral measure (which is the
semicircle law). For matrices with cyclic band structure and Bernoulli entries, Sodin ex-
tended this result to the case where logN �W � N in [14], where he proved important
results about the fluctuations of the extreme eigenvalues around their limits. Concern-
ing the localization length L of the eigenvectors associated to the extreme eigenvalues,
one could conjecture the following on the basis of the Thouless argument as explained
in [9]. For eigenvectors associated to eigenvalues λ close to the bottom edge e.g. u−,
the localization strength should behave as L ∼ N ∧ W 2(λ − u−). Sodin’s statement
[14] combined with Erdös-Knowles-Yau-Yin’s results [7] suggest that this should hold
true as soon as W � N5/6. Moreover, Steinerberger proved recently in [16] that for
matrices with Bernoulli entries and cyclic band structure, with probability tending to
one, we have either L� W 7/5 or there is strong interaction between two eigenvectors
in an interval of length W 7/5. Let us also mention that in the quite different framework
of band matrices with heavy tailed entries, a transition between the localized and the
delocalized regime at the edge was proved by the authors of the present text in [3].

In this text, we consider an random N × N Hermitian matrix X such that rows of
X have W non identically zero entries (such as, for example, standard or cyclic band
matrices). We always suppose that 1 � W � N . We first prove that if the entries are
independent, centered, have variance one, satisfy a certain tail upper-bound condition
and W � (logN)6(1+α), where α is a positive parameter depending on the distribution
of the entries, then the largest eigenvalue of X/

√
W converges to the upper bound of

its limit spectral distribution, that is 2, as for Wigner matrices. This extends the above
mentioned results by Khorunzhiy and Sodin [11, 14] where less hypotheses were made
on W , but more hypotheses were made about the law of the entries (they use in a cru-
cial way the fact that the entries are symmetrically distributed) and about the structure
of the matrix (in our result, we only need that most rows have W non zero entries, no
matter what position the entries have on the matrix). Then, under some close hypothe-
ses, we prove a delocalization result for the eigenvectors of X, precisely that most of
them cannot be essentially localized on less than W/ logN entries. This lower bound
on the localization length has to be compared to the recent result by Steinerberger in
[16], which states that the localization length (here we use the word length rather than
strength because in [16], the author considers intervals carrying most of the `2-mass
of the eigenvectors) in the edge is � W 7/5 or there is strong interaction between two
eigenvectors in an interval of length W 7/5. The paper is organized as follows: our main
results are stated in the next section, Theorem 1.4 is proved in Section 2, Theorem 1.9
is proved in Section 3, and some technical results needed here are proved in Section 4
and in the appendix.
Notation. Here, A� B means that A/B −→ 0 as N →∞. Let ‖X‖ denote the spectral
radius of the Hermitian matrix X and λmax(X) denote its largest eigenvalue.

1 Main results

We make the following hypotheses.

Hypothesis 1.1. The matrix X = (Xij) is an N ×N Hermitian random matrix (depend-
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ing implicitly on N ) with independent entries (modulo the symmetry).

Hypothesis 1.2. There is W =W (N) such that

1�W � N (1.1)

and such that on each row of X, the number of non identically zero entries is ≤W , with
equality on all but o(N) rows. All non identically zero entries of X are centered with
variance one. Moreover, there exist constants C ∈ [0,+∞) and α ∈ [0,+∞) such that
for all k ≥ 2,

E[|Xij |k] ≤ (Ck)αk, (1.2)

uniformly on N, i, j.

Then the following theorem has been proved under weaker moment hypotheses in
[4] (using the resolvent approach), but can easily be reproved here using a standard
moment method as in [1, 2].

Theorem 1.3. Under Hypotheses 1.1 and 1.2, as N →∞, the empirical spectral law of
X√
W

converges weakly in probability towards the law 1
2π

√
4− x2dx, with support [−2, 2].

Our first result is the following one.

Theorem 1.4. Under Hypotheses 1.1 and 1.2, suppose that W satisfies

W � (logN)6(1+α), (1.3)

with α the constant of (1.2). Then as N →∞, we have the convergence in probability

λmax(X)√
W

−→ 2. (1.4)

Remark 1.5. This theorem extends some results of [11] and [14]. In these papers, the
convergence of (1.4) is proved under the respective hypotheses W � (logN)3/2 and
W � logN , but for some particular models of matrices: in [11] the matrices considered
are Gaussian and in [14], they have Bernoulli distributed entries. Both make a crucial
use of the fact that the entries are symmetrically distributed. Moreover, in both papers,
the authors also suppose and rely heavily on a particular position of the non zero entries
of X. We do not make such a hypothesis here.

To state our main result, a lower bound on the localization length of eigenvectors of
X, we slightly modify the hypotheses.
Let X be a random matrix satisfying Hypothesis 1.1. We make the following two as-
sumptions.

Hypothesis 1.6. For a certain sequence W = W (N)� 1, we have the convergence in
probability ‖X‖

2
√
W
−→
N→∞

1.

For example, Hypothesis 1.6 is satisfied if X satisfies the hypotheses of Theorem 1.4
or those the papers [11] and [14] (see Remark 1.5 above). However we emphasize that
Hypothesis 1.6, focused on the extreme eigenvalues, does not make (at least directly)
any assumption on the maximal number of non zero entries per row of X (it may be N ),
neither on the relative growth of W with respect to N .

We also reinforce the assumption on the tail of the distribution of the entries. Let
C > 0 be fixed.

ECP 19 (2014), paper 4.
Page 3/9

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3027
http://ecp.ejpecp.org/


Largest eigenvalues and eigenvectors of band or sparse random matrices

Hypothesis 1.7. The entries Xij belong to the set EC of complex random variables X
such that

EX = 0, E|X|k ≤ (Ck)k/2, ∀k ∈ N.

Note that this assumption reinforces (1.2) as α ≤ 1/2. It is equivalent to the fact that
there exists δ > 0 and K > 0 such that

Eeδ|X|
2

≤ K. (1.5)

With a slight abuse of notation, we denote EC by Eδ,K , as our proof mostly uses assump-
tion (1.5).

The following theorem is the main result of this text.
We use the following Definition 7.1 from Erdös, Schlein and Yau [8]: for L a positive

integer and η > 0, a unit vector v = (v1, . . . , vN ) ∈ CN is said to be (L, η)-localized if
there exists a set S ⊂ {1, . . . , N} such that |S| = L and

∑
j∈Sc |vj |2 ≤ η.

Remark 1.8. The largest L and η are, the strongest the statement “there is no (L, η)-
localized eigenvector" is.

Theorem 1.9. We suppose Hypotheses 1.1, 1.6 and 1.7. Fix η ∈ (0, 1/2) and choose
L = L(N) such that

L� W

logN
. (1.6)

Let λ1, . . . , λN be the eigenvalues of X and let v1, . . . ,vN be some associated normalized
eigenvectors. Then for any κ such that

√
η/(1− η) < κ < 1,

P(∃i, |λi| ≥ 2κ
√
W and vi is (L, η)-localized) −→

N→∞
0.

Remark 1.10. The same proof can also bring to a version of this theorem where η =

η(N) −→ 0. In this case, κ = κ(N) is allowed to tend to zero, thus the theorem allows
to lower bound the localization length of most eigenvectors of X.

Remark 1.11. The estimate in Theorem 1.9 is almost sharp, as shown by the case
where X is the block diagonal matrix formed with [N/W ](+1) GUE matrices of size W
(or at most W for the last block).

2 Proof of Theorem 1.4

The proof goes along the same lines as the proof of Theorem 2 in the paper [10] by
Füredi and Komlós (see also Theorem 2.1.22 in [1]). First note that by Theorem 1.3, we
already know that for any η > 0, P(λmax(X) < (2− η)

√
W ) −→ 0.

For any η > 0, for any k ≥ 1,

P(λmax(X) > (2 + η)
√
W ) ≤ P(TrX2k ≥ (2 + η)2kW k) ≤W−k(2 + η)−2kETrX2k,

hence it suffices to find a sequence k = k(N) such that for any η > 0,

ETrX2k �W k(2 + η)2k. (2.1)

We have
ETrX2k =

∑
EXi1i2 · · ·Xi2ki1 ,

where the sum is over collections i = (i1, . . . , i2k) such that for all `, i` ∈ {1, . . . , N}.
For each i, let Gi be the simple, non oriented graph with vertex set {i1, . . . , i2k} and
edges {i`, i`+1} (1 ≤ ` ≤ 2k, with the convention i2k+1 = i1). For the expectation
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in the RHT above to be non zero, we need all edges to be visited at least twice by
the path i (because the Xij ’s are centered) and the edges {i`, i`+1} to be such that
Xi`,i`+1

is non identically zero. The symmetric group SN acts on the set of i’s by σ ·
(i1, . . . , i2k) := (σ(i1), . . . , σ(i2k)). Following Section 2.1.3 of [1], we denote by W2k,t the
set of equivalence classes, under the action of SN , of i’s such that all edges of Gi are
visited at least twice by the path i and Gi has exactly t vertices (this set is actually stable
under this action).

Note that forW2k,t to be non empty, we need to have t ≤ k + 1. Indeed, Gi is always
connected hence its number of vertices is at most its number of edges plus one.

Note that for any w ∈ W2k,t, the number of i’s in the class w is at most NW t−1.

It follows from the previous remarks that

ETrX2k ≤ N
k+1∑
t=1

W t−1
∑

w∈W2k,t

max
i∈w

EXi1i2 · · ·Xi2k−1i1 .

Now, let us fix t ∈ {1, . . . , k+1}, w ∈ W2k,t and i ∈ w. Let us denote by l (resp. m) the
number of edges of Gi visited exactly twice (resp. at least three times). Obviously, 2l +
3m ≤ 2k. Moreover, as l +m is the number of edges of the Gi, hence by connectedness
of Gi again, we have t ≤ l +m+ 1. So

6t ≤ 6m+ 6l + 6 = 2(3m+ 2l) + 2l + 6 ≤ 4k + 2l + 6,

so

2k − 2l ≤ 6(k − t+ 1).

Now, notice that as the Xij ’s have variance one, EXi1i2 · · ·Xi2ki1 can be reduced to
the expectation of a product of 2k − 2l Xij ’s, hence by (1.2) and Hölder’s inequality,

EXi1i2 · · ·Xi2ki1 ≤
(
C(2k − 2l)

)α(2k−2l)
≤ {6C(k − t+ 1)}6α(k−t+1).

As a consequence,

ETrX2k ≤ N
k+1∑
t=1

W t−1#W2k,t × {6C(k − t+ 1)}6α(k−t+1).

Now, we shall use Lemma 2.1.23 of [1], which states that #W2k,t ≤ 4k(2k)6(k−t+1) as
soon as t ≤ k+1 (the case t = k+1 is technically not contained in Lemma 2.1.23 of [1],
but follows from Equation (2.1.20) and Lemma 2.1.3 of the same book). It follows that

ETrX2k ≤ N4k
k+1∑
t=1

W t−1(2k)6(k−t+1){6C(k − t+ 1)}6α(k−t+1)

= NW k4k
k∑
i=0

W−i(2k)6i(6Ci)6αi

≤ NW k4k
(
1− (2k(6Ck)α)6

W

)−1
,

where the last inequality is true as soon as W > (2k(6Ck)α)6. Then it is easy to see that

(2.1) holds for k = k(N) such that logN � k �W
1

6(1+α) .

ECP 19 (2014), paper 4.
Page 5/9

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3027
http://ecp.ejpecp.org/


Largest eigenvalues and eigenvectors of band or sparse random matrices

3 Proof of Theorem 1.9

Before proving Theorem 1.9, we shall need the following theorem and its corollary.
The proof of Theorem 3.1 is postponed to Section 4.

Theorem 3.1. Under Hypotheses 1.1 and 1.7, there are constants c2 = c2(δ,K) > 0

and C2 = C2(δ,K) <∞ independent of all the other parameters such that for all t > 0,

P(‖X‖ > t
√
N) ≤ e−c2(t

2−C2)N . (3.1)

Let us denote by ρ(X) the spectral radius of X and, for L ≥ 1, by ρL(X) the maximum
spectral radius of its L× L principal submatrices (a principal submatrix is a submatrix
chosen by extracting a certain set of columns and the same set of rows, but this set
does not need to be an interval).

Corollary 3.2. Under Hypotheses 1.1 and 1.7, there exists t <∞ and c3 > 0 such that

P(ρL(X) ≥ t
√
L logN) ≤ e−c3L logN . (3.2)

Proof. The number of ways to choose an L × L principal submatrix is ≤ NL = eL logN .
For each submatrix S, P(ρ(S) ≥ t

√
N logN) ≤ exp{−c2(t2 logN − C2)L}, hence by the

union bound,

P(ρL(X) ≥ t
√
L logN) ≤ exp{[−c2(t2 logN − C2) + logN ]L},

thus if c2t2 > 1, then (3.2) holds for a certain c3 > 0.

To prove Theorem 1.9, we shall also need the following lemma (see Lemma 4.2 in
[3]).

Lemma 3.3. For all i, if vi is (L, η)-localized, then |λi| ≤
ρL(X)+

√
ηρ(X)√

1−η .

Let us now prove Theorem 1.9.

Proof. Let us choose ε > 0 such that
√
η/(1− η)(1 + ε) < κ and set

δ := κ−
√
η/(1− η)(1 + ε).

We know, by (1.6), that with probability tending to 1, ρ(X) ≤ (1 + ε)2
√
W , i.e.

√
ηρ(X)
√
1− η

≤ (κ− δ)2
√
W.

Moreover, by Corollary 3.2, there is t < ∞ such that with probability tending to one,
ρL(X) ≤ t

√
L logN . But by (1.6), for N large enough,

t
√
L logN√
1− η

≤ 2δ
√
W,

so the theorem is proved.

4 Proof of Theorem 3.1

4.1 A preliminary lemma

Lemma 4.1. Under Hypotheses 1.1 and 1.7, there are constants c1, C1 depending only
on δ,K such that for any z ∈ CN with |z| ≤ 1,

P(z∗X∗Xz ≥ Nt) ≤ e−c1(t−C1)N . (4.1)
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Remark 4.2. If X is a random N×N matrix whose maximum number of non identically
zero entries per row isW (like for a band matrix with band widthW ), then (4.1) remains
true with N replaced by W everywhere (for some constants still depending only on δ

and K).

Proof. We denote by X1, . . . ,XN the columns of X. We have , for any τ, C as in Lemma
5.2 of the appendix,

Eeτ
2z∗X∗Xz = Eeτ

2|Xz|2 = Eeτ
2 ∑

j |Xj ·z|2 ≤ eNCτ
2

Hence
P(z∗X∗Xz ≥ Nt) ≤ Eeτ

2z∗X∗Xze−τ
2Nt ≤ e−τ

2(t−C)N .

So the lemma is proved.

4.2 Proof of Theorem 3.1

Lemma 4.3. Let N ≥ 1. For any fixed 0 < ε < 1/4, there exists a family (zi)i∈I of
elements of the unit ball of CN such that |I| ≤ (2/ε)2N and any element of the unit
sphere of CN is within a distance at most ε of one of the zi’s. Moreover, for any positive
N ×N Hermitian matrix P ,

λmax(P ) ≤
maxi z

∗
iPzi

1− 2ε
.

The first part of this lemma is well known (see e.g. [12]), whereas its second part
follows from the fact that for any vectors of the unit ball z, zi,∣∣∣z∗iPzi − z∗Pz

∣∣∣ ≤ 2||P || × ||z− zi||

and specifying z to be an eigenvector associated to λmax. Let us now prove Theorem
3.1.

Proof. By Lemma 4.1, we know that there are constants there are constants c1, C1 de-
pending only on δ,K such that for any z ∈ CN with ‖z‖ ≤ 1,

P(z∗X∗Xz ≥ Nt) ≤ e−c1(t−C1)N .

Now, by Lemma 4.3, we have

P(λmax(X
∗X) ≥ Nt) ≤ P(max

i
z∗iX

∗Xzi ≥ Nt(1− 2ε))

≤ (2/ε)2Ne−c1(t(1−2ε)−C1)N

= e(−c1(1−2ε)(t−
C1

1−2ε )+2 log(2/ε))N

= e−c2(t−C2)N

As a consequence,

P(‖X‖ > t
√
N) = P(λmax(X

∗X) ≥ t2N) ≤ e−c2(t
2−C2)N .

5 Appendix: technical results

Lemma 5.1. For any real centered random variable X and any r ∈ R, we have

EerX ≤ 1 + 3E[eδX
2

](er
2/δ − 1) ≤ e3r

2E[eδX
2
]/δ

for any δ > 0.
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Proof. The second inequality follows from the fact that for any y ≥ 1, we have the
inequality 1 + y(er

2/δ − 1) ≤ er2y/δ (this is obvious with the series expansion of exp).
So let us prove the first inequality. Note that up to a replacement of X by rX and of

δ by δ/r2, we shall suppose that r = 1.
The case where E[eδX

2

] = ∞ is obvious, hence we focus on the other case, which
allows to expend all sums with the moments of X.

Claim : for all x ≥ 0, ex ≤ 1 + x+ 3 e
x+e−x−2

2 . Indeed, both terms are equal for x = 0

and the derivative of 2RHT−2LHT is ex − 3e−x + 2, which is increasing, hence has the
same sign as x.

It follows that

EeX ≤ 1 + 3
∑
n≥1

EX2n

(2n)!
≤ 1 + 3

∑
n≥1

n!δ−nEeδX
2

(2n)!
≤ 1 + 3E[eδX

2

](e1/δ − 1),

where we used first EX = 0, then δnEX2n

n! ≤ EeδX2

and at last n!
(2n)! ≤

1
n! .

Let a ·b denote the standard scalar product of two complex vectors and let | · | denote
the associated norm.

Lemma 5.2. Let us fix δ,K > 0. Then there is τ = τ(δ,K) > 0 and C = C(δ,K) > 0

such that for all N ≥ 1, all z ∈ CN such that |z| ≤ τ , for any Y random vector taking
values in CN with independent components in the set Eδ,K defined at Hypothesis 1.7,

Ee|Y·z|
2

≤ eC|z|
2

.

Proof. First step: Let us first prove the result for Y having independent components in

ERδ,K := {Y ∈ Eδ,K ; Y is real-valued}

and z ∈ RN . Let τR > 0 be such that for any t ∈ [0, τR), we have

12t2K/δ < 1 and
(
1− 12t2K/δ

)−1/2 ≤ e12t2K/δ.
Let g be a standard real Gaussian variable, independent of the other variables, let Eg
denote the expectation with respect to g and let E denote the expectation with respect
to all other variables than g.

For any τ > 0 and z ∈ RN such that |z| ≤ τ , using the formula ex
2

= Ege
√
2xg, we

have
Ee|Y·z|

2

= EEge
√
2gY·z = EgEe

√
2gY·z = Eg

∏
i

Ee
√
2gYizi .

Hence by Lemma 5.1,

Ee|Y·z|
2

≤ Eg
∏
i

e6g
2z2iK/δ = Ege

6g2|z|2K/δ =
(
1− 12|z|2K/δ

)−1/2 ≤ e12|z|2K/δ.
Second step: To extend this result to the complex case, just decompose Y and z into

real and imaginary parts and use Hölder inequality to see that the constants τ = τR√
8

and C = 4CR are convenient in the general case.
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