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Abstract

Random walks in random sceneries (RWRS) are simple examples of stochastic pro-
cesses in disordered media. They were introduced at the end of the 70’s by Kesten-
Spitzer and Borodin, motivated by the construction of new self-similar processes with
stationary increments. Two sources of randomness enter in their definition: a random
field ξ = (ξ(x))x∈Zd of i.i.d. random variables, which is called the random scenery,
and a random walk S = (Sn)n∈N evolving in Zd, independent of the scenery. The
RWRS Z = (Zn)n∈N is then defined as the accumulated scenery along the trajectory
of the random walk, i.e., Zn :=

∑n
k=1 ξ(Sk). The law of Z under the joint law of

ξ and S is called “annealed”, and the conditional law given ξ is called “quenched”.
Recently, functional central limit theorems under the quenched law were proved for
Z by the first two authors for a class of transient random walks including walks with
finite variance in dimension d ≥ 3. In this paper we extend their results to dimension
d = 2.
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1 Introduction

Let d ≥ 1 and (ξ(x))x∈Zd be a collection of independent and identically distributed
(i.i.d.) real random variables, further referred to as scenery, and (Sn)n≥0 a random
walk evolving in Zd, independent of the scenery. The random walk in random scenery
(RWRS) is the process obtained by adding up the values of the scenery seen by the ran-
dom walk along its trajectory, that is, Zn = ξ(S1) + . . . + ξ(Sn), n ≥ 1. This model was
introduced independently by Kesten and Spitzer [24] and by Borodin [6, 7].

RWRS appears naturally in a variety of contexts, for instance (i) in the energy func-
tion of statistical mechanics models of polymers interacting with a random medium, (ii)
in Bouchaud’s trap model via the clock process, see [2], (iii) in the study of random
walks in randomly oriented lattices, as in [8, 11]. The last example is related to the
phenomenon of anomalous diffusion in layered random media, see Le Doussal [16] and
Matheron and de Marsily [27] on this matter. Indeed, Kesten and Spitzer’s original mo-
tivation was to build a new class of self-similar sochastic processes with non-standard
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Quenched CLT for planar random walks in random sceneries

normalizations.

Results were first established under the annealed measure, that is when one aver-
ages at the same time over the scenery and the random walk. Let us suppose here
that the random walk increment and the scenery at the origin are in the domains of
attraction of different stable laws with index α and β in (0, 2], respectively. In the case
d = 1 < α, Kesten and Spitzer [24] proved that the process (n−δZbntc)t≥0 converges
weakly, as n → ∞, to a continuous δ-self-similar process, where δ = 1 − α−1 + (αβ)−1.

Later on, Bolthausen [4] proved a functional central limit for (
√
n log n

−1
Zbntc)t≥0 in the

case d = α = β = 2, and his result also covers the case d = α = 1, β = 2. More recently,
Castell, Guillotin-Plantard and Pène [10] proved that, for d = α ∈ {1, 2} and 0 < β < 2,
(Zbntc)t≥0 has to be normalized by n1/β(log n)1−1/β so that it converges to a limiting
process, which is stable of index β. The case of a transient random walk (i.e., α < d) has
also been treated in [10] (see also [30, 24, 7]): rescaling by n1/β one obtains as limit a
stable process of index β. Other results on RWRS include strong approximation results
and laws of the iterated logarithm [14, 15, 25], limit theorems for correlated sceneries
or walks [13, 23], large and moderate deviations results [1, 9, 12, 19, 20], ergodic and
mixing properties [17].

Distributional limit theorems for quenched sceneries (that is, conditionally given the
scenery) are more recent. The first result in this direction that we are aware of was ob-
tained by Ben Arous and Černý [2], in the case of a heavy-tailed scenery and planar
random walk. Recently, the first two authors proved in [22] that a quenched functional
central limit theorem (with the usual

√
n-scaling and Gaussian law in the limit) holds

for a class of transient random walks. Moreover, with one of the methods used there,
namely convergence of moments, they could prove convergence along a subsequence
for sceneries having finite moments of all orders and planar random walks with finite
non-singular covariance matrices, after a non-standard scaling by

√
n log n. The ques-

tion was raised whether the convergence takes place along the full sequence. In this
paper we are able to answer this question in the positive when the scenery has slightly
more than a second moment.

A common ingredient of the proofs in [22] and in this paper is the fact that the self-
intersection local time of the random walk (which dictates the renormalization in the
annealed case) grows faster than the mutual intersection local time of two independent
random walks. The latter typically breaks down if d < α, which makes our techniques
inefficient and the study of quenched limit theorems more challenging. However, re-
sults for the case d = 1 < α = 2 have been obtained very recently in [21]: when the
scenery has a finite moment of order 2 + ε, for some ε > 0, the process Zn rescaled by
n−3/4(log log n)−1/2 does not converge in law under the quenched measure, but a set of
limit laws is identified.

2 Notations, assumptions and results

Let us start with a few words about notation. We will denote by N := {0, 1, 2, . . .} the
set of non-negative integers and put N∗ := N \ {0}. We will write C to denote a generic
positive constant that may change from expression to expression.

We now proceed to define the model. Let S = (Sn)n≥0 be a random walk in Z2

starting at 0, i.e., S0 = 0 and

(Sn − Sn−1)n≥1 is a sequence of i.i.d. Z2-valued random variables. (2.1)
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Quenched CLT for planar random walks in random sceneries

We denote the local times of the random walk by

Nn(x) :=
∑

1≤k≤n

1{Sk=x}, x ∈ Z2. (2.2)

Let ξ = (ξ(x))x∈Z2 be a field of i.i.d. real random variables independent of S. The
field ξ is called the random scenery.

The random walk in random scenery (RWRS) Z = (Zn)n≥0 is defined by setting
Z0 := 0 and, for n ∈ N∗,

Zn :=

n∑
i=1

ξ(Si) =
∑
x∈Z2

ξ(x)Nn(x). (2.3)

We will denote by P the joint law of S and ξ, and by P the marginal of S. The law P

is called the annealed law, while the conditional law P(·|ξ) is called the quenched law.
We will make the following two assumptions on the random walk and on the random

scenery:

(A1) The random walk increment S1 has a centered law with a finite and non-singular
covariance matrix Σ. We further suppose that the random walk is aperiodic in the sense
of Spitzer [30], which means that S is not confined to a proper subgroup of Z2.

(A2) E[ξ(0)] = 0, E[|ξ(0)|2] = 1 and there exists a χ > 0 such that

E
[
|ξ(0)|2(log+ |ξ(0)|)χ

]
<∞, (2.4)

where log+ x := max(0, log x).

The aim of this paper is to prove the following quenched functional central limit
theorem.

Theorem 2.1. Under assumptions (A1) and (A2), for P-a.e. ξ, the process

W (n) =
(
W

(n)
t

)
t≥0

:=

(
Zbntc√
n log n

)
t≥0

(2.5)

converges weakly as n→∞ under P(·|ξ) in the Skorohod topology to a Brownian motion
with variance σ2 = (π

√
det Σ)−1.

Remark: The conclusion of this theorem still holds if, alternatively, the assumption (A1)
is replaced by the following one:

(A1’) The sequence S = (Sn)n≥0 is an aperiodic random walk in Z starting from 0 such
that

(
Sn
n

)
n

converges in distribution to a random variable with characteristic function
given by t 7→ exp(−c|t|), c > 0. In this case, σ2 = 2(πc)−1.

Indeed, the proof of Theorem 2.1 depends on the random walk S only through certain
local time properties which are known to be the same under assumptions (A1) or (A1’).
These properties are listed in Section 4.

3 Outline of the proof of Theorem 2.1

We will use a method introduced by Bolthausen and Sznitman in [5]. The idea is to
pass the functional CLT from the annealed to the quenched law using concentration of
quenched expectations of Lipschitz functionals of the rescaled process. In our setting,
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the annealed version of Theorem 2.1 was proved by Bolthausen in [4], and his proof
also works under (A1’).

To describe the method more precisely, let W(n) be the polygonal interpolation of
W (n), that is,

W(n)
t :=

Zbntc + (nt− bntc)
(
Zbntc+1 − Zbntc

)
√
n log n

. (3.1)

For T > 0, consider the space C([0, T ],R) of continuous functions from [0, T ] to R
equipped with the sup norm. We abuse notation by writing W(n) to mean also the
restriction of this process to the interval [0, T ], depending on context.

Following the reasoning in Lemma 4.1 of [5], we see that Theorem 2.1 will follow
from the annealed functional CLT in [4] if we show that, for any T > 0, b ∈ (1, 2] and any
bounded Lipschitz function F : C([0, T ],R)→ C,

lim
n→∞

E
[
F
(
W(bbnc)

) ∣∣∣ ξ ]− E [F (W(bbnc)
)]

= 0 P-a.s. (3.2)

To prove (3.2) we will use a martingale decomposition, in a similar fashion as in
Bolthausen and Sznitman [5] (proof of Theorem 4.2), Berger and Zeitouni [3] (proof
of Theorem 4.1) and Rassoul-Agha and Seppäläinen [29] (proof of Proposition 6.1). In
order to control the martingale via exponential inequalities, we introduce first as a
technical step a truncation of the scenery, from which the restriction χ > 0 originates.

The rest of the paper is organized as follows. In Section 4 we collect two facts
about two-dimensional random walks that we will need. Section 5 contains the proof
of Theorem 2.1, given in two steps: in Section 5.1 we define a truncation of the RWRS
and reduce the problem to showing (3.2) for the truncated version, and this last step is
carried out in Section 5.2.

4 Two-dimensional random walks

We state here two lemmas about two-dimensional random walks satisfying (A1) that
will be needed in the sequel. Analogous statements are valid under (A1’).

Lemma 4.1. There exists a K ∈ (0,∞) such that

(i) sup
x∈Z2

E [Nn(x)] ≤ K log n ∀ n ≥ 2. (4.1)

(ii)
∑
x∈Z2

(E [Nn(x)])2 ≤ Kn ∀ n ∈ N∗. (4.2)

Proof. Item (i) can be found e.g. in the proof of Lemma 2.5 in [4]. Item (ii) follows from
the proof of Corollary 3.2 in [26]; note that the l.h.s. of (4.2) is the expectation of the
mutual intersection local time of two independent copies of S, denoted by Jn in [26].

Lemma 4.2. Let
Rn := {x ∈ Z2 : Nn(x) > 0} (4.3)

be the range of the random walk S up to time n. There exists a constant C > 0 such
that for all n ≥ 2,

P (Sn /∈ Rn−1) ≤ C(log n)−1. (4.4)

Proof. One can for instance find a proof in Section 2 of [18], which actually holds for
more general random walks than the nearest-neighbour walk considered there.

5 Proof of Theorem 2.1

The proof consists of two steps: first we define a truncation of the RWRS that ap-
proximates well the original process, and then we prove (3.2) for the truncated version.
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5.1 Truncation

For n ≥ 2, set Mn :=
√
n/(log n)γ , where

γ := 1 +
χ

2
, (5.1)

define ξn, ξ̂n ∈ RZ
2

by

ξn(x) := ξ(x)1{|ξ(x)|≤Mn}
ξ̂n(x) := ξn(x)− E [ξn(x)]

for x ∈ Z2, (5.2)

and let Z(n) and Ẑ(n) be defined by

Z
(n)
k :=

∑k
i=1 ξn(Si) =

∑
x∈Z2 ξn(x)Nk(x)

Ẑ
(n)
k :=

∑k
i=1 ξ̂n(Si) =

∑
x∈Z2 ξ̂n(x)Nk(x)

for k ∈ N∗. (5.3)

The following two propositions show that, in order to prove Theorem 2.1, it is enough
to prove the same statement for Ŵ (n)

t := (n log n)−
1
2 Ẑ

(n)
bntc, t ≥ 0.

Proposition 5.1. (Comparison between Z and Z(n))
Fix T > 0. There exists P-a.s. a random time T0 ∈ N∗ such that, if n ≥ T0, then

Z
(n)
k = Zk for all 1 ≤ k ≤ bnT c.

Proof. Let Rk be the range of the random walk as in (4.3), and set

Dn := {x ∈ RbnTc : ξn(x) 6= ξ(x)}. (5.4)

We have
Dn \ Dn−1 =

{
x ∈ RbnTc \Rb(n−1)Tc : |ξ(x)| > Mn

}
. (5.5)

Therefore, if dn := P (Dn \ Dn−1 6= ∅),

dn = P
(
∃ b(n− 1)T c < k ≤ bnT c : |ξ(Sk)| > Mn, Sk /∈ Rb(n−1)Tc

)
≤ P

( ∃ b(n− 1)T c < ` ≤ bnT c : |ξ(S`)| > Mn

and ∃ b(n− 1)T c < k ≤ bnT c : Sk /∈ Rb(n−1)Tc

)
≤

bnTc∑
`=b(n−1)Tc+1

P
( |ξ(S`)| > Mn and
∃ b(n− 1)T c < k ≤ bnT c : Sk /∈ Rb(n−1)Tc

)
≤ (T + 1)P (|ξ(0)| > Mn)

× P
(
∃ b(n− 1)T c < k ≤ bnT c : Sk /∈ Rb(n−1)Tc

)
, (5.6)

where the last inequality is justified by summing over the possible values of S`.
Let us now prove that (dn)n≥1 is summable. Considering the first k > b(n − 1)T c

such that Sk /∈ Rb(n−1)Tc, we see that

P
(
∃ b(n− 1)T c < k ≤ bnT c : Sk /∈ Rb(n−1)Tc

)
= P (∃ b(n− 1)T c < k ≤ bnT c : Sk /∈ Rk−1)

≤
bnTc∑

k=b(n−1)Tc+1

P (Sk /∈ Rk−1) ≤ C

log n
, (5.7)

where we used Lemma 4.2 for the last inequality. On the other hand, since f(x) :=

x2(log+ x)χ is non-decreasing on (0,∞) and f(Mn) ≥ Cn(log n)χ−γ for some C > 0 and
all n ≥ 2,

P (|ξ(0)| > Mn) ≤ P
(
|ξ(0)|2(log+ |ξ(0)|)χ ≥ Cn(log n)χ−γ

)
. (5.8)
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The combination of (5.7) and (5.8) yields∑
n≥2

dn ≤ C
∑
n≥2

(log n)−1P
(
|ξ(0)|2(log+ |ξ(0)|)χ ≥ Cn(log n)χ−γ

)
. (5.9)

For all a > 0,∑
n≥3

dn ≤ C
∑
L≥1

∑
eLa≤n<e(L+1)a

(log n)−1P
(
|ξ(0)|2(log+ |ξ(0)|)χ ≥ Cn(log n)χ−γ

)
≤ C

∑
L≥1

L−a
∑

eLa≤n<e(L+1)a

P
(
|ξ(0)|2(log+ |ξ(0)|)χ ≥ CLa(χ−γ)n

)
≤ C

∑
L≥1

L−a
∑
n≥1

P
(
|ξ(0)|2(log+ |ξ(0)|)χ ≥ CLa(χ−γ)n

)
≤ C

∑
L≥1

L−a
E
[
|ξ(0)|2(log+ |ξ(0)|)χ

]
La(χ−γ)

, (5.10)

which is finite as soon as a(1 +χ−γ) > 1. Since 1 +χ−γ = χ/2 > 0, the latter condition
can be achieved by choosing a large enough. We have now proven that (dn)n≥1 is
summable, so by the Borel-Cantelli lemma there exists a random index N0 ∈ N∗ such
that a.s. Dn ⊂ DN0

for all n ≥ N0. Therefore, setting

T0 := inf

{
n ≥ N0 : Mn > sup

x∈DN0

|ξ(x)|

}
, (5.11)

we have Dn = ∅ for n ≥ T0.

Proposition 5.2. (Comparison between Z(n) and Ẑ(n))

lim
n→∞

sup
1≤k≤bnTc

|Ẑ(n)
k − Z(n)

k |√
n log n

= 0 P-a.s. for any T > 0. (5.12)

Proof. Since ξ is centered,

∣∣E [ξ(0)1{|ξ(0)|≤Mn}
]∣∣ =

∣∣E [ξ(0)1{|ξ(0)|>Mn}
]∣∣ ≤ E [|ξ(0)|2(log+ |ξ(0)|)χ

]
Mn(logMn)χ

≤ C√
n(log n)χ−γ/2

. (5.13)

Therefore, for 1 ≤ k ≤ bnT c,

|Z(n)
k − Ẑ(n)

k |√
n log n

=
k
∣∣E [ξ(0)1{|ξ(0)|≤Mn}

]∣∣
√
n log n

≤ C T

(log n)χ+(1−γ)/2 . (5.14)

This ends the proof, since χ+ (1− γ)/2 = 3χ/4 > 0.

5.2 Control of the truncated version

From now on we will work with the truncated and recentered version Ẑ(n) of the
RWRS. Let Ŵ(n) be the analogue ofW(n) in (3.1) for Ẑ(n), i.e.,

Ŵ(n)
t :=

Ẑ
(n)
bntc + (nt− bntc)

(
Ẑ

(n)
bntc+1 − Ẑ

(n)
bntc

)
√
n log n

, t ≥ 0. (5.15)

Fix T > 0, b ∈ (1, 2] and F : C([0, T ],R) → C bounded and Lipschitz. By Proposi-
tions 5.1–5.2, weak convergence of either W (n) or Ŵ (n) implies the same convergence
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for the other, under both the quenched and annealed laws; therefore our work will be
done once we show that

lim
n→∞

E
[
F
(
Ŵ(bbnc)

)∣∣∣ξ]− E [F (Ŵ(bbnc)
)]

= 0 P-a.s. (5.16)

Proof of (5.16). Fix an arbitrary enumeration of Z2 := {x1, x2, . . .}, define

Gk := σ (ξ(xi) : i ≤ k) , k ∈ N∗, (5.17)

and let

∆
(n)
k := E

[
F
(
Ŵ(n)

)∣∣∣Gk]− E [F (Ŵ(n)
)∣∣∣Gk−1] , (5.18)

where G0 is the trivial σ-algebra. The latter are increments of a bounded martingale.
By the martingale convergence theorem,

E
[
F
(
Ŵ(n)

)∣∣∣ ξ]− E [F (Ŵ(n)
)]

=

∞∑
k=1

∆
(n)
k . (5.19)

To control the ∆
(n)
k , we introduce a coupling. Let ξ′ be an independent copy of ξ, set

ξ̂(k)n (x) :=

{
ξ̂′n(x) if x = xk,

ξ̂n(x) otherwise,
(5.20)

and let Ẑ(n,k), Ŵ(n,k) be the analogues of Ẑ(n), Ŵ(n), but defined from ξ̂
(k)
n and the same

random walk S. Let P′ denote the joint law of ξ′, ξ and S. Then

∆
(n)
k = E′

[
F
(
Ŵ(n)

)
− F

(
Ŵ(n,k)

)∣∣∣Gk] P-a.s. (5.21)

Recalling (5.15) and (2.3), we see that

sup
t∈[0,T ]

|Ŵ(n)
t − Ŵ(n,k)

t | ≤
√
n log n

−1
sup

1≤m≤bnTc+1

|ξ̂n(xk)− ξ̂′n(xk)|Nm(xk)

=
√
n log n

−1
|ξ̂n(xk)− ξ̂′n(xk)|NbnTc+1(xk). (5.22)

Therefore, by (5.21), the Lipschitz property of F and Lemma 4.1(i), we have

|∆(n)
k | ≤ C

MnE
[
NbnTc+1(xk)

]
√
n log n

≤ C log(nT + 1)

(log n)
γ+1
2

≤ C

(log n)χ/4
P-a.s., (5.23)

and also

E
[
|∆(n)

k |
2
∣∣∣Gk−1] ≤ CE′

[
E′
[
|ξ̂n(xk)− ξ̂′n(xk)|

∣∣∣Gk]2∣∣∣∣Gk−1]E [NbnTc+1(xk)
]2

n log n

≤ C
E′
[
|ξ̂n(xk)− ξ̂′n(xk)|2

]
E
[
NbnTc+1(xk)

]2
n log n

≤ C
E
[
NbnTc+1(xk)

]2
n log n

P-a.s., (5.24)

ECP 19 (2014), paper 3.
Page 7/9

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3002
http://ecp.ejpecp.org/


Quenched CLT for planar random walks in random sceneries

where for the second line we used the Cauchy-Schwarz inequality. By (5.24) and
Lemma 4.1(ii), we have

∞∑
k=1

E
[
|∆(n)

k |
2
∣∣∣Gk−1] ≤ C bnT c+ 1

n log n
≤ C

log n
P-a.s. (5.25)

Therefore, by Bernstein’s inequality for martingales (see e.g. Theorem 1.2A in [28]), for
any ε > 0,

P

(∣∣∣∣∣
∞∑
k=1

∆
(n)
k

∣∣∣∣∣ > ε

)
≤ exp

{
−C ε2

(log n)−1 + ε(log n)−χ/4

}
≤ exp

{
−C(log n)1∧χ/4

}
, (5.26)

which is summable along bn for any b > 1; thus, by the Borel-Cantelli lemma, (5.16)
holds.
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