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Abstract

We show that in the Schrödinger point process, Schτ , τ > 0, the probability of having
no eigenvalue in a fixed interval of size λ is given by

exp

(
−λ

2

4τ
+

(
2

τ
− 1

4

)
λ+ o(λ)

)
,

as λ→∞. It is a slightly more precise version of the formula given in a previous work.
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1 Introduction

For τ > 0, we consider the Schrödinger point process, Schτ as introduced in [3]. For
a, b ∈ R, let Schτ [a, b] be the number of points of Schτ in the interval [a, b]. We define

Eτ (0, λ) = P (Schτ [0, λ] = 0) .

We want to compute the asymptotics of Eτ (0, λ) as λ → ∞. An asymptotic of this
probability was computed in [3] and is given by:

Eτ (0, λ) = exp

(
−λ

2

4τ
+ o(λ2)

)
,

as λ → ∞. Our aim in this paper is to compute the asymptotics of Eτ (0, λ) to the next
order. We will be proving the following theorem:

Theorem 1.1. As λ→∞,

Eτ (0, λ) = exp

(
−λ

2

4τ
+

(
2

τ
− 1

4

)
λ+ o(λ)

)
. (1.1)
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Large gaps asymptotics for the 1-dimensional random Schrödinger operator

For τ > 0, let us first introduce the Schτ point process. We follow the description of
[3]. Consider the family of SDE’s,

dφλ(t) = λdt+ dB(t) + <
(
e−iφ

λ

dW (t)
)
, φλ(0) = 0,

coupled together for all values of λ ∈ R, where B and W are standard real and complex
Brownian motions respectively. By Corollary 4, [3], this SDE has a unique strong solution
and for each time t, the function λ→ φλ(t) is strictly increasing and real-analytic with
probability one. We define Schτ as follows:

Schτ :=
{
λ : φλ/τ (τ) ∈ 2πZ

}
.

Let αλ(t) = φλ(t)− φ0(t). Then αλ satisfies

dαλ(t) = λdt+ <
[(
e−iα

λ

− 1
)
dZ(t)

]
, αλ(0) = 0 (1.2)

where Z is a complex Brownian motion with dZ(t) = e−iφ
0

dW (t). For a fixed λ ∈ R, this
can be rewritten as,

dαλ(t) = λdt+
√

2 sin

(
αλ

2

)
dB(t), αλ(0) = 0. (1.3)

Then the following events are the same {Schτ [0, λ] = 0} =
{
αλ/τ (τ) < 2π

}
. We will find

it convenient to remove the dependance in αλ in front of the Brownian motion. For
this, we make the change of variables X̃λ = log

[
tan

(
αλ/4

)]
, which is well-defined for

αλ ∈ (0, 2π). It satisfies the following SDE,

dX̃λ(t) =
λ

2
cosh(X̃λ)dt+

1

4
tanh(X̃λ)dt+

1√
2
dB(t), X̃λ(0) = −∞. (1.4)

Now we make a change of time variable by setting Xλ(t) = X̃λ(2t). It satisfies the
following SDE,

dXλ(t) = λ cosh(Xλ)dt+
1

2
tanh(Xλ)dt+ dB(t), Xλ(0) = −∞. (1.5)

Then,

{Schτ [0, λ] = 0} =
{
Xλ/τ (τ/2) <∞

}
.

For convenience, we will simply write X when we refer to Xλ/τ . Thus,

Eτ (0, λ) = E [1 (X(t) finite on [0, τ/2])]

In order to prove Theorem 1.1, we will follow a similar method to [5]. In [5], the authors
compute the large gaps asymptotics of the Sineβ process, β > 0, the point process limit
of the bulk eigenvalue of β-ensemble of random matrices. Their result is that

P (Sineβ [0, λ] = 0) = (κβ + o(1)) exp

(
− β

64
λ2 +

(
β

8
− 1

4

)
λ+ γβ log(λ)

)
as λ→∞, where

γβ =
1

4

(
β

2
+

2

β
− 3

)
, κβ > 0.

For β > 0, the Sineβ process (or Brownian Carousel) can be introduced as follows.
We consider the strong solution of the following coupled one-parameter family of SDE

dαλ(t) = λf(t)dt+ <
(

(eiαλ − 1)dZ̃(t)
)
, αλ(0) = 0
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Large gaps asymptotics for the 1-dimensional random Schrödinger operator

where Z̃ is a complex Brownian motion and f(t) = (β/4) exp (−(β/4)t) . For a single λ,
this reduces to

dαλ(t) = λf(t)dt+ 2 sin

(
αλ(t)

2

)
dW (t), αλ(0) = 0. (1.6)

In [4], it is shown that the quantity

lim
t→∞

αλ(t)

2π
,

exists for every λ and is equal to an integer a.s. We define N(λ) as the unique random
right-continuous function which agrees with for every λ a.s. For λ1 < λ2, we have
N(λ1) < N(λ2) a.s. N(λ) is just the counting function of the Sineβ process, giving the
number of point of the process in an interval of lenght λ.

We set Z = log [tan (αλ/4)] . Then Z satisfies

dZ(t) = λf(t) cosh(Z)dt+
1

2
tanh(Z)dt+ dB(t), Z(0) = −∞. (1.7)

Observe that our SDE (1.5) and (1.7) are very similar, except that in our case, we have
f(t) = (2/τ)1[0,τ/2](t).
Our main tool to prove Theorem 1.1 will be the Cameron-Martin-Girsanov formula, which
allows one to compare the measure on paths given by two diffusions. If we knew the
conditional distribution of the diffusion X under the event that it does not blow up before
time τ/2, then we could use the Cameron-Martin-Girsanov formula to compute Eτ (0, λ)

explicitely. While we cannot do this, the next best option is to find a new diffusion Y

which approximates this conditional distribution. The next section gives the statement
of the Girsanov theorem we will be using.

2 The Cameron-Martin-Girsanov formula

We will use the same version of the Girsanov formula than the one introduced in [5].

Proposition 2.1. Consider the following stochastic differential equations:

dX(t) = g(t,X)dt+ dB(t), lim
t→0

X(t) = −∞, (2.1)

dY (t) = h(t, Y )dt+ dB̃(t), lim
t→0

Y (t) = −∞ (2.2)

on the interval (0, T ] where B, B̃ are standard Brownian motions. Assume that (8) has a
unique solution X in law taking values in (−∞,∞]. Let

Gs = Gs(X) =

∫ s

0

(h(t,X)− g(t,X)) dX − 1

2

∫ s

0

(
h(t,X)2 − g(t,X)2

)
dt (2.3)

and assume that:
(A) g2 − h2 and g − h are bounded when x is bounded above. (Then Gs is almost surely
well defined when Xs is finite.)
(B) Gs is bounded above by a deterministic constant.
(C) Gs → ∞ when s ↑ S if X hits +∞ at time S. In this case, we define Gs := −∞ for
s ≥ S. Consider the process Ỹ whose density with respect to the distribution of the
process Xis given by eGT . Then, Ỹ satisfies the second SDE (9) and never blows-up
to +∞ almost surely. Moreover, for any nonnegative function F of the path of X that
vanishes when X blows up we have

E [F (X)] = E
[
F (Y )e−GT (Y )

]
. (2.4)

The proof of Proposition 2.1 is given in [5].
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3 Construction of the diffusion Y

In this section, we construct a diffusion Y which approximates the conditional
distribution of X under the event that it does not explode before time τ/2. We will
construct a drift function h(x) for which the diffusion Y ,

dY (t) = h(Y )dt+ dB̃(t), Y (0) = −∞ (3.1)

is well defined, a.s, finite for t ≤ τ/2 and with Radon-Nikodym derivative eGτ/2 with Gτ/2
as in Proposition 2.1.

Lemma 3.1. For the diffusion Xλ/τ (which we simply denote X), and T = τ/2, there
exists a function h(x) so that conditions (A)-(C) of Proposition 2.1 hold, and Gτ/2 has the
following form:

−Gτ/2 = −λ
2

4τ
− λ

4
+

τ

16
+

3

2
log(2) + 2X(τ/2)+ +

λ

τ
eX(τ/2)

+ ω1 (X(τ/2)) + ω2 (X(τ/2)) +

∫ τ/2

0

Φ(X(s))ds,

where ω1, ω2,Φ are continuous with

ω1(x) =
1

2
log (cosh(x)) + log (cosh(x/2))− |x|,

and there exists C1, C2 > 0 such that

‖ω2‖∞ ≤
C1

λ
, ‖Φ‖∞ ≤

C2

λ
.

Also,

h(x) = −λ
τ

sinh(x)− 1− 1

2
tanh

(x
2

)
+ h4(x)

with h4 continuous and such that there exists c > 0, with ‖h4‖∞ < c/λ.

Proof. In order to construct the function h, we follow [5]. We will use

−Gs(X) =

∫ s

0

(g(t,X)− h(t,X)) dX +
1

2

∫ s

0

(
h(t,X)2 − g(t,X)2

)
dt

where

g = g1 + g2, g1(x) =
λ

τ
cosh(x), g2(x) =

1

2
tanh(x).

Our goal is to find the appropriate drift term h in a way that the diffusion Y will
approximate the conditional distribution of X given that is does not blow up in the
interval [0, τ/2]. We will do this term by term starting with the highest order; we write
h = h1 + h2 + h3 + h4. We set

h1(x) = −λ
τ

sinh(x),

as it yields the nice cancellation,

h21 − g21 =

(
λ

τ

)2

sinh2(x)−
(
λ

τ

)2

cosh2(x) = −
(
λ

τ

)2

.

The contribution to the drift terms h1 and g1 to the stochastic integral part of −Gs is
given by, ∫ s

0

(g1 − h1) dX =
λ

τ

∫ s

0

eXdX.
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We will use Ito’s formula to evaluate integrals with respect to dX. Let b be a continuously
differentiable function and denote by b̃ its antiderivative. We have,

b(X)dX = d
(
b̃(X)

)
− 1

2
b′(X)dt (3.2)

Thus, by applying (3.2), we have

λ

τ

∫ s

0

eXdX =
λ

τ
eX(s) − λ

2τ

∫ s

0

eX(t)dt. (3.3)

We choose h2 so that the integral term in the right-hand side of (3.3) simplifies, that is
h2 such that h1h2 = − λ

2τ (1− ex). This gives,

h2(x) = −1

2

(
1 + tanh

(x
2

))
We now choose h3 so that h1h3 = g1g2, that is,

h1h3 = g1g2 =
λ

τ
cosh(x)

1

2
tanh(x),

which leads to h3 = − 1
2 . Thus,

−Gs =
λ

τ
eX(s) − 1

2

(
λ

τ

)2

s− λ

2τ
s

+
1

2

∫ s

0

{
2h1h4 + (h2 + h3 + h4)

2 − g22
}
dt

−
∫ s

0

h4dX +

∫ s

0

(g2 − h2 − h3) dX.

Let u = g2 − h2 − h3 = 1 + 1
2 tanh(x) + 1

2 tanh(x/2). Then by Ito’s formula,

u(X)dX = d (ũ(X))− 1

2
u′(X)dt

where

u′(x) =
1

2

1

cosh2(x)
+

1

4

1

cosh2(x2 )
, ũ(x) = x+

1

2
log (cosh(x)) + log

(
cosh

(x
2

))
.

Also,

lim
x→−∞

ũ(x) = −3

2
log(2).

Thus,∫ s

0

u(X)dX = ũ (X(s)) +
3

2
log(2)− 1

4

∫ s

0

(
1

cosh2 (X(s))
+

1

2

1

cosh2 (X(s)/2)

)
dt

= ũ (X(s)) +
3

2
log(2)− 3

8
s+

1

4

∫ s

0

(
tanh2 (X(s)) +

1

2
tanh2 (X(s)/2)

)
dt

(3.4)

Then,

−Gs = −1

2

(
λ

τ

)2

s− λ

2τ
s+

1

8
s

+
λ

τ
eX(s) + ũ (X(s)) +

3

2
log(2)

+
1

2

∫ s

0

{
2h1h4 + 2 (h2 + h3)h4 + h24

}
dt

−
∫ s

0

h4dX +

∫ s

0

η (X(t)) dt.
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The coefficient 1/8 in front of s in the first line in the expression above come from the
−3/8 in front of s in (3.4) and the constant term in (h2 + h3)2/2. The term η collects the
integrand in (3.4), the terms (h2 + h3)2/2 with the constant term removed and −g22/2.
Explicitly, we have

η(x) =
1

4
tanh(x/2)2 +

1

8
tanh(x)2 +

1

2
tanh(x/2).

We choose h4 so that h1h4 = −η, that is

h4 =
τ

λ

η

sinh(x)
.

By Ito’s formula,

−
∫ s

0

h4dX = −h̃4 (X(s)) +
1

2

∫ s

0

∂xh4dt.

where −h̃4 is the antiderivative of h4. Thus,

−Gs = −1

2

(
λ

τ

)2

s− λ

2τ
s+

1

8
s

+
λ

τ
eX(s) + ũ (X(s)) +

3

2
log(2)

+
1

2

∫ s

0

{
2 (h2 + h3)h4 + h24 + ∂xh4

}
dt− h̃4 (X(s)) .

Using the fact that log cosh(x)− |x| is bounded, one can rewrite the second line of −Gs
as follows:

2X(s)+ +
λ

τ
eX(s) + ω1 (X(s)) +

3

2
log(2)

where ω1(x) = 1
2 log (cosh(x)) + log (cosh(x/2))− |x| and so is bounded.

We now plug s = τ/2 to get,

−Gτ/2 = −λ
2

4τ
− λ

4
+

τ

16

+ 2X(τ/2)+ +
λ

τ
eX(τ/2) + ω1 (X(τ/2)) +

3

2
log(2)

+
1

2

∫ τ/2

0

{
2 (h2 + h3)h4 + h24 + ∂xh4

}
dt− h̃4 (X(τ/2)) .

We now need to check that that the proposed choice for h satisfies conditions (A)-(C)
from Proposition 2.1. First, observe that h2, h3, h4, h̃4, ∂xh4 are all bounded above by an
absolute constant and in particular there is a 1/λ coefficient in front of h4, h̃4, ∂xh4. This
implies that we can write the third line of Gs

ω2 (X(τ/2)) +

∫ τ/2

0

Φ (X(s)) ds

with ω2 = −h̃4 and∫ τ/2

0

Φ (X(s)) ds =
1

2

∫ τ/2

0

{
2 (h2 + h3)h4 + h24 + ∂xh4

}
dt

and that there exists C1, C2 > 0 such that

‖ω2‖∞ ≤
C1

λ
, ‖Φ‖∞ ≤

C1

λ
.
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We now need to check that the conditions (A)-(C) of Proposition 2.1 are satisfied. We
proceed as in [5].

Condition (A): As x→ −∞, one can write

g(x) =
λ

2τ
e−x − 1

2
+ ĝ(x), h(x) =

λ

2τ
e−x − 1

2
+ ĥ(x)

where |ĝ| ≤ Cex and |ĥ| ≤ C ′ex for some positive constants C and C ′. Thus, g − h and
g2 − h2 are both bounded if x is bounded above.

Condition (B): The first and third line in −Gτ/2 are both bounded as well as ω1 in the
second line. Thus, we only need to show that

2X(s)+ +
λ

τ
eX(s)

is bounded from below by a constant only depending on λ and τ , which is obvious. Thus
Gs is bounded from above by a constant (depending only on λ and τ ).

Condition (C): As s ↑ S, the time when X reaches∞, we have that

2X(s)+ +
λ

τ
eX(s)

goes to∞ while the other terms in Gs are bounded. Thus, Gs → −∞.

4 Proof of Theorem 1.1

Recall that
P (Schτ [0, λ] = 0) = E [1 (X(t) finite on [0, τ/2])] .

We consider the diffusion Y given by the SDE (3.1) with a drift function h(x) as in Lemma
3.1. That is Y satisfies the following SDE:

dY (t) =

(
−λ
τ

sinh (Y )− 1− 1

2
tanh

(
Y

2

)
+ h4(Y )

)
dt+ dB(t), Y (0) = −∞

where there exists c > 0 such that ‖h4‖∞ ≤ c/λ. We apply Proposition 2.1 with F (X) =

1 (X finite on [0, τ/2]) . Then,

P (Schτ [0, λ] = 0) = exp

(
−λ

2

4τ
− λ

4
+

τ

16
+

3

2
log(2)

)
× E [exp (Ψ(Y ))] (4.1)

where

Ψ(Y ) = 2Y (τ/2)+ +
λ

τ
eY (τ/2) + ω1 (Y (τ/2)) + ω2 (Y (τ/2)) +

∫ τ/2

0

Φ (Y (s)) ds.

Since there exists C1, C2 > 0 such that ‖ω2‖∞ < C1/λ, and ‖Φ‖∞ < C2/λ, we can find
C > 0 such that ∣∣∣∣∣ω2 (Y (τ/2)) +

∫ τ/2

0

Φ (Y (s)) ds

∣∣∣∣∣ < C

λ
. (4.2)

Our aim is to evaluate E [exp (Ψ(Y ))] as λ→∞. We will prove the following lemma.

Lemma 4.1. As λ→∞,

E [exp (Ψ(Y ))] ∼ exp

(
2

τ
λ+ o(λ)

)
.

EJP 19 (2014), paper 82.
Page 7/12

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2724
http://ejp.ejpecp.org/


Large gaps asymptotics for the 1-dimensional random Schrödinger operator

This lemma, combined with (4.1) proves Theorem 1.1. In order to prove the lemma we
will bound Y above and below in order to get upper and lower bounds on E [exp (Ψ(Y ))] .

For the upper bound, we will bound Y above by the stationary solution of an SDE whose
drift is very close to the one of Y. This will give a very precise upper bound which we
think is actually the full asymptotics (up to the constant term) for P (Schτ [0, λ] = 0).
Unfortunately, this method cannot be applied for the lower bound. For the lower bound
we will bound Y below by the (random) solution of an ODE. This will give a less precise
asymptotics but good enough to get the exp(2τ/λ) that we need. Observe that we could
have used a similar method for the upper bound but we chose to proceed differently
as the bound obtained is more precise and likely to be the full asymptotics up to the
constant term.
Proof of Lemma 4.1:

Upper Bound Consider,

dY1(t) =

(
−λ
τ

sinh (Y1)− 1− 1

2
tanh

(
Y1
2

)
+
c

λ

)
dt+ dB(t).

If we drive Y1 and Y with the same Brownian motion and consider Y1 started from its
stationary distribution, then, since Y (0) = −∞ < Y1(0) and the drift of Y1 is greater than
the drift of Y we have that

Y (t) ≤ Y1(t), for all t ≥ 0.

Now, let us compute the stationary distribution for Y1. The adjoint of the infinitesimal
generator of Y1 is given by

A∗pλ(t, y) = − ∂

∂y

[(
−λ
τ

sinh (y)− 1− 1

2
tanh(y/2) +

c

λ

)
pλ(t, y)

]
+

1

2

∂2

∂y2
pλ(t, y).

The stationary distribution of Y1 satisfies ∂/∂t (pλ(t, y)) = 0 and A∗pλ(t, y) = 0. So,

pλ(t, y) = pλ(y) = K(λ) exp

(
−2λ

τ
cosh(y)− 2y − 2 log (cosh(y/2)) +

2c

λ
y

)
where K(λ) is a constant such that ∫ ∞

−∞
pλ(y) = 1.

We would like to asymptotically evaluate K(λ). Now,

1

K(λ)
=

∫ ∞
−∞

exp

(
−2λ

τ
cosh(y)− 2y − 2 log (cosh(y/2)) +

2c

λ
y

)
dy.

we will use Lemma 5.1 from Appendix A. We can neglect the term Cy/λ in the exponential.
We call I(λ) the integral above (after the term cy/λ has been removed). We set g(y) =

(2/τ) cosh(y) and h(y) = exp (−2 log (cosh(y/2))− 2y) . The minimum of g is attained at 0

and g(0) = 2/τ, g′(0) = 0, g′′(0) = 2/τ > 0 and h(0) = 1 6= 0. Thus, by Lemma 5.1

I(λ) = exp

(
−2

τ
λ

)√
πτ

λ
(1 + o(1)) , (4.3)

that is,

K(λ) = exp

(
2

τ
λ

)√
λ

πτ
(1 + o(1)) ,
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Using (4.2) and the fact that x→ 2x+ + (λ/τ)ex + ω1(y) is strictly increasing, we have
that

E [exp (Ψ(Y ))] ≤ E
[
exp

(
2Y1(τ/2)+ +

λ

τ
eY1(τ/2) + ω1(Y1(τ/2))

)]
exp

(
C

λ

)
. (4.4)

Now,

E

[
exp

(
2Y1(τ/2)+ +

λ

τ
eY1(τ/2) + ω1(Y1(τ/2))

)]
=

K(λ)

∫ ∞
−∞

exp

(
2y+ +

λ

τ
exp(y) +

1

2
log (cosh(y)) + log

(
cosh

(y
2

))
− |y|

)
× exp

(
−2λ

τ
cosh(y)− 2y − 2 log

(
cosh

(y
2

))
+

2c

λ
y

)
dy

= K(λ)

∫ ∞
−∞

exp

(
−λ
τ

exp(−y) +
1

2
log (cosh(y))− log

(
cosh

(y
2

))
− y +

2c

λ
y

)
dy

since 2y+− |y| − 2y = −y. Now, we can neglect the term in cy/λ in the exponential above
and so we write

E

[
exp

(
2Y1(τ/2)+ +

λ

τ
eY1(τ/2) + ω1(Y1(τ/2))

)]
= K(λ)J(λ) (4.5)

with

J(λ) =

∫ ∞
−∞

exp

(
−λ
τ

exp(−y) +
1

2
log (cosh(y))− log

(
cosh

(y
2

))
− y
)
.

We make the following change of variables: u = exp(−y). Then,

J(λ) = exp

(
1

2
log(2)

)∫ ∞
0

exp

(
−λ
τ
u

) √
u2 + 1

u+ 1
du.

We set g(u) = −u/τ and h(u) =
√
u2 + 1/(u+1). We have g′(u) = −1/τ 6= 0. The maximum

is attained in 0 with g(0) = 0, h(0) = 1. Thus, by Lemma 5.2,

J(λ) ∼ exp

(
1

2
log(2)

)
τ

λ
(1 + o(1)) .

Thus,

E

[
exp

(
2Y1(τ/2)+ +

λ

τ
eY1(τ/2) + ω1(Y1(τ/2))

)]
≤ exp

(
2

τ
λ

)
exp

(
1

2
log(2)

)√
τ

πλ
(1 + o(1))

(4.6)

Lower Bound For the lower bound, we are going to bound Y stochastically below
by the (random) solution of an ODE. We know that ‖h4‖∞ ≤ c/λ for some c > 0. Thus,
−1 − (1/2) tanh(y/2) + h4(y) ≥ −(3/2) − c/λ. Since, eventually we will let λ → ∞, one
can choose λ large enough so that −(3/2)− c/λ ≥ −2. Then Z2 ≤ Y where

dZ2(t) =

(
−λ
τ

sinh(Z2)− 2

)
dt+ dB(t), Z2(0) = −∞.

Let U2 = Z2 −B. Then,

dU2(t) =

(
−λ
τ

sinh (U2 +B)− 2

)
dt, U2(0) = −∞.
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Thus Y ≥ U2 +B. By definition, for t ∈ [0, τ/2], the process Y −B lies above the (random)
solution of the differential equation

y′(t) =

(
−λ
τ

sinh (y(t) +M)− 2

)
dt, y(0) = −∞

where M = sups∈[0,τ/2]B(s). This differential equation admits almost surely a unique
solution which satisfies: ∣∣∣∣ey(t)+M − u1ey(t)+M − u2

∣∣∣∣ =

∣∣∣∣u1u2
∣∣∣∣ exp

(
−λ
√

∆

τ
t

)
(4.7)

where

u1 = −4τ

λ
+
√

∆, u2 = −4τ

λ
−
√

∆, ∆ =

(
4τ

λ

)2

+ 4.

Thus, for all t ∈ [0, τ/2], we have (after Taylor expansion for large λ)

y(t) =

{
ln(2)−M + 2e−2λt/τ + o

(
e−2λt/τ

)
if y(t) +M ≥ ln(u1),

ln(2)−M − 2e−2λt/τ + o
(
e−2λt/τ

)
if y(t) +M ≤ ln(u1).

By definition, Y (τ/2) ≥ B(τ/2) + y(τ/2). Thus, we obtain that

Y
(τ

2

)
≥ ln(2) +B

(τ
2

)
−M − ε(λ)

where ε(λ) > 0 and ε(λ) → 0 as λ → ∞. Now, we know that the probability density
function of the random variable U = M −B(τ/2) is given by

fU (x) =
2√
πτ

exp

(
−x

2

τ

)
1{x≥0}.

Using (4.2) and the fact that x→ 2x+ + (λ/τ)ex + ω1(y) is strictly increasing, we have

E

[
exp

(
λ

τ
eln(2)−U−ε(λ) + ω1(ln(2)− U − ε(λ))

)]
exp

(
−C
λ

)
≤ E [exp (Ψ(Y ))] . (4.8)

Moreover, ω1(x) = (1/2) log (cosh(x)) + log
(
cosh

(
x
2

))
− |x| ≥ −|x|. Thus,

ω1 (ln(2)− U − ε(λ)) ≥ −| ln(2)− U − ε(λ)| ≥ − ln(2)− |U | − ε(λ).

Thus,

E

[
exp

(
2

τ
λe−Ue−ε(λ)

)]
exp

(
−C
λ
− ln(2)− ε(λ)

)
≤ E [exp (Ψ(Y ))] .

Now,

E

[
exp

(
2

τ
λe−Ue−ε(λ)

)]
=

∫ ∞
−∞

exp

(
2

τ
λe−xe−ε(λ)

)
fU (x)dx.

One can neglect the term e−ε(λ) ∼ 1 as λ is large, in the integral above. Thus, let

L(λ) =

∫ ∞
−∞

exp

(
2

τ
λe−x

)
fU (x)dx =

∫ ∞
0

2√
πτ

exp

(
2

τ
λe−x

)
exp

(
−x

2

τ

)
dx

Then,

L(λ) ≥
∫ 10

0

2√
πτ

exp

(
2

τ
λe−x

)
exp

(
−x

2

τ

)
dx = N(λ).
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Let g(x) = exp(−x). On the interval [0, 10], g attains its maximum at 0 with g(0) = 1 and

g′ 6= 0. Let h(x) = (2/
√
πτ) exp

(
−x

2

τ

)
. Then h(0) = 2√

πτ
. Thus by Lemma 5.2,

N(λ) ∼ 2

λ
√
πτ

exp

(
2

τ
λ

)
(1 + o(1))

Thus, combining this and (4.6) we obtain that

E [exp (Ψ(Y ))] ∼ exp

(
2

τ
λ+ o(λ)

)
,

as λ→∞, as required. This completes the proof.

Remark 4.2. We believe that the RHS of the expression (4.6) combined with (4.1) is the
full asymptotics up to the constant term of P (Schτ [0, λ] = 0) and that

P (Schτ [0, λ] = 0) = (κτ + o(1)) exp

(
−λ

2

4τ
+

(
2

τ
− 1

4

)
λ− 1

2
log(λ)

)
, (4.9)

as λ→∞, where κτ = 22 exp(τ/16)
√
τ/π.

Remark 4.3. Comparison of Sineβ with Schτ .
Recall that, for β > 0,

P (Sineβ [0, λ] = 0) = (κβ + o(1)) exp

(
− β

64
λ2 +

(
β

8
− 1

4

)
λ+ γβ log(λ)

)
as λ→∞, where

γβ =
1

4

(
β

2
+

2

β
− 3

)
, κβ > 0,

and that for τ > 0,

P (Schτ [0, λ] = 0) = exp

(
−λ

2

4τ
+

(
2

τ
− 1

4

)
λ+ o(λ)

)
,

as λ → ∞. If we take β = 16/τ, then we get the same leading terms in front of λ2

and λ for both Sineβ with Schτ . We believe however (from the heuristic expression
given by (4.9) that the term in front of ln(λ) would differ in both expressions which is
probably due to how strongly the function f(t) decays. We recall that in the case of
Sineβ , f(t) = (β/4) exp (−(β/4)t) and for the Schτ process, f(t) = (2/τ)1[0,τ/2](t).

5 Appendix A: The Laplace Method for approximating integrals

Lemma 5.1. Consider an integral of the form

I(λ) =

∫ b

a

h(x)e−λg(x)dx, a, b ∈ R ∪ {−∞,∞}

where f : [a, b]→ R and g : [a, b]→ R are smooth functions.

• If g has strict minimum over [a,b] at an interior critical point c such that g′(c) =

0, g′′(c) > 0 and h(c) 6= 0 then

I(λ) ∼ e−λg(c)h(c)

√
2π

λg′′(c)
(1 + o(1)), as λ→∞.
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• If g has its minimum over [a,b] at an end point (say x=a) with g′(a) = 0, g′′(a) > 0

and h(a) 6= 0 then

I(λ) ∼ e−λg(a)h(a)

√
π

2λg′′(a)
(1 + o(1)), as λ→∞.

Lemma 5.2. Consider an integral of the form

I(λ) =

∫ b

a

h(x)eλg(x)dx, a, b ∈ R ∪ {−∞,∞}

where f : [a, b] → R and g : [a, b] → R are smooth functions. Suppose that g′(x) 6= 0 in
[a, b]. Then g has no local maximums in [a, b] so the absolute maximum must occur at an
endpoint.

• If the maximum is attained at x = a, then, provided h(a) 6= 0,

I(λ) ∼ − h(a)

λg′(a)
eλg(a)(1 + o(1)), as λ→∞.

• If the maximum is attained at x = b, then, provided h(b) 6= 0,

I(λ) ∼ h(b)

λg′(b)
eλg(b)(1 + o(1)), as λ→∞.
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