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Abstract

This note sharpens the smoothing inequality of Giacomin and Toninelli [7], [8] for
disordered polymers. This inequality is shown to be valid for any disorder distribu-
tion with locally finite exponential moments, and to provide an asymptotically sharp
constant for weak disorder. A key tool in the proof is an estimate that compares the
effect on the free energy of tilting, respectively, shifting the disorder distribution.
This estimate holds in large generality (way beyond disordered polymers) and is of
independent interest.
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1 Introduction and main results

Understanding the effect of disorder on phase transitions is a key topic in statistical
physics. In a celebrated paper, Harris [9] proposed a criterion that predicts whether or
not the addition of an arbitrarily small amount of quenched disorder is able to modify
the critical behavior of a system close to a phase transition. The rigorous justification
of this criterion for a class of pinning models has been an active direction of research
in the mathematical literature (see Giacomin [6] for an overview). One of the key tools
in this program is the smoothing inequality of Giacomin and Toninelli [7], [8]. It is the
purpose of this note to generalize and sharpen this inequality.

Section 1.1 provides motivation, Section 1.2 states the necessary model assump-
tions, Section 1.3 defines the free energy, Section 1.4 states our main theorems, while
Section 1.5 discusses the context of these theorems. Proofs are given in Sections 2–4.

1.1 Motivation

We begin by describing a class of models that motivates our main results in Sec-
tion 1.4. We use the notation N := {1, 2, . . .} and N0 := N ∪ {0}.

Consider a recurrent Markov chain S := (Sn)n∈N0
on a countable set E, starting

at a distinguished point denoted by 0, defined on a probability space (Ω,F ,P), and let
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Smoothing inequality for disordered polymers

τ1 := inf{n ∈ N : Sn = 0} be its first return time to 0. The key assumption is that for
some α ∈ [0,∞),

P(τ1 > n) = n−α+o(1), n→∞. (1.1)

The case of a transient Markov chain, i.e., P(τ1 =∞) > 0, can be included as well, and
requires that (1.1) holds conditionally on {τ1 <∞}.

Given an R-valued sequence ω := (ωn)n∈N (the disorder sequence), a function
ϕ : E → R (the potential ), and parameters N ∈ N, β ≥ 0, h ∈ R (the system size,
the disorder strength and the disorder shift), we define the partition function

Zω,ϕN,β,h = E
[
e
∑N
n=1(h+βωn)ϕ(Sn) 1{SN=0}

]
∈ [0,∞], (1.2)

i.e., at each time n the Markov chain gets an exponential reward or penalty proportional
to h+βωn, modulated by a factor ϕ(Sn). The sequence ω is to be thought of as a typical
realization of a random process. Note that

• the choice ϕ(x) := 1{0}(x) corresponds to the pinning model (see Giacomin [5],
[6], den Hollander [10]);

• when E = Z and S is nearest-neighbor with symmetric excursions out of 0, the
choice ϕ(x) := 1(−∞,0](x) corresponds to the copolymer model (see [5], [10]);1

Thus, the modulating potential ϕ allows us to interpolate between different classes of
models. The model where S is simple random walk on Zd and ϕ(x) ≈ |x|−ϑ as |x| → ∞
for some ϑ ∈ (0,∞) is currently under investigation (Caravenna and den Hollander [4]).

1.2 Assumptions

Although our main focus will be on the model in (1.2), we list the assumptions that
we actually need. We start with the disorder.

Assumption 1.1 (The disorder). The disorder ω = (ωn)n∈N is an i.i.d. sequence of
R-valued random variables, defined on a probability space (Ω′,F ′,P), such that

∃ t0 ∈ (0,∞] : M(t) := E
[
etω1

]
<∞ ∀ |t| < t0, (1.3)

E[ωn] = 0, Var(ωn) = 1.

The crucial assumption is that the disorder distribution has locally finite exponential
moments. The choice of zero mean and unit variance is a convenient normalization only
(since we can play with the parameters β and h).

For δ ∈ (−t0, t0), we denote by Pδ the tilted law under which ω = (ωn)n∈N is i.i.d.
with marginal distribution

Pδ(ω1 ∈ dx) := eδx−log M(δ)P(ω1 ∈ dx). (1.4)

Next we state our assumptions on the partition function ZN,ω,β,h we will be able to
handle, defined for N ∈ N, β ≥ 0, h ∈ R and P-a.e. ω ∈ RN (keeping in mind (1.2) as a
special case).

Assumption 1.2 (The partition function [I]). ZN,ω,β,h is a measurable function defined
on N×RN × [0,∞)×R, taking values in [0,∞) and satisfying the following conditions:

1. ZN,ω,β,h is a function of N and of (h+ βωn)1≤n≤N .

1The standard copolymer model is actually defined through a bond interaction: ϕ(Sn) is replaced by
ϕ(Sn−1, Sn) := 1(−∞,0](

1
2
[Sn−1 + Sn]), and (β, h) by (−2λ,−2λh). This can be still cast in the framework

of (1.2) by picking E = Z2, taking the pair process (Sn−1, Sn) as the Markov chain, and (0, 0) as 0.
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2. ZN+M,ω,β,h ≥ ZN,ω,β,h ZM,ϑNω,β,h for all N,M ∈ N, where ϑ is the left-shift acting
on ω, i.e., (ϑNω)n := ωN+n for N ∈ N.

3. There exists a γ ∈ (0,∞) such that, for N in a subsequence of N,

ZN,ω,β,h ≥
cβ,h(ω)

Nγ
with Eδ[log cβ,h(ω)] > −∞ ∀ δ ∈ (−t0, t0). (1.5)

Remark 1.3. Note that properties (1) and (2) are satisfied for the model in (1.2). For
property (3) to be satisfied as well, we need to make additional assumptions on ϕ and/or
S. For instance, for the pinning model property (3) holds with γ = (1 + α) + ε, for any
fixed ε > 0 (and for a suitable choice of cβ,h(ω) = cεβ,h(ω)), which follows from (1.1) after

restricting the expectation in (1.2) to the event {τ1 = N}. Alternatively, when E = Zd,
if ϕ vanishes in a half-space and S is symmetric (as for the copolymer model), property
(1.5) with γ = (1 + α) + ε again follows from (1.1).

As a matter of fact, properties (1) and (2) are rather mild: they are satisfied for many
(1 +d)-dimensional directed models (possibly after a minor modification of the partition
function that does not change the free energy defined below). In contrast, property (3)
is a more severe restriction. Roughly speaking, it says that the disorder can be avoided
at a cost that is only polynomial in the system size.

1.3 Free energy

If Assumptions 1.1 and 1.2 are satisfied, then we can define the free energy

f(β, h; δ) := lim sup
N→∞

1

N
Eδ
[

logZN,ω,β,h
]

(1.6)

for β ≥ 0, h ∈ R, δ ∈ (−t0, t0) when ω is chosen according to Pδ.

Remark 1.4. (a) In the general framework of Assumption 1.2, it may happen that
f(β, h; δ) = ∞ for some values of the parameters. However, for the model in (1.2) we
have f(β, h; δ) <∞ as soon as ϕ is bounded (see (3.4) below).
(b) By the super-additivity property (2) in Assumption 1.2, the lim sup in (1.6) may be re-
placed by sup, or by lim restricted to those values ofN for which Eδ

[
logZN,ω,β,h

]
> −∞,

which by properties (2)–(3) form a sub-lattice tN. By Kingman’s super-additive ergodic
theorem, we may also remove the expectation Eδ in (1.6), because the limit as N →∞,
N ∈ tN, exists and is constant Pδ-a.s.

A direct consequence of (1.5) is the inequality f(β, h; δ) ≥ 0, which is a crucial feature
of the class of models we consider. In many interesting cases, like for pinning and
copolymer models, the free energy is zero in some closed region of the parameter space
and strictly positive in its complement, with both regions having a non-empty interior.
When this happens, the free energy is not an analytic function and the model is said to
undergo a phase transition. It is then of physical and mathematical interest to study
the regularity of the free energy close to the critical curve separating the two regions.

More concretely, consider the case when h 7→ ZN,ω,β,h is monotone (like for the
model in (1.2) when ϕ has a sign), say non-decreasing, so that h 7→ f(β, h; δ) is non-
decreasing as well. Then for every β ≥ 0 there exists a critical value hc(β) ∈ R ∪ {±∞}
such that f(β, h; 0) = 0 for h < hc(β) and f(β, h; 0) > 0 for h > hc(β) (we consider δ = 0 for
simplicity). If h 7→ f(β, h; 0) is continuous as well (as is typically the case by convexity,
like for the model in (1.2)), then f(β, hc(β); 0) = 0 and it is interesting to understand
how the free energy vanishes as h ↓ hc(β). For homogeneous pinning models, i.e., when
β = 0, it is known that

f(0, hc(0) + t; 0) = tmax{ 1
α ,1}+o(1), t ↓ 0. (1.7)
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(See [5, Theorem 2.1] for more precise estimates.) On the other hand, as soon as
disorder is present, i.e., when β > 0, it was shown by Giacomin and Toninelli [7], [8]
that, under some mild restrictions on the disorder distribution,

∃ c ∈ (0,∞) : 0 ≤ f(β, hc(β) + t; 0) ≤ c

β2
t2. (1.8)

Comparing (1.7) and (1.8), we see that when α > 1
2 the addition of disorder has a

smoothing effect on the way in which the free energy vanishes at the critical line.

1.4 Main results

The goal of this note is to generalize and sharpen (1.8), namely, to show that no
assumption on the disorder distribution other than (1.3) is required, and to provide
estimates on the constant c that are optimal in some sense (see below). We will stay in
the general framework of Assumption 1.2, with no mention of “critical lines”.

1.4.1 Tilting

First we prove a smoothing inequality for f(β, h; δ) with respect to the tilt parameter δ
rather than the shift parameter h. Although both tilting and shifting are natural ways
to control the disorder bias, the latter is often preferred in the literature because the
free energy typically is a convex function of the shift parameter h (like for the model in
(1.2)). However, for the purpose of the smoothing inequality the tilt parameter δ turns
out to be more natural.

Theorem 1.5 (Smoothing inequality with respect to a disorder tilt). Subject to Assump-
tions 1.1 and 1.2, if f(β̄, h̄; 0) = 0 for some β̄ > 0 and h̄ ∈ R, then for all δ ∈ (−t0, t0),

0 ≤ f(β̄, h̄; δ) ≤ γ

2
Bδ δ

2 (1.9)

where the constants t0 and γ are defined in (1.3) and (1.5), while

Bδ :=
2

δ

∣∣∣∣(log M)′(δ)− log M(δ)

δ

∣∣∣∣ ∈ (0,∞) satisfies lim
δ→0

Bδ = 1. (1.10)

Remark 1.6. For pinning and copolymer models satisfying (1.1), we can set γ = 1 + α

in (1.9), by Remark 1.3.

Theorem 1.5 is proved in Section 2 through a direct translation of the argument devel-
oped in Giacomin and Toninelli [8]. The proof is based on the concept of rare stretch
strategy, which has been a crucial tool in the study of disordered polymer models since
the papers by Monthus [11], Bodineau and Giacomin [3].

1.4.2 Shifting

Next we consider the effect of a disorder shift. In the Gaussian case, when P(ω1 ∈ ·) =

N(0, 1), tilting is the same as shifting: in fact Pδ(ω1 ∈ ·) = N(δ, 1) and so ωn under Pδ is
distributed like ωn + δ under P. Recalling property (1), we then get

f(β, h; δ) = f(β, h+ βδ; 0) (1.11)

and, since M(δ) = eδ
2/2, it follows from (1.9) that if f(β̄, h̄; 0) = 0 with β̄ > 0, then

0 ≤ f(β̄, h̄+ t; 0) ≤ γ

2β̄2
t2 ∀ t ∈ R. (1.12)
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This is precisely the smoothing inequality with respect to a disorder shift in (1.8), with
an explicit constant (see also Giacomin [5, Theorem 5.6 and Remark 5.7]).

For a general disorder distribution tilting is different from shifting. However, we
may still hope that (1.11) holds approximately. This is what was shown in Giacomin
and Toninelli [7], under additional restrictions on the disorder distribution and with
non-optimal constants. The main result of this note, Theorem 1.8 below, shows that the
effects on the free energy of tilting or shifting the disorder distribution are asymptot-
ically equivalent, in large generality and with asymptotically optimal constants in the
weak interaction limit. Since this result is unrelated to Theorem 1.5 and is of indepen-
dent interest, we formulate it for a very general class of statistical physics models, way
beyond disordered polymer models.

Assumption 1.7 (The partition function [II]). The partition function is defined as

ZN,ω,β,h := EN

[
e
∑N
n=1(h+βωn)σn

]
, (1.13)

where, for fixed N ∈ N, (σi)1≤i≤N are R-valued measurable functions, defined on a
finite measure space (ΩN ,FN ,PN ), that are uniformly bounded, have a sign, say

∃ s0 > 0: PN
({

0 ≤ σi ≤ s0, ∀ 1 ≤ i ≤ N
}c)

= 0 ∀N ∈ N, (1.14)

and satisfy −∞ < lim supN→∞
1
N log PN (ΩN ) <∞.

We emphasize that the σi’s need not be independent, nor exchangeable. A more detailed
discussion on Assumption 1.7 is given below.

We can now state the approximate version of (1.11). The free energy f(β, h; δ) is
again defined by (1.6).

Theorem 1.8 (Asymptotic equivalence of tilting and shifting). Subject to Assump-
tions 1.1 and 1.7, and with ε0 := min{ t02 ,

t0
2s0
} (where s0, t0 are defined in (1.14) and

(1.3)), for all β ∈ [0, ε0) and δ ∈ (−ε0, ε0) there exist 0 < C−β,δ ≤ C
+
β,δ <∞ such that

∀ δ ∈ [0, ε0) : f
(
β, h+ C−β,δ βδ; 0

)
≤ f(β, h; δ) ≤ f

(
β, h+ C+

β,δ βδ; 0
)
, (1.15)

while for δ ∈ (−ε0, 0] the same relation holds with C−β,δ and C+
β,δ interchanged. Moreover,

(β, δ) 7→ C±β,δ is continuous with C±0,0 = 1, and hence

lim
(β,δ)→(0,0)

C±β,δ = 1. (1.16)

Furthermore, δ 7→ C±β,δ δ is strictly increasing.

The proof of Theorem 1.8 is given in Section 3. The general strategy consists in showing
that the derivatives of f(β, h; δ) with respect to δ and h are comparable. Compared to
Giacomin and Toninelli [7], several estimates need to be sharpened considerably.

1.4.3 Smoothing

Combining Theorems 1.5 and 1.8, we finally obtain our smoothing inequality with re-
spect to a shift, with explicit control on the constant.

Theorem 1.9 (Smoothing inequality with respect to a disorder shift). Subject to As-
sumptions 1.1, 1.2 and 1.7, there is an ε′0 > 0 with the following property: if f(β̄, h̄; 0) = 0

for some β̄ ∈ (0, ε′0) and h̄ ∈ R, then for t ∈ (−β̄ε′0, β̄ε′0),

0 ≤ f(β̄, h̄+ t; 0) ≤ γ

2β̄2
Aβ̄, t

β̄
t2, (1.17)

where (β, δ) 7→ Aβ,δ is continuous from (0, ε′0)× (−ε′0, ε′0) to (0,∞), and is such that

lim
(β,δ)→(0,0)

Aβ,δ = 1. (1.18)
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1.5 Discussion

We comment on the results obtained in Section 1.4.

1. The version of the smoothing inequality in Theorem 1.9, with the precision on the
constant, is picked up and used in Berger, Caravenna, Poisat, Sun and Zygouras [2] to
obtain the sharp asymptotics of the critical curve β 7→ hc(β) for pinning and copolymer
models in the weak disorder regime β ↓ 0, for the case α ∈ (1,∞) (recall (1.1)).

2. The smoothing inequality in (1.17), at the level of generality at which it is stated, is
optimal in the following sense.

• We cannot hope for an exponent strictly larger than 2 in the right-hand side of
(1.17), because pinning models with P(τ1 = n) ∼ (log n)/n3/2 are in the “irrelevant
disorder regime”, and it is known that f(β, hc(β) + t; 0) ∼ f(0, hc(0) + t; 0) = t2+o(1)

as t ↓ 0 for fixed β > 0 small enough (see Alexander [1, Theorem 1.2]).

• We cannot hope for an asymptotically smaller constant, i.e., lim(β,δ)→(0,0)Aβ,δ < 1,
because the proof in Berger, Caravenna, Poisat, Sun and Zygouras [2] would yield
a contradiction (the lower bound would be strictly larger than the upper bound).

Of course, for specific models the inequality (1.17) can sometimes be strengthened. For
instance, pinning models satisfying (1.1) with α ∈ (0, 1

2 ) are such that f(β, hc(β) + t; 0) ∼
f(0, hc(0) + t; 0) = t1/α+o(1) as t ↓ 0 (see (1.7)), again by Alexander [1, Theorem 1.2].

3. Compared with Assumption 1.2, Assumption 1.7 prescribes a specific form for the
partition function ZN,ω,β,h and therefore is more restrictive. On the other hand, in
view of the minor constraints put on the σi’s, (1.13) is so general that the absence of
any restrictive conditions like (2) or (3) makes Assumption 1.7 effectively much weaker
than Assumption 1.2. For instance, since (1.2) is a special case of (1.13), with PN (·) =

P( · ∩ {SN = 0}) (which, incidentally, explains why PN is allowed to be a finite measure,
and not necessarily a probability), the model in (1.2) satisfies Assumption 1.7 as soon
as the function ϕ is bounded and has a sign, without the need for any requirement like
(1.1).

We emphasize that many other (also non-directed) disordered models fall into As-
sumption 1.7. For instance, for L ∈ N set ΛL := {−L, . . . ,+L}d, N := |ΛL| = (2L + 1)d,
ΩN := {−1,+1}ΛL , and let (ηi)i∈ΛL be the coordinate projections on ΩN . Denoting by
PN ({ηi}i∈ΛL) := (1/ZN ) exp[J

∑
i,j∈ΛL, |i−j|=1 ηiηj ] the standard Ising Gibbs measure on

ΩN , then the random variables σi := 1
2 (ηi + 1) satisfy Assumption 1.7.

4. It follows easily from (1.6) and (1.13) that (with obvious notation)

f(σn+c)n∈N(β, h; δ) = f(σn)n∈N(β, h; δ) + (βmδ + h)c. (1.19)

Therefore, when the σn’s are uniformly bounded but not necessarily non-negative, we
can first perform a uniform translation to transform them into non-negative random
variables, next apply (1.15), and finally use (1.19) to come back to the original σn’s.

Still, the non-negativity assumption on the σn’s in (1.14) cannot be dropped from
Theorem 1.8. In fact, if f(β, h; δ) is differentiable in h and δ, then (1.15) implies that

∀h ∈ R :
∂f

∂δ
(β, h; 0) =

[
1 + o(1)

]
β
∂f

∂h
(β, h; 0), β ↓ 0. (1.20)

This relation, which is a necessary condition for (1.15) when the free energy is differen-
tiable, may be violated when the σn’s take both signs. For instance, let (σn)n∈N under
PN := P be i.i.d. with P(σn = −1) = P(σn = +1) = 1

2 , and let the marginal distribution
of the disorder be P(ωn = −a−1) = a2/(a2 + 1), P(ωn = a) = 1/(a2 + 1) with a > 0 (note
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that E(ω1) = 0 and Var(ω1) = 1, so that (1.3) is satisfied). The free energy is easily
computed:

f(β, h; δ) = Eδ[cosh(h+ βω1)] =
eaδ cosh(h+ aβ) + a2e−a

−1δ cosh(h− a−1β)

eaδ + a2e−a−1δ
. (1.21)

In particular,

∂f

∂h
(β, 0; 0) =

sinh(aβ) + a2 sinh(−a−1β)

1 + a2
=
a2 − 1

6a
β3 + o(β3), (1.22)

∂f

∂δ
(β, 0; 0) =

a cosh(aβ)− a cosh(−a−1β)

1 + a2
=
a2 − 1

2a
β2 + o(β2), (1.23)

and hence (1.20) does not hold for a 6= 1 (the left-hand side is ≈ β2, while the right-hand
side is ≈ β4). Intuitively, such a discrepancy arises for values of h at which ∂f

∂h (0, h; 0) =

0, which means that the average EN,ω,0,h( 1
N

∑N
n=1 σn) tends to zero as N → ∞, where

PN,ω,β,h is the Gibbs law associated to the partition function ZN,ω,β,h (see (3.2) below).
When the σn’s are non-negative, their individual variances under PN,ω,0,h must be small,
but this is no longer true when the σn’s can also take negative values. This is why one
might have ∂f

∂δ (β, h; 0) � β ∂f
∂h (β, h; 0) for β > 0 small (compare (3.18) with (3.21)-(3.22)

below).

2 Smoothing with respect to a tilt: proof of Theorem 1.5

2.1 The (G, C)-rare stretch strategy

Fix β ≥ 0 and h ∈ R. For ` ∈ N, let A` ⊆ R` be a subset of “disorder stretches” such
that there exist constants G ∈ [0,∞) and C ∈ [0,∞) with the following properties, along
a diverging sequence of ` ∈ N:

• 1
` logZ`,ω,β,h ≥ G for all ω = ω(0,`] := (ω1, . . . , ω`) ∈ A` (recall Assumption 1.2 (1));

• 1
` logP(A`) ≥ −C.

The notation (G, C) stands for gain versus cost. Recall that γ is the exponent in (1.5).

Lemma 2.1. The following implication holds:

G − γ C > 0 =⇒ f(β, h; 0) > 0. (2.1)

Proof. Fix ` ∈ N large enough so that the above conditions hold, and for ω ∈ RN denote
by T1(ω), T2(ω), . . . the distances between the endpoints of the stretches in A`:

T1(ω) := inf
{
N ∈ `N : ω(N−`,N ] ∈ A`

}
, Tk+1(ω) := T1(ϑT1(ω)+...+Tk(ω)(ω)). (2.2)

Note that {Tk}k∈N is i.i.d. with marginal law given by `GEO(P(A`)). In particular,

E(T1) = `/P(A`) ≤ ` eC`. (2.3)

Henceforth we suppress the subscripts β, h. Since (ϑ(T1+...+Ti)−`ω)(0,`] ∈ A` by con-
struction, applying properties (2)-(3) in Assumption 1.2 and the definition of G, we get

ZT1+...+Tk,ω ≥
k∏
i=1

Z
Ti−`,ϑ(T1+...+Ti−1)ω

Z`,ϑ(T1+...+Ti)−`ω ≥ ekG`
k∏
i=1

cβ,h(ϑ(T1+...+Ti−1)ω)

(Ti)γ
,

(2.4)

ECP 18 (2013), paper 76.
Page 7/15

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2874
http://ecp.ejpecp.org/


Smoothing inequality for disordered polymers

where we set Z0 := 1 for convenience. Recalling (1.6) and Remark 1.4, for P-a.e. ω we
can write, by the strong law of large numbers and Jensen’s inequality,

f(β, h; 0) = lim
k→∞

1

T1 + . . .+ Tk
logZT1+...+Tk,ω,β,h

≥ 1

E(T1(ω))

{
`G + E[log cβ,h(ω)]− γ E[log(T1)]

}
≥ 1

E(T1(ω))

{
`G + E[log cβ,h(ω)]− γ logE(T1)

}
≥ e−C`

{
(G − γC) +

E[log cβ,h(ω)]

`
− γ log `

`

}
,

(2.5)

where for the last inequality we use that the term between braces is strictly positive for
` large enough when G − γC > 0. This proves (2.1).

2.2 Proof of Theorem 1.5

We use Lemma 2.1. Fix β > 0, h ∈ R, δ ∈ (−t0, t0) and ε > 0, and define the set of
good atypical stretches as

A` :=

{
(ω1, . . . , ω`) ∈ R` :

1

`
logZ`,ω,β,h ≥ f(β, h; δ)− ε

}
, (2.6)

so that G = f(β, h; δ)− ε by construction. It remains to determine C, for which we need
to estimate the probability of P(A`) from below.

By the definition (1.6) of f(β, h; δ) together with Kingman’s super-additive ergodic
theorem (see Remark 1.4), the event A` is typical for Pδ:

lim
`→+∞

Pδ(A`) = 1. (2.7)

Denoting by P`δ (resp. P`) the restriction of Pδ (resp. P) on σ(ω1, . . . , ω`), we have, by
Jensen’s inequality and (1.4),

P(A`) = Pδ(A`)Eδ
(
e− log

dP`δ
dP`

∣∣∣∣A`) ≥ Pδ(A`) e−Eδ( log
dP`δ
dP`

∣∣A`)
= Pδ(A`) e

− 1
Pδ(A`)

Eδ

[(
log

dP`δ
dP`

)
1A`

]
= Pδ(A`) e

− `
Pδ(A`)

Eδ

[(
δ
ω1+...+ω`

` −log M(δ)
)
1A`

]
.

(2.8)

Recalling (1.4) and Assumption 1.1, we abbreviate

mδ := Eδ(ω1) = (log M)′(δ) = δ + o(δ), δ → 0. (2.9)

By the strong law of large numbers, it follows from (2.7)-(2.8) that for every ε > 0 we
have, for ` large enough,

1

`
logP(A`) ≥ −

[
δ mδ − log M(δ)

]
− ε =: −C, (2.10)

We can conclude. We know from (2.1) that f(β, h; 0) > 0 when

G − γC = f(β, h; δ)− γ
[
δ mδ − log M(δ)

]
− 2ε > 0. (2.11)

If f(β̄, h̄; 0) = 0, as in the assumptions of Theorem 1.5, it follows that G − γC ≤ 0, i.e.,

f(β̄, h̄; δ) ≤ γ
[
δ mδ − log M(δ)

]
+ 2ε, ∀δ ∈ (−t0, t0) . (2.12)

Since this equality holds for every ε > 0, it must hold also for ε = 0, proving (1.9).
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3 Asymptotic equivalence of tilting and shifting: proof of
Theorem 1.8

Throughout this section, we work under Assumptions 1.1 and 1.7.

3.1 Notation

Denote the empirical average of the variables σi’s by

σN :=
1

N

N∑
i=1

σi. (3.1)

The finite-volume Gibbs measure associated with the partition function in (1.13) is the
probability on ΩN defined, for N ∈ N, ω ∈ RN, β ≥ 0 and h ∈ R, by

PN,ω,β,h( · ) :=
1

ZN,ω,β,h
EN

[
e
∑N
n=1(h+βωn)σn 1{·}

]
,

where ZN,ω,β,h := EN

[
e
∑N
n=1(h+βωn)σn

]
.

(3.2)

Let us spell out the definition (1.6) of the free energy, recalling (1.4):

f(β, h; δ) := lim sup
N→∞

fN (β, h; δ) := lim sup
N→∞

1

N
Eδ
[

logZN,ω,β,h
]

= lim sup
N→∞

1

N
E
[
e
∑N
n=1[δωn−log M(δ)] logZN,ω,β,h

]
.

(3.3)

Note that, by (1.14),∣∣∣∣∣
N∑
n=1

(h+ βωn)σn

∣∣∣∣∣ ≤
N∑
n=1

(|h|+ β|ωn|) |σn| ≤ s0

N∑
n=1

(|h|+ β|ωn|), (3.4)

so that |f(β, h; δ)| ≤ s0(|h| + βEδ(|ω1|)) + | lim supN→∞
1
N log PN (ΩN )| < ∞. (This is the

only point where we use our assumption that PN (ΩN ) is not superexponential in N .)

3.2 Preparation

Before proving Theorem 1.8, we need some preparation. Recalling (3.1), we define
for [a, b] ⊆ R with a < b a restricted version of the partition function and the free energy,
in which the empirical average σN is constrained to lie in [a, b]:

Z
[a,b]
N,ω,β,h := EN

[
e
∑N
n=1(h+βωn)σn 1{σN∈[a,b]}

]
,

f[a,b](β, h; δ) := lim sup
N→∞

f[a,b]N (β, h; δ) := lim sup
N→∞

1

N
Eδ
[

logZ
[a,b]
N,ω,β,h

]
.

(3.5)

The corresponding restricted Gibbs measure is the probability defined by (recall (3.2))

P
[a,b]
N,ω,β,h( · ) := PN,ω,β,h( · |σN ∈ [a, b]) =

EN

[
e
∑N
n=1(h+βωn)σn 1{σN∈[a,b]} 1{ · }

]
Z

[a,b]
N,ω,β,h

. (3.6)

Note that ZN,ω,β,h = Z
[0,s0]
N,ω,β,h, by (1.14). Furthermore, Z [a,b]

N,ω,β,h ≤ Z
[c,d]
N,ω,β,h when

[a, b] ⊆ [c, d]. Therefore

f[a,b](β, h; δ) ≤ f[c,d](β, h; δ) ≤ f(β, h; δ), [a, b] ⊆ [c, d]. (3.7)
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In particular, for x ∈ R we may define

f{x}(β, h; δ) := lim
n→∞

f[an,bn](β, h; δ) ∈ [−∞,+∞), (3.8)

where an ↑ x and bn ↓ x are arbitrary strictly monotone sequences (it is easily seen that
the limit does not depend on the choice of these sequences).

Note that f{x}(β, h; δ) = −∞ when x 6∈ [0, s0], by (1.14). The following result is
standard:

f(β, h; δ) = sup
x∈[0,s0]

f{x}(β, h; δ). (3.9)

In fact, by (3.7) f[a,b](β, h; δ) ≤ f(β, h; δ) for every [a, b] ⊆ R, hence by (3.8) f(β, h; δ) ≥
f{x}(β, h; δ) for every x ∈ R. It follows that the inequality ≥ holds in (3.9). For the
reverse inequality, note that if a < b < c, then [a, c] ⊆ [a, b] ∪ [b, c] and so

Z
[a,c]
N,ω,β,h ≤ Z

[a,b]
N,ω,β,h + Z

[b,c]
N,ω,β,h ≤ 2 max

{
Z

[a,b]
N,ω,β,h, Z

[b,c]
N,ω,β,h

}
. (3.10)

Recalling (3.5), we see that

f[a,c](β, h; δ) ≤ max
{

f[a,b](β, h; δ), f[b,c](β, h; δ)
}
. (3.11)

Since f(β, h; δ) = f[0,s0](β, h; δ), we can build a sequence of closed intervals (In)n∈N0
,

where I0 = [0, s0] and where In+1 is either the first half or the second half of In, such
that fIn(β, h; δ) ≤ fIn+1(β, h; δ) for all n ∈ N. In particular,

f(β, h; δ) ≤ lim
n→∞

fIn(β, h; δ). (3.12)

By compactness, there exists an x ∈ [0, s0] such that In ↓ {x}, i.e.,
⋂
n∈N In = {x}. If

In = [an, bn], then we set Jn := [an − 1
n , bn + 1

n ], so that we still have Jn ↓ {x}, and x lies
in the interior of each Jn. Since fIn(β, h; δ) ≤ fJn(β, h; δ), recalling (3.8) we obtain

f(β, h; δ) ≤ lim
n→∞

fIn(β, h; δ) ≤ lim
n→∞

fJn(β, h; δ) = f{x}(β, h; δ) ≤ sup
x∈[0,s0]

f{x}(β, h; δ), (3.13)

and the proof of (3.9) is complete.

3.3 Proof of Theorem 1.8

By (3.9), it suffices to show that (1.15) is satisfied with f{x} instead of f, for every
fixed x ∈ [0, s0]. It is of course important that the constants C±β,δ do not depend on x.

1. First we consider the case x = 0. We claim that

f{0}(β, h; δ) = lim
ε↓0

(
lim sup
N→∞

1

N
log PN (0 ≤ σN ≤ ε)

)
. (3.14)

Since the right-hand side of (3.14) is a constant that does not depend on β ≥ 0,
δ ∈ (−t0, t0) and h ∈ R, (1.15) is trivially satisfied with f{0} instead of f, whatever
the definition of C±β,δ is. To prove (3.14) note that, by Cauchy-Schwarz,

∣∣∣∣∣
N∑
n=1

(h+ βωn)σn

∣∣∣∣∣ ≤
√√√√ N∑
n=1

(h+ βωn)2

√√√√ N∑
n=1

|σn|2 ≤ N s0

√
σN

√√√√ 1

N

N∑
n=1

(h+ βωn)2,

(3.15)
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because 0 ≤ σn = |σn| ≤ s0 by (1.14). Recalling (3.5), for every N ∈ N we get

∣∣∣∣ 1

N
Eδ
[

logZ
[a,b]
N,ω,β,h

]
− 1

N
log PN (a ≤ σN ≤ b)

∣∣∣∣ ≤ s0

√
bEδ


√√√√ 1

N

N∑
n=1

(h+ βωn)2


≤ s0

√
b
√
Eδ
[
(h+ βω1)2

]
,

(3.16)

where we use Jensen. Note that the right-hand side is a finite constant. If |aN − bN | ≤ c
for all N ∈ N, then | lim supN aN − lim supN bN | ≤ c, and so∣∣∣∣f[a,b](β, h; δ)−

(
lim sup
N→∞

1

N
log PN (a ≤ σN ≤ b)

)∣∣∣∣ ≤ s0

√
b
√
Eδ
[
(h+ βω1)2

]
. (3.17)

Taking [a, b] = [−ε, ε] and letting ε ↓ 0, we get (3.14) from (3.8) .

2. Next we consider the case x ∈ (0, s0]. Roughly speaking, the strategy of the proof
is to show that the derivatives of the free energy with respect to δ and to h are com-
parable. Unless otherwise specified, we work with generic values of the parameters in
the admissible range β ≥ 0, h ∈ R and δ ∈ (−t0, t0). Henceforth we fix 0 < a < b < ∞.
Recalling (3.5) and (3.6), we see that the derivative with respect to h of the (restricted)
finite-volume free energy f[a,b]N (β, h; δ) can be expressed as

∂

∂h
f[a,b]N (β, h; δ) =

1

N
Eδ

[
∂

∂h
logZ

[a,b]
N,ω,β,h

]
= Eδ

[
E

[a,b]
N,ω,β,h

[
σN
]]
. (3.18)

3. The derivative with respect to δ requires some further estimates. Recalling (3.2)-
(3.3), we have

∂

∂δ
f[a,b]N (β, h; δ) =

1

N

N∑
n=1

Eδ

[
(ωn −mδ) logZ

[a,b]
N,ω,β,h

]
, (3.19)

where mδ := Eδ(ωn) = (log M)′(δ) by (2.9). Subtracting a centering term with zero
mean, we get

∂

∂δ
f[a,b]N (β, h; δ) =

1

N

N∑
n=1

Eδ

[
(ωn −mδ)

(
logZ

[a,b]
N,ω,β,h − logZ

[a,b]
N,ω,β,h|ωn=mδ

)]
=

1

N

N∑
n=1

Eδ

[
(ωn −mδ)

∫ ωn

mδ

(
∂

∂ωn
logZ

[a,b]
N,ω,β,h

)∣∣∣∣
ωn=y

dy

]
,

(3.20)

where we agree that
∫ b
a

(. . .) := −
∫ a
b

(. . .) when a > b. Abbreviate

fn(ω, y) :=
1

β

(
∂

∂ωn
logZ

[a,b]
N,ω,β,h

)∣∣∣∣
ωn=y

= E
[a,b]
N,ω,β,h |ωn=y[σn], (3.21)

where the second equality follows easily from (3.5) via (3.6). Note that fn(ω, y) depends
on the ωi’s for i 6= n, not on ωn. Therefore (3.20) can be rewritten as

∂

∂δ
f[a,b]N (β, h; δ) =

β

N

N∑
n=1

Eδ

[
(ωn −mδ)

2 1

ωn −mδ

∫ ωn

mδ

fn(ω, y) dy
]
. (3.22)

4. We see from (3.21) that if fn(ω, y) in (3.22) were replaced by fn(ω, ωn), then we would

get E
[a,b]
N,ω,β,h[σn]. If we could factorize the expectation over Eδ, then the right-hand side

in (3.22) would become ≈ β Varδ(ω1)Eδ
[

E
[a,b]
N,ω,β,h[σN ]

]
. Recalling (3.18), we see that
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this is precisely what we want, because Varδ(ω1) ≈ 1 for δ small. In order to turn these
arguments into a proof, we need to estimate the dependence of fn(ω, y) on y. To that
end we note that

∂

∂ωn
fn(ω, ωn) =

1

β

∂2

∂ω2
n

logZ
[a,b]
N,ω,β,h = β Var

[a,b]
N,ω,β,h[σn]

≤ β E
[a,b]
N,ω,β,h[σ2

n] ≤ s0 β E
[a,b]
N,ω,β,h[σn] = s0 β fn(ω, ωn)

(3.23)

because 0 ≤ σn ≤ s0, by (1.14). Therefore

∂

∂y
fn(ω, y) ≥ 0,

∂

∂y

(
e−s0 β y fn(ω, y)

)
≤ 0, (3.24)

and integrating these relations we get

e−s0β(y−y′)− fn(ω, y′) ≤ fn(ω, y) ≤ es0β(y−y′)+

fn(ω, y′) ∀ y, y′ ∈ R. (3.25)

Introducing the function

g(x) :=


ex − 1

x
if x 6= 0,

1 if x = 0,
(3.26)

taking y′ = mδ in (3.25) and integrating over y, we easily obtain the bounds

g
(
− βs0(ωn−mδ)

−) fn(ω,mδ)

≤ 1

ωn −mδ

∫ ωn

mδ

fn(ω, y) dy ≤ g
(
βs0(ωn −mδ)

+
)
fn(ω,mδ).

(3.27)

5. Before inserting this estimate into (3.22), let us pause for a brief integrability inter-
lude. The random variable g(−βs0(ωn −mδ)

−) is bounded, so there is no integrability
concern. On the other hand, the random variable g(βs0(ωn −mδ)

+) is unbounded and a
little care is required. Note that

g(βs0(ωn −mδ)
+) ≤ A+B eβs0ωn (3.28)

for A,B > 0, and that Eδ(etω1) <∞ for t+ δ ∈ (−t0,+t0), by (1.3) and (1.4). Therefore,
when we integrate g(βs0(ωn−mδ)

+) (possibly times a polynomial of ωn) over Pδ, to have
a finite outcome we need to ensure that βs0 + δ ∈ (−t0,+t0). This is simply achieved
through the restrictions δ ∈ (−ε0, ε0) and β ∈ [0, ε0), where ε0 := min{ t02 ,

t0
2s0
}, as in the

statement of Theorem 1.8. We make these restrictions henceforth.

6. Let us now substitute the estimate (3.27) into (3.22). Since fn(ω,mδ) does not depend
on ωn, the expectation over Eδ factorizes and we obtain

Eδ

[
(ω1 −mδ)

2 g
(
− βs0(ω1 −mδ)

−)]( β

N

N∑
n=1

Eδ

[
fn(ω,mδ)

])

≤ ∂

∂δ
f[a,b]N (β, h; δ)

≤ Eδ
[
(ω1 −mδ)

2 g
(
βs0(ω1 −mδ)

+
)]( β

N

N∑
n=1

Eδ

[
fn(ω,mδ)

])
.

(3.29)

We next want to replace fn(ω,mδ) by fn(ω, ωn) = E
[a,b]
N,ω,β,h

[
σn
]

(recall (3.21)). To this
end, we again apply (3.25), this time with y = ωn and y′ = mδ. Since fn(ω,mδ) does not
depend on ωn, we have

Eδ
[
fn(ω, ωn)

]
Eδ
[
es0β(ω1−mδ)+

] ≤ Eδ[fn(ω,mδ)
]
≤

Eδ
[
fn(ω, ωn)

]
Eδ
[
e−s0β(ω1−mδ)−

] . (3.30)
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We can now introduce the constants

c+β,δ :=
Eδ
[
(ω1 −mδ)

2 g
(
βs0(ω1 −mδ)

+
)]

Eδ
[
e−s0β(ω1−mδ)−

] ,

c−β,δ :=
Eδ
[
(ω1 −mδ)

2 g
(
− βs0(ω1 −mδ)

−)]
Eδ
[
es0β(ω1−mδ)+

] ,

(3.31)

and note that 0 < c−β,δ ≤ Varδ(ω1) ≤ c+β,δ < ∞ for all δ ∈ (−ε0, ε0) and β ∈ [0, ε0),
because g(x) < 1 for x < 0 and g(x) > 1 for x > 0. We have already observed that

fn(ω, ωn) = E
[a,b]
N,ω,β,h

[
σn
]

by (3.21), and so from (3.29)-(3.30) we obtain the following
estimate: for every β ∈ [0, ε0), h ∈ R, δ ∈ (−ε0, ε0) and 0 < a < b <∞

c−β,δ βEδ
[

E
[a,b]
N,ω,β,h

[
σN
]]
≤ ∂

∂δ
f[a,b]N (β, h; δ) ≤ c+β,δ βEδ

[
E

[a,b]
N,ω,β,h

[
σN
]]
. (3.32)

Note the analogy with the expression in (3.18) for ∂
∂h f[a,b]N (β, h; δ).

7. We are close to the final conclusion. Since by (3.6) we have a ≤ E
[a,b]
N,ω,β,h

[
σN
]
≤ b, it

follows from (3.32) that, for every δ ∈ [0, ε0)

C−β,δ β a δ ≤ f[a,b](β, h; δ)− f[a,b](β, h; 0) ≤ C+
β,δ β b δ, (3.33)

where we set

C±β,δ :=


1

δ

∫ δ

0

c±β,δ′ dδ
′ if δ ∈ (−ε0, ε0) \ {0},

c±β,0 if δ = 0.

(3.34)

Analogously to (3.33), from (3.18) we obtain, for every ξ ≥ 0,

a ξ ≤ f[a,b](β, h+ ξ; 0)− f[a,b](β, h; 0) ≤ b ξ. (3.35)

Choosing ξ = C+
β,δ

b
aβδ and ξ = C−β,δ

a
bβδ, respectively, and combining (3.33)-(3.35), we

finally get the following relation, which holds for all β, δ ∈ [0, ε0), h ∈ R and 0 < a < b <

∞:

f[a,b]
(
β, h+ C−β,δ

a
bβδ; 0

)
≤ f[a,b](β, h; δ) ≤ f[a,b]

(
β, h+ C+

β,δ
b
aβδ; 0

)
. (3.36)

Next, fix any x > 0 and η > 0. If an ↑ x and bn ↓ x, then an/bn ≥ 1− η and bn/an ≤ 1 + η

for large n. Since h 7→ f[a,b](β, h; δ) is non-decreasing, by (3.18) and (1.14), for n large
enough we have

f[an,bn]
(
β, h+C−β,δ(1− η)βδ; 0

)
≤ f[an,bn](β, h; δ) ≤ f[an,bn]

(
β, h+C+

β,δ(1 + η)βδ; 0
)
. (3.37)

Recalling (3.8) and (3.9), we can let n→∞ to get that, for every x > 0,

f{x}
(
β, h+ C−β,δ(1− η)βδ; 0

)
≤ f{x}(β, h; δ) ≤ f{x}

(
β, h+ C+

β,δ(1 + η)βδ; 0
)
. (3.38)

This relation also holds for x = 0 because f{0}(β, h; δ) is a constant, as we showed in
(3.14). Taking the supremum over x ∈ [0, s0], we have shown that, for all β, δ ∈ [0, ε0)

and h ∈ R,

f
(
β, h+ C−β,δ(1− η)βδ; 0

)
≤ f(β, h; δ) ≤ f

(
β, h+ C+

β,δ(1 + η)βδ; 0
)
. (3.39)

Since h 7→ f[a,b](β, h; δ) is convex and finite, and hence continuous, we can let η ↓ 0 to
obtain (1.15) for δ ∈ [0, ε0).
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8. The case δ ∈ (−ε0, 0] is analogous. The inequality in (3.33) is replaced by

C−β,δ β a (−δ) ≤ f[a,b](β, h; 0) − f[a,b](β, h; δ) ≤ C+
β,δ β b (−δ), (3.40)

while (3.35) for ξ ≤ 0 becomes

a (−ξ) ≤ f[a,b](β, h; 0)− f[a,b](β, h+ ξ; 0) ≤ b (−ξ). (3.41)

Choosing ξ = C+
β,δ

b
aβδ and ξ = C−β,δ

a
bβδ, respectively, we get

f[a,b]
(
β, h+ C+

β,δ
b
aβδ; 0

)
≤ f[a,b](β, h; δ) ≤ f[a,b]

(
β, h+ C−β,δ

a
bβδ; 0

)
. (3.42)

It remains to let a ↑ x, b ↓ x, followed by taking the supremum over x ∈ [0, s0].

9. Finally, by (3.34), we have 0 < C−β,δ ≤ C+
β,δ < ∞ for all β ∈ [0, ε0) and δ ∈ (−ε0, ε0).

By dominated convergence, (β, δ) 7→ c±β,δ are continuous on [0, ε0)× (−ε0, ε0), and hence

also (β, δ) 7→ C±β,δ is continuous. Since C±0,0 = Var(ω1) = 1, the proof is complete.

4 Smoothing with respect to a shift: proof of Theorem 1.9

Equations (1.13) and (1.14) imply that h 7→ f(β, h; δ) is non-decreasing. Note that
f(β, h; δ) ≥ 0 under Assumption 1.2, by (1.5). If f(β̄, h̄; 0) = 0, then f(β̄, h̄+ t; 0) = 0 for all
t ≤ 0, and (1.17) is trivially satisfied. Henceforth we assume t > 0.

Recalling the statement of Theorem 1.8, we set Fβ(δ) := C−β,δ δ. This is a continuous
and strictly increasing function of δ, with Fβ(0) = 0, and hence it maps the open interval
(0, ε0) into (0, ε′0), for some ε′0 > 0. Applying the first inequality in (1.15) for t ∈ (0, β̄ε′0),
we can write

f(β̄, h̄+ t; 0) = f
(
β̄, h̄+ β̄Fβ̄(F−1

β̄
( t
β̄

)); 0
)
≤ f
(
β̄, h̄;F−1

β̄
( t
β̄

)
)
. (4.1)

Applying (1.9), we obtain

f(β̄, h̄+ t; 0) ≤ γ

2β̄2
Aβ̄, t

β̄
t2, (4.2)

where

Aβ,δ := BF−1
β (δ)

(
F−1
β (δ)

δ

)2

. (4.3)

It follows from (1.16) that lim(β,δ)→(0,0)(F
−1
β (δ)/δ) = 1. Since limδ→0Bδ = 1, we obtain

lim(β,δ)→(0,0)Aβ,δ = 1.
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