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Abstract

In this article we get simple formulas for IE sups≤tX(s) where X is a spectrally pos-
itive or negative Lévy process with infinite variation. As a consequence we derive
a generalization of the well-known formula for the supremum distribution of Wiener
process that is we obtain IP(sups≤t Zα(s) ≥ u) = α IP(Zα(t) ≥ u) for u ≥ 0 where
Zα is a spectrally negative α-stable Lévy process with 1 < α ≤ 2 which also stems
from Kendall’s identity for the first crossing time. Our proof uses a formula for the
supremum distribution of a spectrally positive Lévy process which follows easily from
the elementary Seal’s formula.
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1 Introduction

Lévy processes appear in many theoretical and practical fields where they serve as
a basic skeleton for a description of certain phenomena. They are applied in physics,
economics, finance, insurance, queueing systems and other branches of knowledge.
Their features like independence and stationarity of increments or self-similarity in cer-
tain cases permit to apply them to model for instance returns of stock prices, claims to
insurance companies or an inflow (outflow) to the buffer in queueing (telecommunica-
tions) systems. Moreover Lévy processes serve as a starting point for more complicated
models e.g. based on stochastic differential equations.

We will investigate real valued Lévy processes. Lévy-Itô representation shows their
stochastic construction which is the following (see e.g. Sato [17])

X(t) = B(t) +

∫
|x|<1

x (Nt(dx)− tQ(dx)) +

∫
|x|≥1

xNt(dx) + at ,

where B(t) is Wiener process, N is a point process generated by the jumps of X that is
N =

∑
{t:∆X(t) 6=0} δ(t,∆X(t)). N is a random Poisson measure on [0,∞)×{R \ 0} with the

mean ds×Q(dx), where Q(dx) is the so-called Lévy measure on R \ 0 and a ∈ R.

In this note we consider spectrally one-sided Lévy processes without Wiener com-
ponent. We find expected value of the supremum on a finite interval for any spectrally
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positive or negative Lévy process. Then as a corollary we derive a generalization of the
famous formula

IP(sup
s≤t

B(s) ≥ u) = 2IP(B(t) ≥ u)

for u ≥ 0, where B is Wiener process that is we show that

IP(sup
s≤t

Zα(s) ≥ u) = αIP(Zα(t) ≥ u) (1.1)

for u ≥ 0, where Zα is an α-stable Lévy process with 1 < α ≤ 2, the scale parameter
σ > 0, the skewness parameter β = −1 and the shift parameter µ = 0 that is Zα is a
Lévy process with the following characteristic function of one dimensional distributions

IE exp(iθZα(t)) = exp
(
−σαt|θ|α

[
1 + isign(θ) tan

πα

2

])
, (1.2)

where θ ∈ R and sign is the sign function (see e.g. Janicki and Weron [10] or Samorod-
nitsky and Taqqu [16] for the definition of a stable distribution with four parameters).
This Lévy process has no positive jumps which means it is spectrally negative and it
has infinite variation. The formula (1.1) also stems from Kendall’s identity for the first
crossing time see Kendall [11] or e.g. Bertoin [7] or Borovkov and Burq [8] and the
references therein. Let us recall that the proofs of Kendall’s identity are analytical
(using Laplace transforms) or are using limit and combinatorial arguments or factor-
ization identities except the proof of Borovkov and Burq [8] which is straightforward
by the change of measure technique. The identity (1.1) may also be verified by in-
verting time-space Laplace transforms (see Bernyk, Dalang and Peskir [5] for a similar
treatment). The above formula for Wiener process follows easily from the reflection
principle. Here we give a straightforward proof of the identity (1.1) based on the for-
mula from Michna [12] and [13] which is simply derived from the elementary Seal’s
formula for a compound Poisson process see Seal [18] (which is going back to Cramér
and Prabhu see e.g. Asmussen and Albrecher [3] and Prabhu [15]). Regardless the the-
oretical importance of the above formula, the supremum distribution is the key value
in many practical problems in insurance, finance and queueing systems. The distribu-
tion of the supremum of spectrally one-sided Lévy processes has been investigated in
many papers see e.g. Albin [1], Avram, Kyprianou and Pistorius [4], Bernyk, Dalang and
Peskir [5], Bertoin [6], Michna [12], Pistorius [14] and many others. Explicit formulas
for the supremum distribution of stochastic processes on finite intervals are known only
in few cases. Most papers are concerned with an asymptotic behavior of the tail dis-
tribution of the supremum for stochastic processes see e.g. Albin and Sunden [2] and
the references therein. In some articles one can find the distribution of the supremum
but in the form of Laplace transforms of the first passage times see Bertoin [6], Avram,
Kyprianou and Pistorius [4] and Pistorius [14].

2 Expected value of the supremum

Let X be a spectrally positive Lévy process and Y a spectrally negative Lévy process
both with infinite variation (one can regard that Y = −X). Let us recall that a spectrally
positive Lévy process has no negative jumps and analogically for a spectrally negative
Lévy process. Additionally we assume that their Lévy measure Q has a bounded density
on every infinite interval cut off from zero and their one-dimensional distributions are
absolutely continuous with respect to Lebesgue measure see Michna [13]. We denote
x+ = max(x, 0) and x− = −min(x, 0).
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Proposition 2.1.

IE sup
s≤t

X(s)

=

∫ ∞
0

IP(X(t) > u) du+

∫ t

0

P (X(t− s) > 0)

s
ds

∫ 0

−∞
IP(X(s) ≤ u) du .

If IEY −(t) <∞ then

IE sup
s≤t

Y (s)

=

∫ ∞
0

IP(Y (t) > u) du+

∫ t

0

P (Y (t− s) < 0)

s
ds

∫ ∞
0

IP(Y (s) ≥ u) du ,

Proof. By Michna [12] and [13] we have

IP(sup
s≤t

X(s) > u) = IP(X(t) > u) +

∫ t

0

f(u, s)

t− s
ds

∫ 0

−∞
IP(X(t− s) ≤ x) dx , (2.1)

where f(u, s) is a density function of the random variable X(s). Integrating we get

IE sup
s≤t

X(s)

=

∫ ∞
0

IP(X(t) > u) du+

∫ ∞
0

du

∫ t

0

f(u, s)

t− s
ds

∫ 0

−∞
IP(X(t− s) ≤ x) dx

=

∫ ∞
0

IP(X(t) > u) du+

∫ t

0

IP(X(s) > 0)

t− s
ds

∫ 0

−∞
IP(X(t− s) ≤ x) dx

=

∫ ∞
0

IP(X(t) > u) du+

∫ t

0

IP(X(t− s) > 0)

s
ds

∫ 0

−∞
IP(X(s) ≤ u) du ,

where in the last equality we substitute s′ = t− s.

To prove the second assertion let us notice that for a fixed t and 0 ≤ s ≤ t we have

X(s)
d
= X(t)−X(t− s) in the sense of finite dimensional distributions. Thus

sup
s≤t

X(s)
d
= sup

s≤t
(X(t)−X(t− s))

= X(t)− inf
s≤t

X(s) ,

where the equality in distribution is in the sense of the one-dimensional distribution.
Hence

sup
s≤t

X(s)
d
= X(t) + sup

s≤t
Y (s) ,
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where Y = −X. So by the first formula of the proposition we obtain

IE sup
s≤t

Y (s) = −IEX(t) + IE sup
s≤t

X(s)

= IEY (t) + IE sup
s≤t

X(s)

= IEY (t) +

∫ ∞
0

IP(X(t) > u) du+∫ t

0

P (X(t− s) > 0)

s
ds

∫ 0

−∞
IP(X(s) ≤ u) du

= IEY (t) +

∫ ∞
0

IP(Y (t) < −u) du+∫ t

0

P (Y (t− s) < 0)

s
ds

∫ 0

−∞
IP(Y (s) ≥ −u) du

=

∫ ∞
0

IP(Y (t) > u) du+∫ t

0

P (Y (t− s) < 0)

s
ds

∫ ∞
0

IP(Y (s) ≥ u) du

which finishes the proof.

Remark 2.2. One can write the first formula of Prop. 2.1 as

IE sup
s≤t

X(s) = IEX+(t) +

∫ t

0

P (X(t− s) > 0)

s
IEX−(s) ds

and the second formula as

IE sup
s≤t

Y (s) = IEY +(t) +

∫ t

0

P (Y (t− s) < 0)

s
IEY +(s) ds .

Remark 2.3. The formulas of Prop. 2.1 are valid for Wiener process as well because
the formula (2.1) is true for Wiener process see Michna [12].

3 The supremum distribution of a spectrally
negative stable Lévy process

Now let us consider a spectrally negative α-stable Lévy process Zα with 1 < α ≤ 2

(see e.g. Janicki and Weron [10] or Samorodnitsky and Taqqu [16]). A simple proof of a
generalization of the famous formula for the supremum distribution of Wiener process
we get by Prop. 2.1 which in fact follows from the formula for the supremum distribution
of a spectrally positive Lévy process (see Michna [13]).

Theorem 3.1. Let u ≥ 0 and Zα be the spectrally negative α-stable Lévy process given
by (1.2). Then

IP(sup
s≤t

Zα(s) ≥ u) = αIP(Zα(t) ≥ u) .

Proof. Let us note that IP(Zα(s) > 0) = 1/α and Zα(as)
d
= a1/αZα(s) for a > 0 in the

sense of finite dimensional distributions (the self-similarity property) see e.g. Samorod-

ECP 18 (2013), paper 10.
Page 4/6

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2236
http://ecp.ejpecp.org/


Explicit formula for the supremum distribution

nitsky and Taqqu [16]. Since IE|Zα(t)| <∞ for 1 < α ≤ 2 thus by Prop. 2.1 we have

IE sup
s≤t

Zα(s)

=

∫ ∞
0

IP(Zα(t) > u) du+

∫ t

0

P (Zα(t− s) < 0)

s
ds

∫ ∞
0

IP(Zα(s) ≥ u) du

=

∫ ∞
0

IP(Zα(t) > u) du+
α− 1

α

∫ t

0

ds

s

∫ ∞
0

IP(Zα(t) ≥ ut1/α/s1/α) du

=

∫ ∞
0

IP(Zα(t) > u) du+
α− 1

α

∫ t

0

s1/α−1

t1/α
ds

∫ ∞
0

IP(Zα(t) ≥ u) du

=

∫ ∞
0

IP(Zα(t) > u) du+ (α− 1)

∫ ∞
0

IP(Zα(t) ≥ u) du

= α

∫ ∞
0

IP(Zα(t) ≥ u) du ,

where in the second equality we use the self-similarity property and in the third equality
we substitute u′ = ut1/α/s1/α. By eq. 1.2 of Albin [1] or Lemma 3 of Furrer, Michna and
Weron [9] the following upper bound we can state

IP(sup
s≤t

Zα(s) ≥ u) ≤ αIP(Zα(t) ≥ u) . (3.1)

Since the last calculations give∫ ∞
0

IP(sup
s≤t

Zα(s) ≥ u) du =

∫ ∞
0

αIP(Zα(t) ≥ u) du

thus by eq. (3.1) and the continuity and monotonicity with respect to u we obtain the
assertion of the theorem.

Remark 3.2. The asymptotic behavior of IP(Zα(t) ≥ u) for u → ∞ can be found in
Samorodnitsky and Taqqu [16], eq. 1.2.11 which is not regularly varying but Weibullian.

Remark 3.3. In Albin [1] the exact asymptotic for IP(sups≤t Zα(s) ≥ u) as u → ∞ has
been derived in the form CαIP(Zα(t) ≥ u) where it was shown that Cα > 1 for 1 < α < 2.
Thus we get that Cα = α if 1 < α ≤ 2.

Remark 3.4. The supremum distribution of a spectrally positive Lévy process is qual-
itatively different than in the spectrally negative case because in the first case the
supremum is attained by a jump see e.g. Bernyk, Dalang and Peskir [5].
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