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Abstract

In this paper we establish a probabilistic representation for the spatial gradient of
the viscosity solution to a quasilinear parabolic stochastic partial differential equa-
tions (SPDE, for short) in the spirit of the Feynman-Kac formula, without using the
derivatives of the coefficients of the corresponding backward doubly stochastic dif-
ferential equations (FBDSDE, for short).
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1 Introduction

Linear backward stochastic differential equations (BSDEs, for short) have been con-
sidered by Bismut [1, 2] in the context of optimal stochastic control. However, nonlin-
ear BSDEs and their theory have been introduced by Pardoux and Peng [15]. They have
been enjoying a great interest in the last twenty year because of their connection with
applied fields. For stochastic control and stochastic games (see [10]) and mathemati-
cal finance (see [6]). BSDEs also provide a probabilistic interpretation for solutions to
elliptic or parabolic nonlinear partial differential equations generalizing the classical
Feynman-Kac formula [16, 18]. In 1994, Pardoux and Peng [17] introduced a new class
of BSDEs called backward doubly stochastic differential equations (BDSDEs, in short).
Coupled with the forward SDE, we have the following: for all s ∈ [0, T ],

Xt = x+

∫ t

0

b(r,Xr) dr +

∫ t

0

σ(r,Xr)dWr,

Ys = l(XT ) +

∫ T

s

f(r,Xr, Yr, Zr) dr +

∫ T

s

g(r,Xr, Yr) dBr −
∫ T

s

ZrdWr, (1.1)

where the integral driven by the Rd-valued process {Br}r≥0 is a backward Itô inte-
gral and the integral driven by the Rd-valued process {Wr}r≥0 is the standard for-
ward Itô integral. The solution of such equation is the triple of measurable processes
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Representation theorem for SPDEs

(Xt,x, Y t,x, Zt,x). They showed among other that BDSDEs are suitable tool to give a
probabilistic representation for a solution of the following parabolic stochastic partial
differential equations (SPDEs):

du(t, x) = [Lu(t, x) + f(t, x, u(t, x), (∇uσ)(t, x))] dt+ g(t, x, u(t, x)) dBt, (t, x) ∈ (0, T )×Rd,

u(0, x) = l(x), x ∈ Rd,
(1.2)

with

L =
1

2

n∑
i,j=1

k∑
l=1

σilσlj(t, x)∂2xixj
+

n∑
j=1

bj(t, x)∂xj
.

More precisely, assume that the functions f, g and l are smooth enough (e.g., f, g
and l are both C3 in their spatial variables), they provided an explicit expression of the
random field u, the classical solution to the quasilinear SPDEs (1.2) as follows:

u(t, x) = Y t,xt = E

{
l(Xt,x

T ) +

∫ T

t

f(r,Xt,x
r , Y t,xr , Zt,xr ) dr +

∫ T

t

g(r,Xt,x
r , Y t,xr ) dBr|FBt,T

}
.(1.3)

They also proved that the process Z has continuous paths, and satisfies the following
identity:

Zt,xs = ∇xu(s,Xt,x
s )σ(s,Xt,x

s ), s ∈ [t, T ]. (1.4)

The extension to the general case (f and l are only Lipchitz) is much more deli-
cate because of difficulties to extend the notion of viscosity solutions to SPDEs. The
stochastic viscosity solution for semi-linear SPDEs has been introduced firstly by Lions
and Souganidis in [12]. They used the so-called "stochastic characteristic" to remove
the stochastic integral from SPDE. Buckdahn and Ma [3, 4] give another approach of
stochastic viscosity solution of SPDE in order to connect it to the following BDSDEs: for
each t ∈ [0, T ] and 0 ≤ s ≤ t,

Xt,x
s = x+

∫ t

s

b(r,Xt,x
r ) dr +

∫ t

s

σ(r,Xt,x
r )dWr (1.5)

Y t,xs = l(Xt,x
0 ) +

∫ s

0

f(r,Xt,x
r , Y t,xr , Zt,xr ) dr +

∫ s

0

g(r,Xt,x
r , Y t,xr ) dBr −

∫ s

0

Zt,xr dWr,

which are in fact a time reversal of that considered by Pardoux and Peng [17]. In this
framework, the stochastic integral whith respect to dB is a forward Itô integral and the
stochastic integral driving by dW is a backward Itô integral. By Doss-Sussman trans-
formation, they proved that, thanks to the Blumenthal 0-1 law, u(., .), defined by (1.3)
and seen as a random field, is a stochastic viscosity solution of the SPDE (1.2).

The aim of this paper is to face the representation of the spatial gradient under weak
conditions. To the best of our knowledge, whenever the coefficients f and l are con-
tinuously differentiable, there has no discussion in the literature concerning the spatial
gradient of the viscosity solution u, whenever it exists. In our set-up, by using argu-
ments based on the corresponding BDSDEs (1.5), we obtain the desired result under
only continuous differentiability condition on coefficients l and f . Roughly speaking, we
show that the viscosity solution u to SPDE (1.2) has a continuous spatial gradient ∇xu.
Moreover, the following probabilistic representation holds:

∇xu(t, x) = E

{
l(Xt,x

0 )N t
0 +

∫ t

0

f(r,Xt,x
r , Y t,xr , Zt,xr )N t

r dr +

∫ t

0

Dg(r,Xt,x
r , Y t,xr ) dBr|FBt

}
,(1.6)
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Representation theorem for SPDEs

where ”Dg” denotes the classical differential of the function g and N t is some process
defined on [0, t], for each t ∈ [0, T ], depending only on the forward diffusion and its
variational equation. Such a relation in a sense could be viewed as an extension of
the nonlinear Feynman-Kac formula to stochastic PDEs, which, to our best knowledge,
is new. The main significance of the formula, however, lies in that it does not depend
on the derivatives of the coefficients of the BSDE, a pleasant surprise in many ways.
Because of this special feature, and with the help of the identity (1.6), we hope to
derive a similar representation for the martingale integrand Z, under only a Lipschitz
condition on f and l. This latter representation then enables us to prove the path
regularity of the process Z.

For the rest of this paper, we give all the necessary preliminaries in section 2, our
main results are stated in section 3 while section 4 is devoted to its proof .

2 Preliminaries

Let T > 0 a fixed time horizon. Throughout this paper {Wt, 0 ≤ t ≤ T} and {Bt, 0 ≤
t ≤ T} will denote two independent d-dimensional Brownian motions defined on the
complete probability spaces (Ω1,F1, IP1) and (Ω2,F2,P2) respectively. For any process
{Us, 0 ≤ s ≤ T} defined on (Ωi,Fi,Pi) (i = 1, 2), we write FUs,t = σ(Ur − Us, s ≤ r ≤ t)

and FUt = FU0,t. Unless otherwise specified we consider

Ω = Ω1 × Ω2, F = F1 ⊗F2 and P = P1 ⊗ P2.

For each t ∈ [0, T ], we define

Ft = {Fs = FBs ⊗FWs,t ∨N , 0 ≤ s ≤ t}

where N is the collection of P-null sets. Note that the collection Ft is neither increas-
ing nor decreasing, it does not constitute a filtration. Next, the random variables
ξ(ω1), ω1 ∈ Ω1 and ζ(ω2), ω2 ∈ Ω2 are considered as random variables on Ω via the
following identification:

ξ(ω1, ω2) = ξ(ω1); ζ(ω1, ω2) = ζ(ω2). (2.1)

Let E denote a generic Euclidean space (or E1, E2, ..,, if different spaces are used si-
multaneously); regardless of its dimension we denote 〈; 〉 the inner product and |.| the
norm in E. Furthermore, we use the notation ∂t = ∂

∂t , ∂x = ( ∂
∂x1

, ∂
∂x2

, .., ∂
∂xd

) and

∂2 = ∂xx = (∂2xixj
)di,j=1, for (t, x) ∈ [0, T ] × Rd. Note that if ψ = (ψ1, .., ψd) : Rd → Rd,

then ∂xψ , (∂xjψ
i)di,j=1 is a matrix. The meaning of ∂xy, ∂yy, ·· etc should be clear from

the context.
The following spaces will be used frequently in the sequel (X denote a generic Ba-

nach space):

1. L0([0, T ];X ) is the space of all measurable functions ϕ : [0, T ] 7→ X .

2. C([0, T ];X ) is the space of all continuous functions ϕ : [0, T ] 7→ X ; further, for any
p > 0 we denote |ϕ|∗,p0,t = sup

0≤s≤T
‖ϕ(s)‖pX when the context is clear.

3. For any k, n ≥ 0, Ck,n([0, T ] × E;E1) is the space of all E1-valued functions
ϕ(t, e), (t, e) ∈ [0, T ] × E, such that they are k-times continuously differentiable
in t and n-times continuously differentiable in e.

4. Ck,nb ([0, T ] × E;E1) is the space of those ϕ ∈ Ck,n([0, T ] × E;E1) such that all the
partial derivatives are uniformly bounded.
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5. For any k, n, m ≥ 0, Ck,n,m([0, T ]× E × E′;E1) is the space of all E1-valued func-
tions ϕ(t, e, e′), (t, e, e′) ∈ [0, T ] × E × E′, such that they are k-times continuously
differentiable in t, n-times continuously differentiable in e and m-times continu-
ously differentiable in e′.

6. Ck,n,mb ([0, T ]×E;E1) is the space of those ϕ ∈ Ck,n,m([0, T ]×E×E′;E1) such that
all the partial derivatives are uniformly bounded.

7. W 1,∞(E,E1) is the space of all measurable functions ψ : E 7→ E1, such that for
some constant K > 0 it holds that |ψ(x)− ψ(y)|E1

≤ K|x− y|E ,∀x, y ∈ E.
8. For any sub-σ-field G ⊆ FBT and 0 ≤ p < ∞, Lp(G;E) denote all E-valued G-

measurable random variable ξ such that IE|ξ|p < ∞. Moreover, ξ ∈ L∞(G;E)

means it is G-measurable and bounded.
9. For 0 ≤ p < ∞, Lp(F, [0, T ];X ) is the space of all X -valued, F-adapted processes

ξ satisfying IE

(∫ T

0

‖ξt‖pXdt

)
<∞. Also, ξ ∈ L∞(F, [0, T ]; IRd) means that the

process ξ is uniformly essentially bounded in (t, ω).
10. C(F, [0, T ] × E;E1) is the space of E1-valued, continuous random field ϕ : Ω ×

[0, T ]× E, such that for fixed e ∈ E, ϕ(., ., e) is an F-adapted process.

To simplify notation we often write C([0, T ] × E;E1) = C0,0([0, T ] × E;E1); and if E1 =

R, then we often suppress E1 for simplicity (e.g., Ck,n([0, T ] × E;R) = Ck,n([0, T ] ×
E), Ck,n(F, [0, T ] × E;R) = Ck,n(F, [0, T ] × E), ..., etc.). Finally, unless otherwise
specified, all vectors in the paper will be regarded as column vectors.

Throughout this paper we shall make use of the following standing assumptions:

(A1) The functions σ ∈ C0,1
b ([0, T ]×Rd; Rd×d), b ∈ C0,1

b ([0, T ]×Rd;Rd); and all the par-
tial derivatives of b and σ (with respect to x) are uniformly bounded by a common
constant K > 0. Further, there exists constant c > 0, such that

ξTσ(t, x)σ(t, x)T ξ ≥ c|ξ|2, ∀ x, ξ ∈ Rd, t ∈ [0, T ]. (2.2)

(A2) The function f ∈ C1
b (FB , [0, T ]×Rd ×R×Rd) ∩W 1,∞([0, T ]×Rd ×R×Rd) and

l ∈ W 1,∞(Rd). Furthermore, we denote the Lipschitz constants of f and l by a
common one K > 0 as in (A1); and we assume that

sup
0≤t≤T

{|b(t, 0)|+ |σ(t, 0)|+ |f(t, 0, 0, 0)|+ |l(0)|} ≤ K. (2.3)

(A3) The function g ∈ C0,2,3
b ([0, T ]×Rd ×R; Rd).

The following results are either standard or slight variations of the well-know results
in SDE and backward doubly SDE literature; we give only the statement for ready
reference.

Lemma 2.1. Suppose that b ∈ C(F, [0, T ]×Rd; Rd) ∩ L0(F, [0, T ]; W 1,∞(Rd; Rd)),

σ ∈ C(F, [0, T ] × Rd; Rd×d) ∩ L0(F, [0, T ];W 1,∞(Rd; Rd×d)), with a common Lip-
schitz constant K > 0. Suppose also that b(t, 0) ∈ L2(F, [0, T ];Rd) and σ(t, 0) ∈
L2(F, [0, T ]; Rd×d). Let X be the unique solution of the following forward SDE

Xs = x+

∫ t

s

b(r,Xr) dr +

∫ t

s

σ(r,Xr) dWr. (2.4)

Then for any p ≥ 2, there exists a constant C > 0 depending only on p, T and K, such
that

E(|X|∗,p0,t ) ≤ C

{
|x|p + E

∫ T

0

[|b(s, 0)|p + |σ(s, 0)|p] ds

}
(2.5)
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Lemma 2.2. Assume f ∈ C(F, [0, T ]×R×Rd)∩L0(F, [0, T ]; W 1,∞(R×Rd)), with a uni-
form Lipschitz constant K > 0, such that f(s, 0, 0) ∈ L2(F, [0, T ]) and g ∈ C(F, [0, T ] ×
R×Rd; Rd)∩L0(F, [0, T ]; W 1,∞(R×Rd; Rd)) with a common uniform Lipschitz constant
K > 0 with respect the first variable and the Lipschitz constant 0 < α < 1 which respect
the second variable and such that g(s, 0, 0) ∈ L2(F, [0, T ]). For any ξ ∈ L2(F0;R), let
(Y,Z) be the adapted solution to the BDSDE:

Ys = ξ +

∫ s

0

f(r, Yr, Zr) dr +

∫ s

0

g(r, Yr, Zr) dBr −
∫ s

0

Zr dWr. (2.6)

Then there exists a constant C > 0 depending only on T and on the Lipschitz constants
K and α, such that

E

∫ T

0

|Zs|2ds ≤ CE

{
|ξ|2 +

∫ T

0

[|f(s, 0, 0)|2 + |g(s, 0, 0)|2] ds

}
. (2.7)

Moreover, for all p ≥ 2, there exists a constant Cp > 0, such that

E(|Y |∗,p0,t ) ≤ CpE

{
|ξ|p +

∫ T

0

[|f(s, 0, 0)|p + |g(s, 0, 0)|p] ds

}
(2.8)

To end this section, let us consider the following variational equation that will play
a important role in this paper: for i = 1, .., d,

∇iXt,x
s = ei +

∫ t

s

∂xb(r,X
t,x
r )∇iXt,x

r dr +

d∑
j=1

∫ t

s

∂xσ
j(r,Xt,x

r )∇iXt,x
r dW j

r ,

∇iY t,xs = ∂xl(X
t,x
0 )∇iXt,x

0

+

∫ s

0

[∂xf(r,Ξt,x(r))∇iXt,x
r + ∂yf(r,Ξt,x(r))∇iY t,xr + 〈∂zf(r,Ξt,x(r)),∇iZt,xr 〉]dr

+

∫ s

0

[∂xg(r,Θt,x(r))∇iXt,x
r + ∂yg(r,Θt,x(r))∇iY t,xr ]dBr −

∫ s

0

∇iZt,xr dWr, (2.9)

where ei = (0, ...,
i
1, ..., 0)T ∈ Rd, Ξt,x = (Θt,x, Zt,x), Θt,x = (Xt,x, Y t,x) and σj(.) is the

j-th column of the matrix σ(.). We recall again that the superscription t,x indicates
the dependence of the solution on the initial date (t, x), and will be omitted when the
context is clear. We also remark that under the above assumptions,(

∇Xt,x,∇Y t,x,∇Zt,x
)
∈ L2(F; [0, T ];Rd×d)× C([0, T ];Rd)× L2(F, [0, T ];Rd×d)).

Further the d× d-matrix-valued process ∇Xt,x satisfies a linear SDE and ∇Xt,x
t = I, so

that [∇Xt,x
s ]−1 exists for s ∈ [0, t],P-a.s. More detail, can be found in Nualart [14] and

Pardoux and Peng [16].

For a fixed t ∈ [0, T ], let consider the process M t defined as follows

M t
r =

∫ t

r

σ−1(τ,Xt,x
τ )∇Xt,x

τ dWτ , 0 ≤ r < t ≤ T, (2.10)

which will play a key role in our representation. Clearly, for fixe t ∈ [0, T ], the process
M t is a martingale and using the Burkhölder-Davis- Gundy inequality, for any p > 1

there exist a generic constant depending only on constants K and c appear in (Al), the
time duration T and p > 1, such that

E(|M t
r |2p) ≤ Cp

(∫ t

r

|σ−1(τ,Xt,x
τ )∇Xt,x

τ |2dτ
)p

≤ Cp(t− r)pE(|∇X|∗,2ps,r ) ≤ Cp(t− r)p. (2.11)
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The following lemma gives the properties of the process M t. The proof is almost similar
to the proof of Proposition 4.1 in [13].

Lemma 2.3. For any fixed t ∈ [0, T ] and any H ∈ Lp0(Ft, [0, T ]; R), with p0 > 2,

(i) E

∣∣∣∣∫ t

0

1

t− r
HrM

t
rdr

∣∣∣∣ < +∞;

(ii) the mapping t 7→
{∫ t

0

1

t− r
HrM

t
rdr

}
(ω) is Hölder-([p0−2]/[p0(p0 +2)]) continuous

on [0, T ], IP.a.e. ω ∈ Ω;

(iii) the mapping t 7→ IE

{∫ t

0

1

t− r
HrM

t
rdr|FBt

}
(ω) is continuous on [0, T ], IP.a.e. ω ∈

Ω.

3 Main Results

We are now ready to state our main result which give the relation between the
strategy process Z and the derivative of the random field u, (solution of the SPDE (1.2))
when the coefficients l, f and g are only continuously differentiable.

Theorem 3.1. Assume (A1)-(A3). Let (Xt,x, Y t,x, Zt,x) be the adapted solution to the
FBDSDE (1.5), and set u(t, x) = Y t,xt the stochastic viscosity solution of SPDE (1.2).
Then,

(i) ∇xu(t, x) exists for all (t, x) ∈ [0, T ]× IRd; and for each (t, x), the following represen-
tation holds:

∇xu(t, x) = E

{
l(Xt,x

0 )N t
0 +

∫ t

0

f(r,Xt,x
r , Y t,xr , Zt,xr )N t

r dr +

∫ t

0

Dg(r,Xt,x
r , Y t,xr ) dBr|FBt

}
(3.1)

where

N t
r =

1

t− r
M t
r [∇Xt]

−1, 0 ≤ r < t ≤ T.

Let us note that for t ∈ [0, T ], the process N t is well define. Indeed, for all s ∈ [0, t],
∇Xs, the solution of the forward variational equations in (2.9) is invertible, thanks to
the Doléans-Dade stochastic exponential formula (see, e.g.,[19]);

(ii) For ∇xu(t, x) is continuous on [0, T ]× IRd;

(iii) Zt,xs = ∇xu(s,Xt,x
s )σ(s,Xt,x

s ),∀ s ∈ [0, t], IP-a.s.

As a byproduct, we derive the following corollary.

Corollary 3.2. Assume that the same conditions as in Theorem 3.1 hold, and let (Xt,x, Y t,x, Zt,x)

be the solution of FBDSDE (1.5). Then, there exists a constant C > 0 depending only on
K, T, and for any p ≥ 1, a positive Lp(Ω, (F ts)0≤s≤t,P)-process Γt,x, such that

|∇xu(t, x)| ≤ CΓt,xt , ∀ (t, x) ∈ [0, T ]× IRd, IP− a.s.

Consequently, one has

|Zt,xs | ≤ CΓt,xs (1 + |Xt,x
s |), ∀s ∈ [0, t], IP− a.s. (3.2)

Furthermore, ∀ p > 1, there exists a constant Cp > 0, depending on K, T , and p such
that

IE
{
|Xt,x|∗,p0,t + |Y t,x|∗,p0,t + |Zt,x|∗,p0,t

}
≤ Cp(1 + |x|p). (3.3)
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4 Proofs

This section is devoted to prove all results appear in this paper. To simplify pre-
sentation, we shall assume that d = 1. The higher dimensional case can be treated in
the same way without substantial difficulty. Also, in what follows we use the simpler
notation bx, σx, lx, (fx, fy, fz) and (gx, gy) for the partial derivatives of b, σ, l, f and g.
Moreover, we recall:

Θ = (X,Y ) = (Xt,x, Y t,x), Ξ = (Θ, Z) = (Θt,x, Zt,x), ∇Ξ = (∇Θ,∇Z) = (∇Θt,x,∇Zt,x).

(i) Let (t, x) ∈ [0, T ]×R be fixed. For h 6= 0 and s ∈ [0, t], define:

∇Xh
s :=

Xt,x+h
s −Xt,x

s

h
; ∇Y hs :=

Y t,x+hs − Y t,xs
h

; ∇Zhs :=
Zt,x+hs − Zt,xs

h
.

One can check that the processes ∇Xh
s and (∇Y hs ,∇Zhs ) are respectively the unique

solution of the following SDEs:

∇Xh
s = 1 +

∫ t

s

b̃hx(r)∇Xh
r dr +

∫ t

s

σ̃hy (r)∇Xh
r dWr, 0 ≤ s ≤ t, (4.1)

and

∇Y hs = l̃hx∇Xh
0 +

∫ s

0

[f̃hx (r)∇Xh
r + f̃hy (r)∇Y hr + f̃hz (r)∇Zhr ]dr

+

∫ s

0

[g̃hx(r)∇Xh
r + g̃hy (r)∇Y hr ]Br −

∫ s

0

∇Zhr dWr, 0 ≤ s ≤ t, (4.2)

where

b̃hx(r) =

∫ 1

0

bx(r,Xt,x
r + θh∇Xh

r )dθ b̃0x(r) = bx(r,Xt,x
r )

σ̃hx(r) =

∫ 1

0

σx(r,Xt,x
r + θh∇Xh

r )dθ σ̃0
x(r) = σx(r,Xt,x

r )

l̃hx =

∫ 1

0

lx(Xt,x
0 + θh∇Xh

0 )dθ l̃0x = lx(Xt,x
0 ),

ϕ̃hx(r) =

∫ 1

0

ϕ(r,Ξt,xr + θh∇Ξhr )dθ ϕ̃0(r) = ϕ(r,Ξt,xr ), ϕ = fx, fy, fz, respectively

ψ̃hx(r) =

∫ 1

0

ψ(r,Θt,x
r + θh∇Θh

r )dθ ψ̃0(r) = ψ(r,Θt,x
r ), ψ = gx, gy, respectively.

Let us first state and prove this preparing lemma.

Lemma 4.1. Assume that conditions of Theorem 3.1 are fulfilled. Then,

(i)

E|∇Xh −∇X|∗,20,t → 0 as h→ 0.

(ii)

E

(
|∇Y h −∇Y |∗,20,t +

∫ t

0

|∇Zhs −∇Zs|2ds
)
→ 0 as h→ 0.
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Proof. (i) Applying Lemma 2.1 to (4.1), there exist a constant C > 0, independent of h,
such that, for all p ≥ 2,

E
(
|∇Xh|∗,p0,t

)
≤ C.

Next, according to the definition of ∇Xh, it’s holds that, for all p ≥ 2,

E
(
|Xt,x+h −Xt,x|∗,p0,t

)
→ 0 as h→ 0, (4.3)

which provides that as h→ 0,

E

(∫ t

0

|̃bhx(r)− b̃0x(r)|pdr
)
→ 0,

E

∫ t

0

|σ̃h(r)− σ̃0(r)|pdr → 0, (4.4)

On the other hand, let us recall that the process ∆Xh
s := ∇Xh

s − ∇Xs satisfies the
following SDE:

∆Xh
s =

∫ s

t

[̃bx(r)∆Xh
r + αh(r)]dr +

∫ s

t

[σ̃x(r)∆Xh
r + βh(r)]dWr, (4.5)

where

αh(r) = (̃bhx(r)− b̃0x(r))∇Xr,

βh(r) = (σ̃hx(r)− σ̃0
x(r))∇Xr. (4.6)

Once again, applying Lemma 2.1 to (4.5) together with (4.4) and (4.6), (i) is complete.
(ii) Recalling (4.2) and applying Lemma 2.2, there exits a constant C > 0, independent
of h, such that, for all p ≥ 2,

E

(
|∇Y h|∗,p0,t +

∫ t

0

|∇Zhs |2ds
)
≤ C.

Therefore, for all p ≥ 2,

E

(
|Y t,x+h − Y t,x|∗,p0,t +

∫ t

0

|Zt,x+hs − Zt,xs |2ds
)
→ 0 as h→ 0, (4.7)

and

E|l̃hx − l̃0x|p → 0,

E

∫ t

0

|ϕ̃h(r)− ϕ̃0(r)|pdr → 0, (4.8)

E

∫ t

0

|ψ̃h(r)− ψ̃0(r)|pdr → 0,

as h → 0. Hence, since (∇Y,∇Z) is the solution to the (doubly backward) variational
equation in (2.9), we get

E

(
|∇Y h −∇Y |∗,20,t +

∫ t

0

|∇Zhs −∇Zs|2ds
)
→ 0 as h→ 0. (4.9)

ECP 18 (2013), paper 64.
Page 8/15

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2223
http://ecp.ejpecp.org/


Representation theorem for SPDEs

Indeed, denoting ∆Y hs := ∇Y hs −∇Ys and ∆Zhs := ∇Zhs −∇Zs, it follows from (4.2) and
(2.9) that

∆Y hs = l̃x∆Xh
0 + (l̃hx − l̃0x)∇X0

+

∫ s

0

[f̃x(r)∆Xh
r + f̃y(r)∆Y hr + f̃z(r)∆Z

h
r + εh1 (r)]dr

+

∫ s

0

[g̃x(r)∆Xh
r + g̃y(r)∆Y hr + εh2 (r)]dBr (4.10)

−
∫ s

0

∆Zhs dWs, s ∈ [0, t],

where

εh1 (r) = (f̃hx (r)− f̃0x(r))∇Xr + (f̃hy (r)− f̃0y (r))∇Yr + (f̃hz (r)− f̃0z (r))∇Zr,
εh2 (r) = (g̃hx(r)− g̃0x(r))∇Xr + (g̃hy (r)− g̃0y(r))∇Yr. (4.11)

Thanks to Lemma 2.2, we obtain

E

{
|∆Y h|∗,2t,T +

∫ t

0

|∆Zhs |2ds
}

≤ CE

{
|∆Xh

0 |2 + |l̃hx − l̃0x|2|∇X0|2 +

∫ t

0

(|∆Xh
r |2 + |ε(r)|2 + |ε(r)|2)dr

}
.

Thus, the result follows from (4.3), (4.8), (4.11) and the dominated convergence theo-
rem.

4.1 Proof of Theorem 3.1

(i) Let consider the σ-algebra Ft = (F ts)0≤s≤t defined by F ts = FBs ⊗ FWs,t . Then

Y t,x, Y t,x+h, ∇Y h and ∆Y h are all Ft-adapted processes. In particular, since W is
a Brownian motion on (Ω2,F2,P2), applying the Blumenthal 0-1 law (see, e.g, [11]),

Y t,xt := u(t, x), Y t,x+ht := u(t, x + h), ∇Y ht :=
1

h
[u(t, x + h) − u(t, x)] and ∆Y ht are all

independent of (or a constant with respect to) ω2 ∈ Ω2. Therefore it follows from Lemma
4.1 that ∂xu exists, as the random field and is equal to ∇Y t,xt , for all (t, x) ∈ [0, T ]×Rd.
Finally, taking the conditional expectation on the both sides of (2.9) at s = t, we have

∂xu(t, x) = IE
{
lx(Xt,x

0 )∇Xt,x
0

+

∫ t

0

[fx(r,Θt,x
r , Zt,xr )∇Xt,x

r + fy(r,Θt,x
r , Zt,xr )∇Y t,xr + fz(r,Θ

t,x
r , Zt,xr )∇Zt,xr ]dr

+

∫ t

0

[gx(r,Θt,x
r )∇Xt,x

r + gy(r,Θt,x
r )∇Y t,xr ]dBr | FBt

}
. (4.12)

On the other hand, it follows from Proposition 2.3 in [17] and the notation of its proof
that (X,Y, Z), the solution of the FBSDEs (1.5) belong to D1,2. Moreover, one can show,
for 0 < τ < r < t,

fx(r,Θt,x
r , Zt,xr )∇Xt,x

r + fy(r,Θt,x
r , Zt,xr )∇Y t,xr + fz(r,Θ

t,x
r , Zt,xr )∇Zt,xr

= Dτf(r,Θt,x
r , Zt,xr )σ−1(τ,Xt,x

τ )∇Xt,x
τ .

Since the left-hand side above is independent of τ ; integrating both sides from τ = r < t

to τ = t and then dividing by t− r, we obtain that

fx(r,Θt,x
r , Zt,xr )∇Xt,x

r + fy(r,Θt,x
r , Zt,xr )∇Y t,xr + fz(r,Θ

t,x
r , Zt,xr )∇Zt,xr

=
1

t− r

∫ t

r

Dτf(r,Θt,x
r , Zt,xr )σ−1(τ,Xt,x

τ )∇Xτdτ. (4.13)
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Since σ−1 is bounded by (2.2), the process σ−1(., X)∇X ∈ L2(Ft, [0, T ]) and therefore it
belong to Dom(δ) (see section 2 in [13] combined with proof of Proposition 2.3 in [17]).
Further, thanks to Lemma 2.1 and Lemma 2.2, it can be checked that{

|f(r,Θt,x
r )|2

∫ t

0

|σ−1(τ,Xτ )∇Xτ |2dτ
}
< +∞, ∀ r ∈ [0, t]. (4.14)

Thus, by Lemma 2.5 (i) in [13] and using integration by parts, we have∫ t

r

Dτf(r,Θt,x
r , Zt,xr )σ−1(τ,Xt,x

τ )∇Xτdτ (4.15)

= f(r,Θt,x
r )

∫ t

0

σ−1(τ,Xτ )∇XτdWτ

−
∫ t

r

f(r,Θt,x
r , Zt,xr )σ−1(τ,Xt,x

τ )∇XτdWτ , (4.16)

where the second integral on the right-hand side should be understood as an anticipat-
ing stochastic integral such its conditional expectationE(.|FBt ) is zero. Next, plug (4.16)
into the right-hand side of (4.13) and then take the conditional expectation E(.|FBt ) on
both sides, we obtain that

E
(
fx(r,Θt,x

r , Zt,xr )∇Xt,x
r + fy(r,Θt,x

r , Zt,xr )∇Y t,xr + fz(r,Θ
t,x
r , Zt,xr )∇Zt,xr |FBt

)
=

1

t− r
E
{
f(r,Θt,x

r , Zt,xr )M t
r |FBt

}
. (4.17)

Using similar arguments, we show that

E
{
lx(Xt,x

0 )∇Xt,x
0 |FBt

}
=

1

t
E
{
l(Xt,x

0 )M t
0|FBt

}
. (4.18)

Moreover, since g belongs in C0,2,3
b ([0, T ]×Rd ×R;Rd), we have

gx(r,Θt,x
r )∇Xt,x

r + gy(r,Θt,x
r )∇Y t,xr = Dg(r,Θt,x

r ), (4.19)

where Dg denotes the classical differential of g.
Finally, plugging (4.17), (4.18) and (4.19) into (4.12), and applying Lemma 2.3, the
representation (3.1) holds and (i) is complete.
(ii) Since the variable ∂xu(t, x) = ∇Y t,xt , does not depend on ω2, we can rewrite it as
follows:

∂xu(t, x) = E2(∇Y t,xt ), (4.20)

where E2 is the expectation with respect to P2 introduced at the beginning of Section
2. Let (ti, xi) ∈ [0, T ]×R, i = 1, 2. We assume without losing generality that t1 < t2 and
in order to simplify the notation, write for i = 1, 2, r ∈ [0, t2]

Θi = (Xi, Y i) = (Xti,xi , Y ti,xi)

Ξi = (Θi, Zi) = (Θti,xi , Zti,xi)

∇Ξi = (∇Θi,∇Zi) = (∇Θti,xi ,∇Zti,xi)

f ix(r) = ∂xf(r,Ξi(r)), f iy(r) = ∂yf(r,Ξi(r)), f iz(r) = ∂zf(r,Ξi(r)),

gix(r) = ∂xg(r,Θi(r)), giy(r) = ∂yg(r,Θi(r)),

lix = ∂xl(X
i
0), biy(r) = ∂xb(r,X

i(r)), σix(r) = ∂xσ(r,Xi(r)).

Further, we set ∆̂Xr = ∇X1
r − ∇X2

r , ∆̂Yr = ∇Y 1
r − ∇Y 2

r , ∆̂Zr = ∇Z1
r − ∇Z2

r and for
each functions ϕ we denote ∆̂12[ϕ] = ϕ1 − ϕ2. Also, in the sequel C > 0 denotes a
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generic constant depending only on the data and may vary line to line. Recalling (4.20)
and (3.1) we have, for P1-almost all ω1 ∈ Ω1,

|∂xu(t1, x1)− ∂xu(t2, x2)|2

≤ CE2

(
|l1x∇X1

0 − l2x∇X2
0 |2
)

+E2

(
(t2 − t1)

∫ t2

t1

[|fx(r)|2|∇X1
r |2 + |fy(r)|2|∇Y 1

r |2 + |fz(r)|2|∇Z1
r |2]dr

)
+E2

(∫ t2

t1

[|gx(r)|2|∇X1
r |2 + |gy(r)|2|∇Y 1

r |2]dr

)
+E2

(∫ t2

0

[|∆̂12[fx∇X.](r)|2 + |∆̂12[fx∇Y.](r)|2 + |∆̂12[fx∇Z.](r)|2]dr

)
+E2

(∫ t2

0

[|∆̂12[gx∇X.](r)|2 + |∆̂12[gx∇Y.](r)|2]dr

)
. (4.21)

≤ CE2

{
|∆̂X0|2 + |∇X2

0 |2|∆̂12[lx]|2 + (t2 − t1)

∫ t2

t1

[|∇X1
r |2 + |∇Y 1

r |2 + |∇Z1
r |2]dr

+

∫ t2

t1

[|∇X1
r |2 + |∇Y 1

r |2]dr +

∫ t2

0

[|∆̂Xr|2 + |∆̂Yr|2 + |∆̂Zr|2]dr

+

∫ t2

0

[|∆̂12[fx](r)∇X2
r |2 + |∆̂12[fy](r)∇Y 2

r |2 + |∆̂12[fz](r)∇Z2
r |2]dr

+

∫ t2

0

[|∆̂12[gx](r)∇X2
r |2 + |∆̂12[gy](r)∇Y 2

r |2]dr

}
.

For the estimate of the right-hand side of (4.21), we note that the process (∆̂X, ∆̂Y, ∆̂Z)

satisfies the following coupled FSDE-BDSDE (for s ∈ [0, t2]):

∆̂Xs = (∇X1
t2 − 1) +

∫ t2

s

[b1x(r)∆̂Xr + ∆̂12[bx](r)∇X2
r ]dr

+

∫ t2

s

[σ1
x(r)∆̂Xr + ∆̂12[σx](r)∇X2

r ] dWr, (4.22)

∆̂Ys = l1x∆̂X0 + ∆12[lx]∇X2
0 +

∫ s

0

[f1x(r)∆̂Xr + f1y (r)∆̂Yr + f1z (r)∆̂Zr + ε3(r)]dr

+

∫ s

0

[g1x(r)∆̂Xr + g1y(r)∆̂Yr + ε4(r)]dBr −
∫ s

0

∆̂Zr dWr,

where

ε3(r) = ∆̂12[fx](r)∇X2
r + ∆̂12[fy](r)∇Y 2

r + ∆̂12[fz](r)∇Z2
r

and

ε4(r) = ∆̂12[gx](r)∇X2
r + ∆̂12[gy](r)∇Y 2

r .

Now let Gt1,t2(.) denote a generic FW -adapted, continuous process that is uniformly
bounded and satisfies limt1↑t2 Gt1,t2(r) = 0, ∀ r ∈ [0, t2], P2-a.s. Again, we allow it to vary

from line to line (i.e all ∆̂12[ϕ](.), where ϕ = bx, σx, fx, fy, fz, gx, gy can be denoted as
such). Applying Lemma 2.1 and recalling the assumption on b and σ, we get,

E2|∆̂X|∗,20,t2
≤ CE

{
|∇X1

t2 − 1|2 +

∫ t2

0

[|∆̂12[bx](s)|2 + |∆̂12[σx](s)|2]|∇X2
s |2ds

}
≤ CE2

{
|∇X1

t2 − 1|2 +

∫ t2

0

Gt1,t2(s)|∇X2
s |2ds

}
. (4.23)
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Combining (4.23) with Lemma 2.2, it holds that:

E2

{
|∆̂Y |∗,20,t2

+

∫ t2

0

|∆̂Zs|2ds
}

≤ CE2

{
|∆̂X0|2 + |∆̂12[lx]|2|∇X2

0 |2

+

∫ t2

0

[|∆̂Xr|2 + |∆̂12[fx](s)|2 + |∆̂12[fy](s)|2 + |∆̂12[fz](s)|2]|∇Ξ2(s)|2ds

+

∫ t2

0

[|∆̂Xr|2 + |∆̂12[gx](s)|2 + |∆̂12[gy](s)|2]|∇Θ2(s)|2ds
}

≤ CE2

{
|∇X1

t2 − 1|2 + |∆̂12[lx]|2|∇X2
0 |2 +

∫ t2

0

Gt1,t2(s)|∇Ξ2(s)|2ds
}
. (4.24)

Plugging (4.23) and (4.24) into (4.21), we obtain that:

|∂xu(t1, x1)− ∂xu(t2, x2)|4 ≤ CE2

{
|∇X1

t2 − 1|4 + |∆̂12[lx]|4|∇X2
0 |4 + (t1 − t2)3

∫ t2

t1

|∇Θ1(s)|4ds

+(t1 − t2)

∫ t2

t1

|Ξ1(s)|4ds+

∫ t2

0

Gt1,t2(s)(|∇Ξ2(s)|4 + |∇Θ1(s)|4)ds

}
.

Now, for P1-almost all ω1 ∈ Ω1, and for a fixed (t2, x2), by dominated convergence
theorem we derive that

|∂xu(t1, x1)− ∂xu(t2, x2)|4 → 0 as t1 ↑ t2 and x1 → x2.

Similarly we can show that, for fixed (t1, x1),

|∂xu(t1, x1)− ∂xu(t2, x2)|4 → 0 as t2 ↑ t1 and x2 → x1.

This proves (ii).
(iii) For a continuous function ϕ, there exists {ϕε}ε>0 a family of C0,∞ functions such
that ϕε converges to ϕ uniformly on ε. Since b, σ, l, f are all uniformly Lipschitz
continuous, we may assume that the first order partial derivatives of bε, σε, lε, fε are
all uniformly bounded, by the corresponding Lipschitz constants of b, σ, l, f uniformly
in ε > 0. Let us consider (Xt,x(ε), Y t,x(ε), Zt,x(ε)) the unique solution of the family of
FBDSDEs 

Xt,x
s (ε) = x+

∫ t

s

bε(r,Xt,x
r (ε))dr +

∫ t

s

σε(r,Xt,x
r (ε)) dWr;

Y t,xs (ε) = lε(Xt,x
0 (ε)) +

∫ s

0

fε(r,Xt,x
r (ε), Y t,xr (ε), Zt,xr (ε))dr

+

∫ s

0

g(r,Xt,x
r (ε), Y t,xr (ε))dBr −

∫ s

0

Zt,xr (ε) dWr.

Applying Theorem 3.2 in [17], we derive that uε defined by uε(t, x) = Y t,xt (ε) is the
classical solution of SPDE

duε(t, x) = [Lεuε(t, x) + fε(t, x, uε(t, x), (∇uεσε)(t, x))] dt

+g(t, x, uε(t, x)) dBt, (t, x) ∈ (0, T )×Rd,

uε(0, x) = lε(x), x ∈ Rd.
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For any {xε} ⊂ IRN such that xε → x as ε→ 0, define
(Xε, Y ε, Zε) = (Xt,xε

(ε), Y t,x
ε

(ε), Zt,x
ε

(ε)). Using once again [17], we have

Y εs = uε(s,Xε
s ); Zεs = ∂xu

ε(s,Xε
s )σε(s,Xε

s ), ∀ s ∈ [0, t], IP-a.s.

Moreover, since (∇Xε,∇Y ε,∇Zε) is a unique solution of forward-backward doubly SDE

∇Xε
s = 1 +

∫ t

s

bεx(r,∇Xε
r )∇Xε

rdr +

∫ t

s

σεx(r,∇Xε
r )∇Xε

r dWr,

∇Y εs = lεx(Xε
0)∇Xε

0 +

∫ s

0

[fεx(r,Ξ(r)ε)∇Xε
r + fεy (r,Ξ(r)ε)∇Y εr + fεz (r,Ξ(r)ε)∇Zεr ]dr

+

∫ s

0

[gx(r,Θ(r)ε)∇Xε
r + gεy(r,Ξ(r)ε)∇Y εr ]dBr −

∫ s

0

ZεrdWr,

(4.25)

Lemma 2.1 and Lemma 2.2 provide that, for all p ≥ 2

IE

{
|Xε|∗,p0,t + |Y ε|∗,p0,t +

∫ t

0

|Zεs |2ds
}
≤ C,

IE

{
|∇Xε −∇X|∗,p0,t + |∇Y ε −∇Y |∗,p0,t +

∫ t

0

|∇Zεs −∇Zs|2ds
}
→ 0,

IE

{
|Xε −X|∗,p0,t + |Y ε − Y |∗,p0,t +

∫ t

0

|Zεs − Zs|2ds
}
→ 0

and

IE

{
|∇Xε −∇X|∗,p0,t + |∇Y ε −∇Y |∗,p0,t +

∫ t

0

|∇Zεs −∇Zs|2ds
}
→ 0,

as ε → 0. Furthermore, passing to the limit in (4.25) and using the dominated conver-
gence theorem one derives that

∂xu
ε(t, xε)→ ∂xu(t, x), as ε→ 0 P-a.s.,

for each (t, x) ∈ [0, T ]×R. Consequently, possibly along a subsequence, we obtain

Zs = lim
ε→0

Zεs = lim
ε→0

∂uε(s,Xε
s )σε(s,Xε) = ∂u(s,Xs)σ(s,Xs), ds⊗ dIP-a.e.

Since for P-a.e. ω, ∂xu(., .) and X are both continuous, the above equalities actually
holds for all s ∈ [0, t], P-a.s. (iii) is done and the proof is complete.

4.2 Proof of Corollary 3.2

We assume without lost of generality that p ≥ 2. By Lemma 2.1 and Lemma 2.2, there
exists a constant C > 0 such that

E

|∇Xt,x|∗,p0,t + |∇Y t,x|∗,p0,t +

(∫ T

0

|∇Zt,xr |2dr

)p/2 ≤ C.
Then, from the identity (3.1), we deduce immediately that |∂xu(t, x)| ≤ CΓt,xt , for all
(t, x) ∈ [0, T ]×R, where

Γt,xs = E

(
|∇Xt,x

0 |+
∫ s

0

[|∇Xt,x
r |+ |∇Y t,xr |+ |∇Zt,xr |]dr

+

∣∣∣∣∫ s

0

[∇Xt,x
r +∇Y t,xr ]dBr

∣∣∣∣ | F ts) , ∀ s ∈ [0, t].
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Moreover, for s ∈ [0, t], E(|Γt,xs |p) ≤ C and hence (iii) of Theorem 3.1 implies that

|Zt,xs | ≤ CΓt,xs (1 + |Xt,x
s |), P-a.s.

Once again Lemma 2.1, 2.2 and (3.2) yields (3.3), for p ≥ 2.

Remark 4.2. Originally, this paper is devoted to extend entirely the work of Ma and
Zhang [13]. More precisely, we want to establish the representation theorem for the
spatial gradient ∇xu of u, the solution of SPDE and the strategy process Z of the solu-
tion to associated BDSDE respectively as follows: for all (t, x) ∈ [0, T ]×Rd, and 0 ≤ s ≤ t

∇xu(t, x) = E

{
l(Xt,x

0 )N t
0 +

∫ t

0

f(r,Xt,x
r , Y t,xr , Zt,xr )N t

r dr +

∫ t

0

Dg(r,Xt,x
r , Y t,xr ) dBr|FBt

}
and

Zt,xs = E

{
l(Xt,x

0 )N t
0 +

∫ s

0

f(r,Xt,x
r , Y t,xr , Zt,xr )N t

r dr +

∫ s

0

Dg(r,Xt,x
r , Y t,xr ) dBr|F ts

}
σ(s,Xt,x

s ), .

Unfortunately at this stage of our work, we are limited to the first representation so that
the second one becomes questionable. This is due to the real difficulty to establish the
analogue of Lemma 4.1 appear in [13] which is essential to prove this representation.
Indeed, since for all t ∈ [0, T ], the object F = {F ts = FBs ⊗ FWs,T ∨ N , t ≤ s ≤ T} is
not a filtration, the optional projection method used by Ma and Zhang does not apply in
our case. We hope that in our future discussion, we will find an alternative to solve this
problem.
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