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Abstract

We show that excursion theory and Azéma’s exponential result allow to solve partly
Skorokhod’s embedding problem.
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1 Some particular Brownian stopping times

Throughout the paper, (Bt) denotes one-dimensional standard Brownian motion, and
(Lt) is its local time. In the sequel, we look at some variant of the Azéma-Yor algorithm
[2] for solving Skorokhod’s embedding problem with the help of stopping times depend-
ing only on Brownian motion and its supremum.

1.1

In this paper, we wish to identity the law of BθF , for the stopping time:

θF = inf{t : F (Lt; |Bt|) ≥ a}.

The function F : R+ ×R+ −→ R+ is a continuous function with the following property:
denoting F (σ, x) ≡ Fσ(x), we assume that Fσ is strictly increasing from 0 to∞, and we
denote by F−1σ (·) the inverse of Fσ:

F (−1)
σ (y) = inf{x : F (σ, x) = y}.

Thus, we may rewrite:

θF = inf{t : |Bt| ≥ F−1Lt
(a)}

= inf{t : h(Lt)|Bt| ≥ 1} := θ(h),

where:

h(l) =
1

F−1l (a)
.
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The main result in this paper is that:

|Bθ(h) | ∼
1

h
(
H−1(e)

) (1.1)

where e is a standard exponential variable, H(x) =
∫ x
0
dy h(y).

As an illustration, we note that for h1(l) = l,

|Bθ(h1) | ∼
1√
2e
.

It would be interesting to know which class of distributions is obtained from the
RHS of (1.1). In fact, if h

(
H−1(u)

)
= ϕ(u) is Lipschitz, then H is the only solution of

the ordinary differential equation H ′(t) = ϕ(H(t)); H(0) = 0. Thus, the family of laws
obtained from (1.1) is quite rich; for example take for h a positive power of l.

1.2

The remainder of this paper consists in three sections:

• in Section 2, we use Azéma exponential result to obtain (1.1);

• in Section 3, we use an excursion argument for the same purpose;

• in Section 4, we mention two points to be looked at carefully;

• in Section 5, we sketch how the previous arguments allow to recover the Azéma-
Yor algorithm for solving Skorokhod’s embedding problem.

2 A proof of (1.1) via Azéma’s exponential result

2.1

We first state Azéma’s exponential result:

Proposition 2.1 (Azéma [1]). Let (ALt , t ≥ 0) be the predictable compensator of 1(L≤t),
where L stands for the end of a predictable set on (Ω,F , (Ft), P ), i.e:

L = sup{t : (t, ω) ∈ Γ},

for Γ a predictable set.
Then, under the hypothesis (CA): all martingales are continuous, and L avoids all

(Ft) stopping times T , i.e.: P (L = T ) = 0, the variable AL∞ is a standard exponential
variable with mean 1.

2.2

We compute
(
AL

(h)

t

)
where L(h) = sup{t ≤ θ(h) : Bt = 0}.

Proposition 2.2.

AL
(h)

t = H(Lθ(h)∧t).

Proof. We use the balayage formula (see, e.g. [3], Chapter VI) to assert that, for any
bounded predictable process (Ks), one has:

Kgt |Bt| =
∫ t

0

Kgsd|Bs|.

where gt = sup{s < t : Bs = 0}. In fact, we shall use the following variant:

Kgth(Lt)|Bt| =
∫ t

0

Kgsh(Ls)d|Bs|.

ECP 18 (2013), paper 48.
Page 2/5

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2178
http://ecp.ejpecp.org/


Illustration of various methods for solving partly Skorokhod’s embedding problem

Thus, applying the optional stopping theorem, we get:

E
[
Kg

θ(h)

]
= E

[ ∫ θ(h)

0

Ksh(Ls)dLs

]
.

which yields the desired result.

2.3

As a consequence of the definition of θ(h), we get

|Bθ(h) | =
1

h(Lθ(h))
(2.1)

from Proposition 2.2, we deduce:

Lθ(h)
(law)
= H−1(e) (2.2)

which proves, together with (2.1) that (1.1) is satisfied.

3 The excursion theory argument

3.1

Call (τl, l ≥ 0) the inverse local time. The excursion theory argument runs in the
following equalities between the random sets:

(Lθ(h) ≥ l) = (θ(h) ≥ τl)
= (∀λ ≤ l, for t ∈ (τλ−, τλ), one has: h(λ)|Bt| < 1)

=

(∑
λ≤l

1{h(λ) sup
τλ−≤t≤τλ

|Bt|≥1} = 0

)
.

From excursion theory, we now deduce:

Proposition 3.1.

Lθ(h)
(law)
= H−1(e),

hence (1.1) holds.

Proof. By excursion theory, the process

N
(h)
l =

∑
λ≤l

1{h(λ) sup
τλ−≤t≤τλ

|Bt|≥1}

is an inhomogeneous Poisson process, whose intensity measure may be expressed sim-
ply in terms of the Itô measure n; precisely, we have:

(Lθ(h) ≥ l) = (N
(h)
l = 0)

hence, denoting by ε the generic excursion, and V (ε) its life time:

P (Lθ(h) ≥ l) = exp
(
−
∫ l

0

dλ n
(
h(λ) sup

t≤V (ε)

|εt| ≥ 1
))

= exp
(
−
∫ l

0

dλ
1

1/h(λ)

)
= exp(−H(l))

= P (e ≥ H(l)),
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hence the result. For the second equality, we have used:

n
(

sup
t≤V (ε)

|εt| > a
)

=
1

a
.

4 Taking some care

In our discussion, two points need to be looked at carefully.

(i) First, we want θ(h) < ∞ a.s. This may be ensured as follows: there is the repre-
sentation:

h(Lt)|Bt| = β
( ∫ t

0

h2(Ls)ds
)
,

as a consequence of Dubins-Schwarz and the balayage formula,
where (β(u), u ≥ 0) is a reflecting Brownian motion. Thus,
if
∫∞
0
h2(Lu)du = ∞ a.s., it follows that θ(h) < ∞ a.s. Now, it is easily shown that∫∞

h2(Lu)du = ∞ iff
∫∞

h(l)dl = ∞, a condition we assume in the paper. Indeed,
that these two integrals are infinite simultaneously follows from the general fact
that the bracket of a martingale at infinity is infinite if and only if its local time
at infinity is infinite. Here, this martingale is Mt = h(Lt)Bt, whose local time is
H(Lt).

(ii) Some care also has to be taken in the application of the optional stopping theorem
in our proof of Proposition 2.2. But, in fact, replacing θ(h) by θ(h) ∧ n, and using
dominated convergence, and monotone convergence, we justify the use of the
optional stopping theorem.

5 A relation with the Azéma-Yor algorithm for solving Skorokhod’s
problem

We note that the arguments in Section 2 and Section 3 allow (almost) to recover the
Azéma-Yor result for Skorokhod embedding. Azéma-Yor [2] have obtained an explicit
solution to Skorokhod’s embedding problem, as follows: given a probability µ(dx) on R,
with first moment, and centered, if:

Tµ = inf{t : St ≥ ψµ(Bt)},

then
BTµ ∼ µ,

where St = sup
s≤t

Bs, and ψµ(x) = 1
µ[x,∞)

∫
[x,∞)

tdµ(t) is the Hardy-Littlewood function

attached to µ.
Indeed, similar calculation as above show that, if

Gµ = sup{t ≤ Tµ : St −Bt = 0},

then the increasing process associated to Gµ is: Σ(St∧Tµ), where Σ(x) =
∫ x
0

dy
y−φ(y) , with

φ the inverse of ψµ. Thus,

Σ(STµ)
(law)
= e,
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that is:

P (STµ ≥ x) = exp(−Σ(x)).

But, it is easily shown, from this result, that:

BTµ = φ(STµ) ∼ µ.
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