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This paper studies a particle model connected to a Pieri-type formula for the symplec-
tic compact group. Particles evolve independently apart from a blocking and pushing
interaction such that they remain in the set of symplectic Gelfand-Tsetlin patterns.
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1 introduction

The objective of this paper is to study an interacting particle model where particles
can move to the left or to the right and are subject to blocking and pushing interac-
tions. Moreover, particles are constrained to stay on the non-negative real axis. Such
a model is referred to as an interacting particle model with a wall. We prove that our
model is related to a Pieri-type formula for the symplectic compact group. One can
find for instance in [2] and [7] other examples of models with a wall. In these last two
references, models only differ by the behavior of the particles near the wall : in the first
one, these particles are reflected by the wall, in the second one, they are blocked by the
wall. Actually the first one, connected to models of [4], is strongly related to represen-
tations of the orthogonal group whereas the second one involves representations of the
symplectic compact group. Pursuing the study of models with a wall in the same way
as in [4] we construct here a new interacting particle model with a wall depending on
parameters. Two particular values of the parameters lead on the one hand to a model
studied in [7] and on the other hand to a random matrix model of [3].

Let us recall that Pieri’s formula describes the product of a Schur polynomial by a
complete symmetric function. It is a specific case of the Littlewood-Richardson rules
for decomposing the tensor products of representations of the unitary group into irre-
ducible components. In that specific case, irreducible components of the tensor prod-
ucts have a multiplicity equal to one. For the other compact Lie groups, similar formula
exists but the decompositions aren’t necessarily multiplicity-free. A fundamental differ-
ence between model considered here and models usually considered in the literature
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Interacting particle models and the Pieri-type formulas

(see [2] and [7] for instance) is that it is related to tensor products of representations
which aren’t decomposed into irreducible components with multiplicity one. In addi-
tion, the case with non equal weights studied here is of particular interest since it
exposes connections between symplectic Schur functions and the random particle mod-
els.

The paper is organized as follows. In the second section, I shall recall the definitions
of the symplectic Gelfand-Tsetlin patterns and Schur functions. In the third one I will
describe the interacting particle model studied in the paper. In the fourth section I’ll re-
call some properties about tensor products of special representations of the symplectic
compact group, which naturally leads to some Markov kernels involved in the interact-
ing particle model. These Markov kernels are defined in the fifth section. Section six is
devoted to a random matrix model related to the particle model. Results of the paper
are stated in section seven. I will sketch the proofs in the last section.

2 Symplectic Gelfand-Tsetlin patterns, symplectic Schur functions

Here and elsewhere N stands for the set of nonnegative integers. For n ∈ N∗ and
x, y ∈ Rn such that xn ≤ · · · ≤ x1 and yn ≤ · · · ≤ y1, we write x � y if x and y are
interlaced, i.e.

xn ≤ yn ≤ xn−1 ≤ · · · ≤ x1 ≤ y1.
When x ∈ Rn and y ∈ Rn+1 we add the relation yn+1 ≤ xn. We denote by |x| the sum of
the coordinates

∑n
i=1 xi.

Definition 2.1. Let k be a positive integer.

1. We denote by GTk the set of symplectic Gelfand-Tsetlin patterns defined by

GTk = {(x1, · · · , xk) : xi ∈ N[ i+1
2 ] and xi−1 � xi, 1 ≤ i ≤ k}.

2. If x = (x1, . . . , xk) is a symplectic Gelfand-Tsetlin pattern, xi is called the ith row
of x for i ∈ {1, . . . , k}.

3. For λ ∈ N[ k+1
2 ] such that λ[ k+1

2 ] ≤ · · · ≤ λ1, the subset of GTk of symplectic Gelfand-

Tsetlin patterns having the kth row equal to λ is denoted by GTk(λ).

Note that the exponent in the coordinates of x ∈ GTk means floor. Usually, a sym-
plectic Gelfand-Tsetlin pattern is represented by a triangular array as indicated at figure
1 for k = 2r. Actually the further to the right an entry is, the larger it is. Thus the inter-
lacing property satisfied by the coordinates of a symplectic Gelfand-Tsetlin pattern is
graphically represented. For x a symplectic Gelfand-Tsetlin pattern of GTk and (qi)i≥1
a sequence of positive real numbers one defines wkx(q1, . . . , q[ k+1

2 ]) recursively by letting

w1
x(q1) = q

|x1|
1 ,

and

w2i
x (q1, . . . , qi) = w2i−1

x (q1, . . . , qi) q
|x2i−1|−|x2i|
i ,

w2i+1
x (q1, . . . , qi, qi+1) = w2i

x (q1, . . . , qi) q
|x2i+1|−|x2i|
i+1 ,

for i ∈ N∗.
Definition 2.2. For λ ∈ N[ k+1

2 ] such that λ1 ≥ · · · ≥ λ[ k+1
2 ], we denote by skλ the sym-

plectic Schur function defined by

skλ(q) =
∑

x∈GTk(λ)

wkx(q),
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for q = (q1, . . . , q[ k+1
2 ]) ∈ R

[ k+1
2 ]

+ .

Notice that the cardinality of GTk(λ) is equal to skλ(1), with 1 = (1, . . . , 1) ∈ R[ k+1
2 ].

−x2r
1 · · · −x2r

r 0 x2r
r · · · x2r

1

−x2r−1
1 · · · −x2r−1

r x2r−1
r · · · x2r−1

1

· · · · · ·
−x4

1 −x4
2 0 x4

2 x4
1

−x3
1 −x3

2 x3
2 x3

1

−x2
1 0 x2

1

−x1
1 x1

1

0

1

Figure 1: A symplectic Gelfand–Tsetlin pattern of GT2r

3 Interacting particle models

In this section we construct two processes evolving on the set GTk of symplectic
Gelfand-Tsetlin patterns. These processes can be viewed as interacting particle mod-
els. For this, we associate to a symplectic Gelfand-Tsetlin pattern x = (x1, . . . , xk), a
configuration of particles on the integer lattice Z2 putting one particle labeled by (i, j)

at point (xij , k − i) of N2 for i ∈ {1, . . . , k}, j ∈ {1, . . . , [ i+1
2 ]}. Several particles can be

located at the same point. In the sequel we will say "particle xij" instead of saying
"particle labeled by (i, j) located at point (xij , k − i)".

3.1 Geometric jumps

Let q = (q1, . . . , qr) ∈ Rr+ and α ∈ (0, 1) such that αqi ∈ (0, 1) and αq−1i ∈ (0, 1) for
i = 1, . . . , r, with r = [k+1

2 ]. Consider two independent families

(ξij(n+
1

2
))i=1,...,k,j=1,...,[ i+1

2 ];n≥0, and (ξij(n))i=1,...k,j=1,...,[ i+1
2 ];n≥1,

of independent geometric random variables such that

P(ξ2i−1j (n+
1

2
) = y) = P(ξ2ij (n) = y) = (αq−1i )y(1− αq−1i ), y ∈ N,

and

P(ξ2i−1j (n) = y) = P(ξ2ij (n+
1

2
) = y) = (αqi)

y(1− αqi), y ∈ N.

The evolution of the particles is given by a process (X(t))t≥0 on the set GTk of sym-
plectic Gelfand-Tsetlin patterns. At each time t ≥ 0, a particle labeled by (i, j) is at point
(Xi

j(t), k − i) of N2. Particles evolve as follows. At time 0 all particles are at zero, i.e.
X(0) = 0. All particles try to jump to the left at times n + 1

2 and to the right at times
n, n ∈ N. Suppose that at time n, after all particles have jumped, there is one particle
at point (Xi

j(n), k − i) of N2, for i = 1, . . . , k, j = 1, . . . , [ i+1
2 ]. Positions of particles are

updated recursively as follows (see figure 2).

At time n+ 1/2 : All particles try to jump to the left one after another in the lexi-
cographic order pushing the other particles in order to stay in the set of symplectic
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Gelfand-Tsetlin patterns and being blocked by the initial configuration X(n) of the par-
ticles:

• Particle X1
1 (n) tries to move to the left being blocked by 0, i.e.

X1
1 (n+

1

2
) = max(X1

1 (n)− ξ11(n+
1

2
), 0).

• Particle X2
1 (n) tries to jump to the left. It is blocked by X1

1 (n). If it is necessary it
pushes X3

2 (n) to an intermediate position denoted by X̃3
2 (n), i.e.

X2
1 (n+

1

2
) = max

(
X1

1 (n), X2
1 (n)− ξ21(n+

1

2
)
)

X̃3
2 (n) = min

(
X3

2 (n), X2
1 (n+

1

2
)
)

• Particle X3
1 (n) tries to move to the left being blocked by X2

1 (n) :

X3
1 (n+

1

2
) = max

(
X2

1 (n), X3
1 (n)− ξ31(n+

1

2
)
)
.

Particle X̃3
2 (n) tries to move to the left being blocked by 0, i.e

X3
2 (n+

1

2
) = max(X̃3

2 (n)− ξ32(n+
1

2
), 0).

Suppose now that rows 1 through l − 1 have been updated for some l > 1. Particles
X l

2(n), . . . , X l
[ l+1

2 ]
(n) of row l are pushed to intermediate positions

X̃ l
j(n) = min

(
X l
j(n), X l−1

j−1(n+
1

2
)
)
, j ∈ {2, . . . , [ l + 1

2
]}.

Then particles X l
1(n), X̃ l

2(n), . . . , X̃ l
[ l+1

2 ]
(n) try to jump to the left being blocked as follows

by the initial position X(n) of the particles. For j = 1, . . . , [ l+1
2 ],

X l
j(n+

1

2
) = max

(
X l−1
j (n), X̃ l

j(n)− ξlj(n+
1

2
)
)
,

with the convention that X l−1
l+1
2

(n) = 0 when l is odd.

At time n+ 1 : All particles try to jump to the right one after another in the lexicographic
order pushing particles in order to stay in the set of symplectic Gelfand-Tsetlin patterns
and being blocked by the initial configuration X(n+ 1

2 ) of the particles. The first three
rows are updated as follows.

• Particle X1
1 (n+ 1

2 ) moves to the right pushing X2
1 (n+ 1

2 ) to an intermediate position

X̃2
1 (n+ 1

2 ) :

X1
1 (n+ 1) = X1

1 (n+
1

2
) + ξ11(n+ 1)

X̃2
1 (n+

1

2
) = max

(
X2

1 (n+
1

2
), X1

1 (n+ 1)
)

• Particle X̃2
1 (n+ 1

2 ) jumps to the right pushing X3
1 (n+ 1

2 ) to an intermediate position

X̃3
1 (n+ 1

2 ), i.e.

X2
1 (n+ 1) = X̃2

1 (n+
1

2
) + ξ21(n+ 1)

X̃3
1 (n+

1

2
) = max

(
X3

1 (n+
1

2
), X2

1 (n+ 1)
)
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• Particle X3
2 (n+ 1

2 ) tries to move to the right being blocked by X2
1 (n+ 1

2 ). Particle

X̃3
1 (n+ 1

2 ) moves to the right. That is

X3
2 (n+ 1) = max(X3

2 (n+
1

2
) + ξ32(n+ 1), X2

1 (n+
1

2
))

X3
1 (n+ 1) = X̃3

1 (n+
1

2
) + ξ31(n+ 1)

Suppose rows 1 through l − 1 have been updated for some l > 1. Then particles of row
l are pushed to intermediate positions

X̃ l
j(n+

1

2
) = max

(
X l−1
j (n+ 1), X l

j(n+
1

2
)
)
, j ∈ {1, . . . , [ l + 1

2
]},

with the conventionX l−1
l+1
2

(n+1) = 0 when l is odd. Then particles X̃ l
1(n+ 1

2 ), . . . , X̃ l
[ l+1

2 ]
(n+

1
2 ) try to jump to the right being blocked by the initial position of the particles as follows.
For j = 1, . . . , [ l+1

2 ],

X l
j(n+ 1) = min

(
X l−1
j−1(n+

1

2
), X̃ l

j(n+
1

2
) + ξlj(n+ 1)

)
.

3.2 Exponential waiting times

The following interacting particle model has been introduced in [7]. In this model
particles evolve on N2 and jump on their own volition by one rightwards or leftwards
after an exponentially distributed waiting time. The evolution of the particles is de-
scribed by a random process (Y (t))t≥0 on GTk. As in the previous model, at time t ≥ 0

there is one particle labeled by (i, j) at point (Y ij (t), k − i) of the integer lattice, for
i = 1, . . . , k, j = 1, . . . , [ i+1

2 ]. Particle labeled by (2i, j) tries to jump to the left by one
after an exponentially distributed waiting time with mean qi or to the right by one after
an exponentially distributed waiting time with mean q−1i . Particle labeled by (2i − 1, j)

tries to jump to the left by one after an exponentially distributed waiting time with
mean q−1i or to the right by one after an exponentially distributed waiting time with
mean qi. Waiting times are all independent. When a particle tries to jump, all particles
are pushed and blocked according to the same rules as previously: particles above push
and block particles below. That is if particle labeled by (i, j) wants to jump to the right
at time t ≥ 0 then

1. if i, j ≥ 2 and Y ij (t−) = Y i−1j−1 (t−) then particles don’t move and Y (t) = Y (t−).

2. else particles (i, j), (i+ 1, j), . . . , (i+ l, j) jump to the right by one for l the largest
integer such that Y i+lj (t−) = Y ij (t−) i.e.

Y ij (t) = Y ij (t−) + 1, . . . , Y i+lj (t) = Y i+lj (t−) + 1.

If particle labeled by (i, j) wants to jump to the left at time t ≥ 0 then

1. if i is odd, j = (i+ 1)/2 and Y ij (t−) = 0 then particle labeled by (i, j) doesn’t move.

2. if i is odd, j = (i+ 1)/2 and Y ij (t−) ≥ 1 then Y ij (t) = Y ij (t−)− 1.

3. if i is even or j 6= (i+ 1)/2, and Y ij (t−) = Y i−1j (t−) then particles don’t move.

4. if i is even or j 6= (i + 1)/2, and Y ij (t−) > Y i−1j (t−) then particles (i, j), (i +

1, j + 1), . . . , (i + l, j + l) jump to the left by one for l the largest integer such
that Y i+lj+l (t

−) = Y ij (t−). Thus

Y ij (t) = Y ij (t−)− 1, . . . , Y i+lj+l (t) = Y i+lj+l (t
−)− 1.
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Actually, process (Y (t), t ≥ 0) is obtained by letting α go to zero in the previous
model. More precisely we get the following proposition.

Proposition 3.1. The process (X([α−1t]), t ≥ 0) converges in the sense of finite-dimensional
distributions towards the process (Y (t), t ≥ 0) as α goes to zero.

Proof. The proposition is obtained by replacing q by α in Lemma 8.9 of [4].

4 A Pieri type formula for the symplectic group

Let r be a positive integer. One recalls some usual properties of the finite dimen-
sional representations of the compact symplectic group Sp2r (see for instance [5] for
more details). The set of finite dimensional representations of Sp2r is indexed by the
set

W2r = {λ ∈ Rr : λr ∈ N, λi − λi+1 ∈ N, i = 1, . . . , r − 1}.
For λ ∈ W2r, using standard notations, we denote by Vλ the so called irreducible repre-
sentation with highest weight λ of Sp2r.

Let m be an integer and λ an element of W2r. Consider the irreducible represen-
tations Vλ and Vγm of Sp2r, with γm = (m, 0, · · · , 0). The decomposition of the tensor
product Vλ ⊗ Vγm into irreducible components is given by a Pieri-type formula for the
symplectic group. It has been recalled in [3]. We have

Vλ ⊗ Vγm = ⊕βMλ,γm(β)Vβ , (4.1)

where the direct sum is over all β ∈ W2r such that there exists c ∈ W2r which satisfies
c � λ, c � β∑r
i=1(λi − ci + βi − ci) = m.

In addition, the multiplicity Mλ,γm(β) of the irreducible representation with highest
weight β is the number of c ∈ W2r satisfying these relations. Note that Vλ ⊗ Vγm is not
multiplicity-free if m /∈ {0, 1}.

5 Markov kernels

Since for λ ∈ W2r the Schur function s2rλ is the character of the irreducible repre-
sentation Vλ, decomposition (4.1) implies

s2rλ (q)s2rγm(q) =
∑

β∈W2r

Mλ,γm(β)s2rβ (q).

Thus one defines a family (µm)m≥0 of Markov kernels onW2r by letting

µm(λ, β) =
s2rβ (q)

s2rλ (q)s2rγm(q)
Mλ,γm(β),

for λ, β ∈ W2r and m ≥ 0. Let ξ1, . . . , ξ2r be independent random variable such that
ξ1, ξ2, . . . , ξr are geometric random variables with respective parameters αq1, . . . , αqr
and ξr, ξr+1, . . . , ξ2r are geometric random variables with respective parameters αq−11 , . . . , αq−1r .
Consider a random variable T on N defined by

T =

2r∑
i=1

ξi.
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Lemma 5.1. The law of T is a measure ν on N defined by

ν(m) = αma(q)s2rγm(q), m ∈ N,

where

a(q) =

r∏
i=1

(1− αqi)(1− αq−1i ).

Proof. The lemma follows from straightforward computations.

Lemma 5.1 implies in particular that the measure ν is a probability measure. Thus
one defines a Markov kernel P2r onW2r by letting

P2r(λ, β) =

+∞∑
m=0

µm(λ, β)ν(m),

for λ, β ∈ W2r.

Proposition 5.2. For λ, β ∈ W2r,

P2r(λ, β) =
∑

c∈W2r:c�λ,β
a(q)

s2rβ (q)

s2rλ (q)
α
∑r

i=1(λi+βi−2ci). (5.1)

Proof. The proposition follows immediately from the tensor product rules recalled for
the decomposition (4.1).

We letW2r−1 =W2r. For c0, λ, c, β ∈ Wk, we let

Sk((c0, λ), (c, β)) = a(q)
skβ(q)

skλ(q)
α
∑r

i=1(λi+βi−2ci)1c�λ,β , (5.2)

when k = 2r and

Sk((c0, λ), (c, β)) = ã(q)
skβ(q)

skλ(q)
α
∑r

i=1(λi+βi−2ci)((1− αq−1r )1cr>0 + 1cr=0)1c�λ,β , (5.3)

when k = 2r − 1, with

ã(q) = (1− αqr)
r−1∏
i=1

(1− αqi)(1− αq−1i ).

The main purpose of this paper is to show that Sk describes the evolution of the kth

row of the random symplectic Gelfand-Tsetlin patterns (X(t), t ≥ 0). Note that Propo-
sition 5.2 ensures that S2r defines a Markov kernel on W2r ×W2r. There isn’t such an
argument for S2r−1. Anyway as Lk and Qk defined in section 8 are Markov kernels,
Proposition 8.1 ensures that Sk is a Markov kernel in both the odd and the even cases.
Thus one defines also a Markov kernel P2r−1 onW2r−1 by letting

P2r−1(λ, β) =
∑

c∈W2r: c�λ,β
ã(q)

s2r−1β (q)

s2r−1λ (q)
α
∑r

i=1(λi+βi−2ci)((1− αq−1r )1cr>0 + 1cr=0). (5.4)

Actually P2r−1(λ, .) is the image of the measure S2r−1((c0, λ), (., .)), for any arbitrary
c0 ∈ W2r, by the map

(x, y) ∈ W2r ×W2r 7→ y ∈ W2r.

We’ll see that the image measure Pk describes the evolution of the kth row of the
random symplectic Gelfand-Tsetlin patterns observed at integer times. This Markov
kernel is relevant for the understanding of the relation between the particle model and
the random matrix model of the next section.
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6 Random matrices

We denote by H the set of quaternions. For us, a quaternion is just a 2× 2 matrix Z
with complex entries which can be written as

Z =

(
a b

−b̄ ā

)
,

where a, b ∈ C. Its conjugate Z∗ is the usual adjoint of the complex matrix Z. Let us
denote by Mr,m the real vector space of r × m matrices with entries in H and by Pr
the set of r × r Hermitian matrices with entries in iH. Since a matrix in Pr is a 2r × 2r

Hermitian complex matrix, it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2r. Moreover
λ2r−i+1 = −λi, for i = 1, · · · , 2r. We put onMr,m the Euclidean structure defined by the
scalar product,

〈M,N〉 = tr(MN∗), M,N ∈Mr,m.

Let Cr be the subset of Rr defined by

Cr = {x ∈ Rr : x1 > · · · > xr > 0}.

Theorem 4.5 of [3] and Proposition 4.8 of [3] imply the following proposition.

Proposition 6.1. Let r be a positive integer and (M(n), n ≥ 0), be a discrete process
on Pr defined by

M(n) =

n∑
l=1

Yl

(
1 0

0 −1

)
Y ∗l ,

where the Yl’s are independent standard Gaussian variables in Mr,1. For n ∈ N, let
Λ1(n), · · · ,Λr(n) be the r largest eigenvalues of M(n) such that

Λ1(n) ≥ · · · ≥ Λr(n).

Then the process (Λ(n), n ≥ 0), is a Markov process with a transition densities pr defined
by

pr(x, y) =
dr(y)

dr(x)
I(x, y), x, y ∈ Cr,

where

I(x, y) =

∫
Rr

+

1{x,y�z}e
−∑r

i=1(xi+yi−2zi) dz,

and

dr(x) =
∏

1≤i<j≤r
(x2i − x2j )

r∏
i=1

xi, x, y ∈ Cr.

7 results

We have introduced a Markov process (X(t), t ≥ 0) on the set of symplectic Gelfand-
Tsetlin patterns. We will show that if only one row of the pattern is considered by itself,
is found to be a Markov process too. Similar results have been proved in [7]. The main
specificity of our model is that coordinates of particles are not updated in the same way
at every times. We are mainly interested in the process (Xk(n), n ≥ 0) but intermediate
states (Xk(n + 1

2 ), n ≥ 0) are considered for the proofs. Actually these intermediate
states come from the fact that the tensor product of (4.1) is not multiplicity-free. We let
Zk(n) = (Xk(n− 1

2 ), Xk(n)), for n ∈ N, with Xk(− 1
2 ) = 0.
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2 ) X1
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2 )
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X2
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2 )

X3
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2 )

X4
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2 )X4
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2 )

X3
2 (n + 1

2 ) = 0

1

Figure 2: An example of blocking and pushing interactions between times n and n + 1

for k = 4. Different kinds of dots represent different particles.
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Theorem 7.1. The process (Zk(n), n ≥ 0) is a Markov process onWk ×Wk with transi-
tion kernel Sk.

If Pk is the Markov kernel defined in (5.1) and (5.4) then Theorem 7.1 implies imme-
diately the following theorem which is our main result.

Theorem 7.2. The process (Xk(n))n≥0 is a Markov process onWk with transition ker-
nel Pk.

Convergence stated in Proposition 3.1 and Theorem 7.2 lead to the following corol-
lary, which is exactly Theorem 2.3 of [7]. Let us denote e1, . . . , e[ k+1

2 ] the standard basis

of R[ k+1
2 ].

Corollary 7.3. The process (Y k(t), t ≥ 0) is a Markov process with infinitesimal gener-
ator defined by

A(x, y) =
sky(q)

skx(q)
1y∈Wk

,

for x ∈ Wk, y ∈ {x+ e1, . . . , x+ e[ k+1
2 ], x− e1, . . . , x− e[ k+1

2 ]}.
Proof. Theorem 7.2 and lemma 2.21 of [1] imply that the process

(Xk([α−1t]), t ≥ 0)

converges towards a Markov process with infinitesimal generator equal to A as α goes
to zero. The convergence stated in Proposition 3.1 achieves the proof.

If (Λ(n), n ≥ 0) is the process of eigenvalues considered in Proposition 6.1 then the
following corollary holds.

Corollary 7.4. Letting qi = 1 for i = 1, . . . , r, the process ((1 − α)X2r(n), n ≥ 1) con-
verges in distribution towards the process of eigenvalues (Λ(n), n ≥ 1) as α goes to
one.

Proof. The Weyl dimension formula (see Knapp [5], Thm V.5.84) for the symplectic
group gives

s2rλ (1) =
∏

1≤i<j≤r

(λi − λj + j − i)(λi + λj + 2n+ 2− j − i)
(j − i)(2n+ 2− j − i)

r∏
i=1

λi + n+ 1− i
n+ 1− i .

Thus the corollary follows immediately from Theorem 7.2 and Proposition 6.1.

8 proofs

The proof of Theorem 7.1 rests on the same ingredients as the proof of Proposition
8.8 of [4]. It will follow from an intertwining property stated in Proposition 8.1 and an
application of a criterion established in [6] by Pitman and Rogers who give a simple
condition sufficient to ensure that a function of a Markov process is again a Markov
process. For λ ∈ Wk we consider the measure Mλ on GTk(λ) defined by

Mλ =
∑

x∈GTk(λ)

wkx(q)

skλ(q)
δx,

where δx is the dirac measure at x, and the measure mλ defined as the image of the
measure Mλ by the map x ∈ GTk(λ) 7→ xk−1 ∈ Wk−1, i.e

mλ =
∑

β∈Wk−1:β�λ
q|β|−|λ|r

sk−1β (q)

skλ(q)
δβ ,
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when k = 2r, and

mλ =
∑

β∈Wk−1:β�λ
q|λ|−|β|r

sk−1β (q̃)

skλ(q)
δβ ,

when k = 2r − 1, with q̃ = (q1, . . . , qr−1). One defines a kernel Lk form Wk × Wk to
Wk−1 ×Wk ×Wk by letting

Lk((c, λ), (β, c′, λ′)) = mλ(β)1c�λ1c=c′,λ=λ′ ,

for c, λ, c′, λ′ ∈ Wk, β ∈ Wk−1.

As (Zk(n), n ≥ 0) is conditionally independent of (Zi(t), t ≥ 0, i = 1, . . . , k − 2) given
(Zk−1(t), t ≥ 0), Theorem 7.1 may be proved by induction on k. The theorem is true for
k = 1. Suppose that the process (Zk−1(n), n ≥ 0) is Markovian with transition kernel
Sk−1. The dynamic of the model implies that

(Zk−1(n), Zk(n), n ≥ 0)

is also Markovian. As for any λ ∈ Wk−1,

Sk−1((c0, λ), (., .))

doesn’t depend on c0, it implies that the process

((Xk−1(n), Zk(n)), n ≥ 0)

is also Markovian. Let us denote by Qk its transition kernel. Proposition 8.1 claims
that it satisfies an intertwining property, which implies, using the Rogers and Pitman
criterion of [6], that the process (Zk(n), n ≥ 0) is Markovian with transition kernel Sk.
Thus the theorem is true for integer k.

Proposition 8.1.
LkQk = SkLk

Proof. For x, y, z ∈ Wk, we let

Sk(x, (y, z)) = Sk((c, x), (y, z)),

where c is any vector of Wk such that c � x. Let ξ+ and ξ− be two geometric random
variables with respective parameters αqr and αq−1r , with r = [k+1

2 ]. For a, b ∈ R+ we
denote by

b←
Pk(a, .)

the law of max(a− ξ+, b) when k is even and the law of max(a− ξ−, b) when k is odd. We
denote by

→b
Pk(a, .)

the law of min(a+ ξ−, b) when k is even and the law of min(a+ ξ+, b) when k is odd. We
have for (u, z, y), (x, z′, y′) ∈ Wk−1 ×Wk ×Wk such that u, z � y and x, z′ � y′

Qk((u, z, y), (x, z′, y′)) =
∑

v∈Wk−1

Sk−1(u, (v, x))

[ k+1
2 ]∏
i=1

ui←
Pk (yi ∧ vi−1, z′i)

×
[ k+1

2 ]−1∏
i=0

→vi
Pk (z′i+1 ∨ xi+1, y

′
i+1), (8.1)
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with the conventions that x[ k+1
2 ] = u[ k+1

2 ] = 0 when k is odd, v0 = +∞ in the odd and

the even cases and the sum running over v ∈ Wk−1 such that vi ∈ {y′i+1, . . . , xi ∧ z′i}, for
i ∈ {1, . . . , [k+1

2 ]− 1}. Then we write

LkQk((z, y), (x, z′, y′)) =
∑

u∈Wk,v∈Wk−1

Lk((z, y), (u, z, y))Sk−1(u, (v, x))

×
[ k+1

2 ]∏
i=1

ui←
Pk (yi ∧ vi−1, z′i)

×
[ k+1

2 ]−1∏
i=0

→vi
Pk (z′i+1 ∨ xi+1, y

′
i+1).

We get the intertwining by first summing over u and then over v, using respectively
identities (4) and (5) of Lemma 8.3 of [4].
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