
Electron. Commun. Probab. 17 (2012), no. 45, 1–14.
DOI: 10.1214/ECP.v17-2148
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

On a class of H–selfadjont random matrices
with one eigenvalue of nonpositive type∗

Michał Wojtylak†

Abstract

Large H–selfadjoint random matrices are considered. The matrix H is assumed to
have one negative eigenvalue, hence the matrix in question has precisely one eigen-
value of nonpositive type. It is showed that this eigenvalue converges in probability
to a deterministic limit. The weak limit of distribution of the real eigenvalues is in-
vestigated as well.
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Introduction

The main object of this survey are non–symmetric random matrices with the struc-
ture of the entries arising from the theory of indefinite linear algebra. To specify the
problem let us consider an invertible, hermitian–symmetric matrix H ∈ Cn×n. We say
that X ∈ Cn×n is H–selfadjoint if X∗H = HX. This is the same as to say that A is
selfadjoint with respect to an inner product

[x, y]H := y∗Hx, x, y ∈ Cn.

Note that this inner product is not positive definite if H has negative eigenvalues. In the
literature the space Cn with the inner product [·, ·]H is also called a Πκ–space (where κ is
the number of negative eigenvalues of H) or Pontryagin space. The infinite dimensional
case is considered as well, recently spectra and pseudospectra ofH–selfadjoint, infinite,
random matrices were considered in [8, 9]. In the present paper the case when

H =

[
−1 0

0 IN

]
, (0.1)

with N converging to infinity, is considered. It is easy to check that for such H each
H–selfadjoint matrix has the form

X =

[
a −b∗
b C

]
,
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Figure 1: Eigenvalues of a random matrix X100 computed with R [28]

with x ∈ R, b ∈ CN and a hermitian–symmetric matrix C ∈ CN×N . Due to the famous
theorem of Pontryagin [27] the matrix X has precisely one eigenvalue β in the closed
upper half–plane, for which the corresponding eigenvector x satisfies [x, x]H ≤ 0. The
problem of tracking the nonpositive eigenvalue was considered for example in [11, 29].
In those papers the setting was non–random and X was in the family of one dimen-
sional extensions of a fixed operator in an infinite dimensional Π1–space. The aim of
the present work is to investigate the behavior of β when X is a large random matrix.
We show that the main method of [11, 29] – the use of Nevanlinna functions with one
negative square – can be adapted to the random setting as well.

A classical result of Wigner [31] says that if the random variables yij , 0 ≤ i ≤ j <

+∞ are real, i.i.d with mean zero and variance equal one, then the distribution of
eigenvalues of a matrix

YN =
1√
N

[yij ]
N
ij=0,

where yji = yij for j > i, converge weakly in probability to the Wigner semicircle mea-
sure. Note that by multiplying the first row of YN by -1 we obtain a H–selfadjoint matrix
XN . A result of a preliminary numerical experiment with gaussian yij is plotted in
Figure 1. Note that the spectrum of XN is real, except two eigenvalues, lying symmet-
rically with respect to the real line. Although we pay a special attention to the above
case, we study the behavior of the eigenvalue of nonpositive type in a more general
setting. Namely, we assume that the random matrix XN in CN×N is of a form

X =

[
aN −b∗N
bN CN

,

]
,

with aN , bN and CN being independent. Furthermore, the vector bN is a column of a
Wigner matrix and aN converges weakly to zero. The only assumption on CN is that
the limit distribution of its eigenvalues converge weakly in probability, see (R0)–(R3)
for details. In Theorem 4.1 we prove that under these assumptions the non–real eigen-
vlaues converge in probability to a deterministic limit that can be computed knowing
the limit distribution of eigenvalues of CN . In the case when CN is a Wigner matrix
the nonreal eigenvalues converge to ± i

√
2/2, cf. Theorem 5.1. Furthermore, under a

ECP 17 (2012), paper 45.
Page 2/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-2148
http://ecp.ejpecp.org/


H–selfadjont random matrices

technical assumption of continuity of the entries of XN , we show in Theorem 4.2 that
the limit distribution of the real eigenvalues of XN coincides with the limit distribution
of eigenvalues for the matrices CN . Again, in the case when CN is a Wigner matrix we
obtain a more precise result. Namely, in Theorem 5.1 we show that the real eigenvalues
ζN2 , . . . , ζ

N
N of XN and the eigenvalues λN1 , . . . , λ

N
N of CN satisfy the following inequali-

ties:

λN1 < ζN2 < λN2 < · · · < λNN−1 < ζNN < λNN .

It shows that the nonreal eigenvalue of XN plays an analogue role as the largest eigen-
value in one–dimensional, symmetric perturbations of Wigner matrices. This fact re-
lates the present paper to the current work on finite dimensional perturbations of ran-
dom matrices, see [2, 3, 4, 6, 7, 15, 17] and references therein. Also note that XN is a
product of a random and deterministic matrix, such products were already considered
in the literature, see e.g. [30].

The author is indebted to Anna Szczepanek for preliminary numerical simulations
and Maxim Derevyagin for his valuable comments. Special thanks to Anna Kula, Patryk
Pagacz and Janusz Wysoczański. The author is also grateful to the referee for his helpful
remarks.

1 Functions of class N1

The Nevanlinna functions with negative squares play a similar role for the class of
H–selfadjoint matrices as the class of ordinary Nevanlinna function plays for hermitian–
symmetric matrices. This phenomenon has its roots in in operator theory, we refer
the reader to [10, 11, 18, 19, 20] and papers quoted therein for a precise description
of a relation between Nκ–functions and selfadjoint operators in Krein and Pontryagin
spaces. We begin with a very general definition of the class Nκ, but we immediately
restrict ourselves to certain subclasses of those functions.

We say that Q is a generalized Nevanlinna function of class Nκ [18, 21] if it is mero-
morphic in the upper half–plane C+ and the kernel

N(z, w) =
Q(z)−Q(w)

z − w̄

has precisely κ negative squares, that is for any finite sequence z1, . . . , zk ∈ C+ the
hermitian–symmetric matrix

[N(zi, zj)]
k
ij=1

has not more then κ nonpositive eigenvalues and for some choice of z1, . . . , zk it has
precisely κ nonpositive eigenvalues. In the present paper we use this definition with
κ = 0, 1.

The class N0 is the class of ordinary Nevanlinna functions, i.e. the functions that
are holomorphic in C+ with nonnegative imaginary part. By M+

b (R) we denote the
set of positive, bounded Borel measures on R. For µ ∈ M+

b (R) we define the Stieltjes
transform as

µ̂(z) =

∫
R

1

t− z
dt, z ∈ C \ suppµ.

Clearly, µ̂ belongs to the class N0 and the values of µ̂ in the upper half–plane determine
the measure uniquelly by the Stieltjes inversion formula. Although not every function
of class N0 is a Stieltjes transform of a Borel measure (cf. [13]), this subclass of N0

functions will be sufficient for present reasonings. Also, we will be interested in a
special subclass of N1 functions, namely in the functions of the form (1.1) below. We
refer the reader to the literature [10, 12] for representation theorems for Nκ functions.
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Proposition 1.1. If µ ∈M+
b (R), a ∈ R then

Q(z) = µ̂(z) + a− z (1.1)

is a holomorphic function in C+ and belongs to the class N1. Furthermore, there exists
precisely one z0 ∈ C such that either z0 ∈ C+ and

Q(z0) = 0, (1.2)

or z0 ∈ R and

lim
z→̂z0

Q(z)

z − z0
∈ (−∞, 0]. (1.3)

The symbol →̂ above denotes the non-tangential limit:

z ∈ C+, z → z0, π/2− θ ≤ arg(z − z0) ≤ π/2 + θ,

with some θ ∈ (0, π/2). We call z0 ∈ C+ ∪ R the generalized zero of nonpositive type
(GZNT ) of Q(z). The first part of the Proposition can be found e.g. in [19], while for
the proof of the ’Furthermore’ part in the general context1 we refer the reader to [21,
Theorem 3.1, Theorem 3.1’]. In view of the above proposition we can define a function

G : M+
b (R)×R→ C+

by saying that G(µ, a) is the GZNT of the function µ̂(z)+a−z. The following proposition
plays a crucial role in our arguments.

Proposition 1.2. The functionG is jointly continuous with respect to the weak topology
on M+

b (R) and the standard topology on R.

Proof. Assume that (µn)n ⊂ M+
b (R) converges weakly to µ ∈ M+

b (R) and an ∈ R

converges to a ∈ R with n → ∞. Take a compact K in the open upper half–plane,
with nonempty interior. Then µ̂n converges uniformly to µ̂ on the set K. Indeed, if
r = supt∈R, z∈K 1/|t− z| then

sup
z∈K
|µ̂n(z)− µ̂0(z)| ≤ r|µn − µ0|(R),

the latter clearly converging to zero with n → ∞. In consequence, µ̂n(z) + an − z

converges to µ̂(z)+a−z uniformly on K with n→∞. By [23] the GZNT of µ̂n(z)+an−z
converges to the GZNT of µ̂(z) + a− z, which finishes the proof.

2 H–selfadjoint matrices

In this section we review basic properties of selfadjoint matrices in indefinite in-
ner product spaces introducing the concept of a canonical form. For the infitnite–
dimensional counterpart of the theory we refer the reader to [5, 22]. LetH ∈ C(n+1)×(n+1)

(n ∈ N\{0}) be an invertible, Hermitian–symmetric matrix. We say thatX ∈ C(n+1)×(n+1)

is H–selfadjoint if X∗H = HX. Our main interest will lie in the matrix

H =

[
−1 0

0 In

]
,

where In denotes the identity matrix of size n × n. As it was already mentioned, each
H–selfadjoint matrix has the form

X =

[
a −b∗
b C

]
, (2.1)

1For arbitrary N1 function z0 = ∞ can be also the GZNT, in that case limz→̂∞ zQ(z) ∈ [0,∞). However,
this is clearly not possible for Q of the form (1.1).
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with a ∈ R, b ∈ Cn and hermitian–symmetric C ∈ Cn×n. Due to [16] there exists an
invertible matrix S and a pair of matrices H ′, S′ ∈ C(n+1)×(n+1) such that X = S−1X ′S

H = S∗H ′S and X ′, H ′ are of one of the following forms:

Case 1.

X ′ =

[
β 0

0 β̄

]
⊕ diag(ζ2, . . . , ζn), H ′ =

[
0 1

1 0

]
⊕ In−1,

with β ∈ C+, ζ2, . . . , ζn ∈ R.

Case 2.
X ′ = [β]⊕ diag(ζ1, . . . , ζn), H ′ = [−1]⊕ In,

with β ∈ R, ζ1, . . . , ζn ∈ R.

Case 3.

X ′ =

[
β 1

0 β

]
⊕ diag(ζ2, . . . , ζn), H ′ = γ

[
0 1

1 0

]
⊕ In−1,

with β ∈ R, ζ2, . . . , ζn ∈ R, γ ∈ {−1, 1}.
Case 4.

X ′ =

β 1 0

0 β 1

0 0 β

⊕ diag(ζ3, . . . , ζn), H ′ =

0 0 1

0 1 0

1 0 0

⊕ In−2,
with β ∈ R, ζ3, . . . , ζn ∈ R.

It is easy to verify that in each case X ′ is H ′-symmetric. The pair (X ′, H ′) is called
the canonical form of (X,H). We refer the reader to [16] for the proof and for canoni-
cal forms for general H–symmetric matrices and to [5, 22] for the infinite–dimensional
counterpart of the theory. At this point is enough to mention that the canonical form is
uniquely determined (up to permutations of the numbers ζi) for each pair (X,H), where
X is H–selfadjoint. Note that in each of the cases β is an eigenvalue of X and there
exists a corresponding eigenvector x ∈ Cn+1 satisfying [x, x]H ≤ 0, furthermore, β is the
only eigenvalue in C+ ∪R having this property. Therefore, we will call β the eigenvalue
of nonpositive type of X.

Observe that the function

Q(z) = a− z + b∗(C − z)−1b (2.2)

is an N1–function. Indeed, if D = UCU∗ = diag(λ1, . . . , λn) is a diagonalization of the
hermitian–symmetric matrix C and d = Ub then

Q(z) = a− z +

n∑
j=1

|dj |2

λj − z
= a− z + µ̂(z), where µ =

n∑
j=1

|dj |2δλj ,

and we may apply Proposition 1.1. The following lemma is a standard in the indefinite
linear algebra theory. We present the proof for the reader’s convenience.

Lemma 2.1. Let X and Q be defined by (2.1) and (2.2), respectively. A point β ∈
C+ ∪ R is the eigenvalue of nonpositive type of X if and only if it is the GZNT of Q(z).
Furthermore, the algebraic multiplicity of β as an eigenvalue of X equals the order of
β as a zero of Q(z).

Proof. First note that, due to the Schur complement formula2,

− 1

Q(z)
= e∗H(X − z)−1e,

2It is well known [19] that −1/Q belongs to N1 provided that Q belongs to N1, however, this information
is not essential for the proof.
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where e denotes the first vector of the canonical basis of Cn+1. Let (X ′, H ′) be the
canonical form of (X,H) and let S be the appropriate transformation. Consequently,

− 1

Q(z)
= (Se)∗H ′(X ′ − z)−1Se. (2.3)

Below we evaluate this expression in each of the Cases 1–4. Let f = [f0, . . . , fn]> = Se.
Note that

f∗H ′f = e∗He = −1, (2.4)

independently on the Case.
Case 1. Observe that f0f̄1 6= 0, otherwise f∗H ′f ≥ 0, which contradicts (2.4). Due to

(2.3) one has

− 1

Q(z)
=

f0f̄1
β − z

+
f1f̄0
β̄ − z

+

n∑
j=2

|fj |2

ζj − z
.

Hence, β ∈ C+ is a simple pole of −1/Q and consequently it is the GZNT of Q and a
simple zero of Q.

Case 2. Observe that |f0|2 >
∑n
j=1 |fj |2, otherwise f∗H ′f ≥ 0, which contradicts

(2.4). Due to (2.3) one has

− 1

Q(z)
=
−|f0|2

β − z
+

n∑
j=1

|fj |2

ζj − z
.

Hence, the residue of −1/Q in β is less then zero. Consequently Q(β) = 0, Q′(β) < 0

and β is the GZNT of Q.
Case 3. Observe that |f1|2 > 0, otherwise f∗H ′f ≥ 0, which contradicts (2.4). Due

to (2.3) one has

− 1

Q(z)
=

2γ Re f0f̄1
β − z

+
−γ|f1|2

(β − z)2
+

n∑
j=2

|fj |2

ζj − z
.

Hence, β is pole of −1/Q of order 2. Consequently, Q(β) = Q′(β) = 0, Q′′(β) 6= 0 and β
is the GZNT.

Case 4. Observe that |f2|2 > 0, otherwise f∗H ′f ≥ 0, which contradicts (2.4). Due
to (2.3) one has

− 1

Q(z)
=

2 Re f0f̄2 + |f1|2

β − z
+
−2 Re f1f̄2
(β − z)2

+
|f2|2

(β − z)3
+

n∑
j=3

|fj |2

ζj − z
,

Hence, β is pole of −1/Q of order 3. Consequently, Q(β) = Q′(β) = Q′′(β) = 0, Q′′′(β) 6=
0 and β is the GZNT of Q.

3 Random H–selfadjoint matrices

By XN , HN we understand the following pair of a random and deterministic matrix
in C(N+1)×(N+1)

XN =

[
aN −b∗N
bN CN

]
, HN =

[
−1 0

0 IN

]
, (3.1)

where aN is a real–valued random variable, bN is a random vector in CN , and CN is
a hermitian–symmetric random matrix in CN×N . Note that XN is HN–symmetric. By
λN1 ≤ · · · ≤ λNN we denote the eigenvalues of CN and by νN we denote the random
measure on R

νN =
1

N

N∑
j=1

δλN
j
.
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Recall that

ν̂N (z) =
tr(CN − z)−1

N
. (3.2)

The assumptions on XN are as follows:

(R0) The random variable aN is independent on the entries of the vector bN and on the
entries of the matrix CN for each N > 0, futhermore aN converges with N → ∞
to zero in probability.

(R1) The random vector bN is of the form

bN :=
1√
N

[xj0]j=1,...,N ,

where [xj0]j>0 are i.i.d. random variables, independent on the entries of CN for
N > 0, of zero mean with E|xj0|2 = s2 for j > 0.

(R2) The random measure νN converges with N →∞ to some non–random measure µ0

weakly in probability

All the results below hold also in the case when all variables xj0 (j > 0) are real, in
this situation b∗N is just the transpose of bN . The entries of CN might be as well real or
complex. In Section 5 we will consider two instances of the matrix CN : a Wigner matrix
and a diagonal matrix. In the case when CN is a Wigner matrix the proposition below is
a consequence of the isotropic semicircle law [14, 17]. We present below a simple proof
of the general case, based on the ideas in [24].

Proposition 3.1. Assume that (R1) and (R2) are satisfied. Then for each z ∈ C+

b∗N (CN − z)−1bN → s2 µ̂0(z) (N →∞)

in probability.

By ‖y‖ we denote the euclidean norm of y ∈ Cn.

Proof. First we provide a proof in the case when

E|x0j |4 <∞, j = 1, . . . , N. (3.3)

In the light of Chebyshev’s inequality, (3.2) and assumption (R2) it is enough to show
that

lim
N→∞

E

∣∣∣∣b∗N (CN − z)−1bN − s2
tr(CN − z)−1

N

∣∣∣∣2 = 0. (3.4)

Observe that

E

∣∣∣∣b∗N (CN − z)−1bN − s2
tr(CN − z)−1

N

∣∣∣∣2 = (3.5)(
E
∣∣b∗N (CN − z)−1bN

∣∣2 − s4E ∣∣∣∣ tr(CN − z)−1N

∣∣∣∣2
)
−

2 ReE

(
s2

tr(CN − z)−1
N

(
b∗N (CN − z)−1bN − s2

tr(CN − z)−1

N

))
. (3.6)

First we prove that the summand (3.6) equals zero. Indeed, conditioning on the σ–
algebra generated by the entries of the matrix CN and setting

[cij ]
N
ij=1 = (CN − z)−1
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one obtains

E

(
s2

tr(CN − z)−1
N

(
b∗N (CN − z)−1bN − s2

tr(CN − z)−1

N

))
=

E

s2 N∑
i=1

cii
N

 N∑
jk=1

cjk
x0jx0k
N

− s2
N∑
j=1

cjj
N

 =

E

s2 N∑
i=1

cii
N

 N∑
j=1

cjj
s2

N
− s2

N∑
j=1

cjj
N

 = 0.

Next, observe that

E|b∗N (CN − z)−1bN |2 = E

N∑
ijkl=1

cijckl
x0ix0jx0kx0l

N2
=

s4
N∑
ij=1

E(ciicjj)

N2
+ s4

N∑
ij=1

E(cijcij)

N2
= s4E

∣∣∣∣ tr(CN − z)−1N

∣∣∣∣2 + s4E

N∑
ij=1

cijcij
N2

.

This allows us to estimate (3.5) by

s4

∣∣∣∣∣∣E
N∑
ij=1

cijcij
N2

∣∣∣∣∣∣ ≤ s4E
∥∥(CN − z)−1

∥∥2
N

=
s4 dist(z, σ(CN ))−2

N
≤ s4

(Im z)2N
,

which finishes the proof of (3.4) in the case when the fourth moments of x0j (j =

1, . . . , N ) are finite. To prove the general case one uses a standard truncation argu-
ment, setting for r > 0

bNr =
1√
N

[
x011{x01≤r}, . . . , x0N1{x0N≤r}

]
− 1√

N
E
[
x011{x01≤r}, . . . , x0N1{x0N≤r}

]
.

Recall that by the first part of the proof for every r > 0

E|b∗Nr(CN − z)−1bNr − s2µ0(z)| → 0, N →∞. (3.7)

Note that ‖bN‖2 = N−1
∑N
j=1 |x0j |2 converges almost surely to s2, by the strong law of

large numbers. Furthermore,
‖bNr‖ ≤ ‖bN‖+ s.

Hence, the number
r0 := sup

N,r
(‖bN‖+ ‖bNr‖)

is almost surely finite. Consequently,

E|b∗Nr(CN − z)−1bNr − b∗N (CN − z)−1bN | ≤

E
(
(‖bNr‖+ ‖bN‖)

∥∥(CN − z)−1
∥∥ ‖bNr − bN‖) ≤ r0

Im z
E ‖bNr − bN‖ .

Note that, due to (R1), one has

(E ‖bNr − bN‖)2 ≤ E ‖bNr − bN‖2 = E|x011x01≥r|2 − (E|x011x01≥r|)2,

where both summands on the right hand side converge to zero with r → ∞ and do not
depend on N . This, together with (3.7), shows that

E|b∗N (CN − z)−1bN − s2µ0(z)| → 0, N →∞,

which completes the proof of the general case.
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Let UN be a unitary matrix, such that UNCNU∗N is diagonal and let dN = [dN1 , . . . , d
N
N ]> =

UNbN . Denote by µN the measure defined by

µN =

N∑
j=1

|dNj |2δλN
j
,

and observe that µ̂N (z) = b∗N (CN − z)−1bN .

Proposition 3.2. Assume that (R1) and (R2) are satisfied. Then the sequence of ran-
dom measures µN converge weakly with N →∞ to µ0 in probability.

Proof. First note that almost surely µN (R)→ s2µ0(R) with N →∞. Indeed,

µN (R) =

N∑
j=1

|dNj |2 = ‖dN‖2 = ‖bN‖2 =
1

N

N∑
j=1

|x0j |2,

which converges almost surely to s2 by the strong law of large numbers. Furthermore,
Proposition 3.1 shows that µ̂N (z) converges in probability to µ̂0(z) for every z ∈ C+.
Repeating the proof of Theorem 2.4.4 of [1] we get the weak convegence of µN in
probability.

4 Main results

Theorem 4.1. If (R0) – (R2) are satisfied then the eigenvalue of nonpositive type βN of
XN converges in probability to the GZNT β0 of the N1–function

Q0(z) = −z + s2µ̂0(z).

Proof. Consider a sequence of N1–functions

QN (z) = aN − z + µ̂N (z). (4.1)

Recall that each of those functions has precisely one GZNT which, by definition of µN
and Lemma 2.1, is the eigenvalue of nonpositive type βN of XN . Recall that aN con-
verges to zero in probability by (R0) and µN converges to µ0 in probability by Propo-
sition 3.2. Let d be any metric that metrizises the topology of weak convergence on
M+
b (R). Since βN is a continuous function of µN and aN (Proposition 1.2), for each

ε > 0 one can find δ > 0 such that for each N > 0 the event {|aN | < δ, d(µN , µ0) < δ}
is contained in {|βN − β0| < ε}. Using the assumed in (R0) independence of µN and aN
one obtains

P (|β0 − βN | ≥ ε) ≤ P (|aN | ≥ δ) + P (d(µN , µ0) ≥ δ)− P (|aN | ≥ δ) · P (d(µN , µ0) ≥ δ).

Hence, βN converges to β0 in probability.

As it was explained in Section 1.1, each matrix XN has, besides the eigenvalue βN
of nonpositive type, a set of real eigenvaules ζNkN , . . . , ζ

N
N , where kN = 1 in Case 1 and

3, kN = 2 in Case 2 and kN = 3 in Case 3. By τN we denote the empirical measure
connected with these eigenvalues:

τN =
1

N

N∑
j=kN

δNζj .
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Theorem 4.2. If (R0)–(R2) are saisfied, the random variables {x0j : j > 0} are contin-
uous and the eigenvalues λN1 , . . . , λ

N
N of CN are almost surely distinct for large N , then

the measure τN converges weakly in probability to µ0.

Proof. We use the notations UN , dN and µN from the previous section, let also QN be
given by (4.1). Note that the set

{
y ∈ CN : (UNy)j = 0

}
is of Lebesgue measure zero.

Hence, with probability one dNj 6= 0 for j = 1, . . . , N , N > 0. Therefore, for large N the
Stieltjes transform µ̂N (z) is a rational function almost surely with poles of order one in
λN1 < · · · < λNN . Furthermore,

QN (z) =
(aN − z)

∏N
j=1(λNj − z) +

∑N
i=1 |dNi |2

∏
j 6=i(λ

N
j − z)∏N

j=1(λNj − z)
.

In consequence, QN has exactly N+1 zeros counting multiplicities, all of them different
from λN1 , . . . , λ

N
N . Due to the Schur complement argument, each of those zeros is an

eigenvalue of the matrix XN ∈ C(N+1)×(N+1). Furthermore, due to Lemma 2.1 the
algebraic multiplicity of βN as eigenvalue of XN equals the order of βN as a zero of QN .
In consequence, the spectrum of XN coincides with the zeros of QN and βN is the only
zero of order possibly greater then one3.

On the other hand, the function µ̂N is increasing on the real line with simple poles
in λN1 , . . . , λ

N
N . Hence, in each of the intervals (λNj , λ

N
j+1) (j = 1, . . . , N − 1) there is

an odd number of zeros of QN , counting multiplicities. Consequently, in each of the
intervals (λNj , λ

N
j+1) (j = 1, . . . , N − 1) there is precisely one zero of QN , except possibly

one interval that contains three zeros of QN . Out of these three zeros of QN either
one or two of them belong to the set

{
ζNkN , . . . , ζ

N
N

}
, accordingly to the canonical form

of XN . Hence, in each of the intervals (λNj , λ
N
j+1) (j = 1, . . . , N − 1) there is precisely

one of the eigenvalues ζNkN , . . . , ζ
N
N , except possibly one interval that contains two of the

eigenvalues ζNkN , . . . , ζ
N
N . Consequently, the weak limit of τN in probability equals the

weak limit of νN .

5 Two instances

In the present section we consider two instances of CN : the Wigner matrix and the
diagonal matrix. These both cases appear naturally as applications of main results. We
refer the reader to [25] for a scheme joining both examples.

Consider an H–selfadjoint real Wigner matrix

XN :=
1√
N

HN [xij ]
N
ij=0, (5.1)

with xij real, xij = xji (0 ≤ i < j <∞), i.i.d., of zero mean and variance equal to s2, and
let HN be defined as in (3.1). Clearly XN is HN–selfadjoint and satisfies (R0)–(R2) with
µ0 equal to the Wigner semicircle measure σ. The Stieltjes transform of the σ equals

σ̂(z) =
−z +

√
z2 − 4s2

2s2
.

It is easy to check that β0 =
√
2
2 s i is a zero of Q0(z) = −z + s2σ̂(z). Hence, β0 is the

GZNT of Q0 and we have proved the first part of the theorem below.

Theorem 5.1. Let XN be defined by (5.1). Then

3In other words: e is almost surely a cyclic vector of XN .
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Figure 2: The real and imaginary part of βN , with real, gaussian entries of XN and
s2 = 1, computed with R [28].

(i) βN converges in probability to β0 =
√
2
2 s i;

(ii) if, additionally, the random variables bij (0 ≤ i < j < ∞) are continuous, then the
probability of an event that there are precisely N − 1 real eigenvalues ζN2 < · · · <
ζNN of XN and the inequalities

λN1 < ζN2 < λN2 < · · · < λNN−1 < ζNN < λNN . (5.2)

are satisfied, converges with N to 1.

Proof. (ii) Assume that

|βN − β0| ≤
√

2

4
s. (5.3)

Then the canonical form of (XN , HN ) is as in Case 1. In consequence, there are exactly
N − 1 real eigenvalues ζN2 , . . . , ζ

N
N of XN . Let us recall now the arguments from proof of

Theorem 4.2. The function µ̂N is increasing on the real line with simple poles in λN1 <

· · · < λNN . In each of the intervals (λNj , λ
N
j+1) (j = 1, . . . , N − 1) there at least one of the

eigenvalues ζN2 , . . . , ζ
N
N . Consequently, each of the intervals (λNj , λ

N
j+1) (j = 1, . . . , N −1)

contains precisely one of the eigenvalues ζN2 , . . . , ζ
N
N . To finish the proof it is enough

to note that by point (i) for every ε > 0 there exists N0 > 0 such that for N > N0 the
probability of (5.3) is greater then 1− ε.

The numerical simulations of values of ReβN and ImβN can be found in Figure
2. Note that β0 lies in open upper half–plane and (1.2) is satisfied. We provide now
an example when β0 ∈ R and show that each number in [0,∞) can be the limit in
(1.3). Let aN = 0, xi0 (i = 1, 2, , . . . ,) be independent real variables of zero mean and
variance s2 and let CN = diag(c1, . . . , cN ), where the random variables {cj : j = 1, . . . }
are i.i.d. and independent on xi0 (i = 1, 2, , . . . ,). Furthermore, let the law of cj (which
is simultaneously the limit measure µ0) be given by a density

φ(t) =

{
3t2

2 : t ∈ [−1, 1]

0 : t ∈ R \ [−1, 1]
.
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Figure 3: The imaginary part of βN .

An easy calculation shows that

lim
z→̂0

µ̂0(z)

z
= 3.

Hence,

lim
z→̂0

−z + s2µ̂0(z)

z
= −1 + 3s2

and the function

Q0(z) = −z + µ̂0(z) = −z +

∫
R

φ(t)

t− z
dt

has a GZNT at z = 0 if s2 ≤ 1/3. Note that β0 = 0 lies in the support of µ0. The
case s2 = 1/3 is plotted in Figure 3. Only the imaginary part is displayed, since the
numerical computation of the real part of βN might be not reliable in case βN ∈ R. One
may observe that the convergence of βN is worse in Figure 2. Also, the canonical form
of (XN , HN ) changes with N , contrary to the case when HNXN is a Wigner matrix. In
the case s2 < 1/3 in numerical simulations point βN is real for all N .
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