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The Wronskian parametrises the class of diffusions
with a given distribution at a random time
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Abstract

We provide a complete characterisation of the class of one-dimensional time-homogeneous
diffusions consistent with a given law at an exponentially distributed time using clas-
sical results in diffusion theory. To illustrate we characterise the class of diffusions
with the same distribution as Brownian motion at an exponentially distributed time.
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1 Introduction

The aim of this article is to characterise the class of one-dimensional time-homo-
geneous diffusions with a given law at an exponentially distributed time. We show, for
instance, that there is a one-parameter family of diffusion processes started at 0 with
the same law as Brownian motion at an exponentially distributed time. In general, given
a probability distribution we find that consistent diffusions are parametrised by a choice
of starting point and secondly by a choice of Wronskian.

We use classical results due to Dynkin [2] and Salminen [8] involving the h-transform
(or Doob’s h-transform) of a diffusion to provide necessary and sufficient conditions for
a diffusion to have a given distribution at a random time. Previously, Cox, Hobson and
Obłój [1] proved the existence of consistent diffusions when the first moment is finite.
We recover the construction in [1] as a canonical choice from the class of consistent
diffusions.

The analogue problem of constructing diffusions with a given distribution at a deter-
ministic time is considered by Ekström, et al. in [3]. This article is also related to the in-
verse problem of constructing diffusions consistent with prices for perpetual American
options or, more generally, with given value functions for perpetual horizon stopping
problems, see Hobson and Klimmek [4]. As in this article, the underlying key idea in [4]
is to construct consistent diffusions through the speed measure via the eigenfunctions
of the diffusion.
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Diffusions with a given marginal at a random time

2 Generalised diffusions and the h-transform

Let I ⊆ R be a finite or infinite interval with a left endpoint a and right endpoint b.
Let m be a non-negative, non-zero Borel measure on R with I = supp(m). Let s : I → R

be a strictly increasing and continuous function. Let x0 ∈ I and let B = (Bt)t≥0 be
a Brownian motion started at B0 = s(x0) supported on a filtration FB = (FBu )u≥0 with
local time process {Lzu;u ≥ 0, z ∈ R}. Define Γ to be the continuous, increasing, additive
functional

Γu =

∫
R

Lzum(dz),

and define its right-continuous inverse by

At = inf{u : Γu > t}.

If Xt = s−1(B(At)) then X = (Xt)t≥0 is a one-dimensional regular diffusion started at
x0 with speed measure m and scale function s. Moreover, Xt ∈ I almost surely for all
t ≥ 0.

Let Hx = inf{u : Xu = x}. Then for λ > 0 (see e.g. [8]),

ξλ(x, y) = Ex[e−λHy ] =

{
ϕλ(x)
ϕλ(y)

x ≤ y
φλ(x)
φλ(y)

x ≥ y,
(2.1)

where ϕλ and φλ are respectively a strictly increasing and a strictly decreasing solution
to the differential equation

1

2

d

dm

d

ds
f = λf. (2.2)

The two solutions are linearly independent with Wronskian Wλ = ϕ′λφλ − φ′λϕλ > 0.
Recall that if a diffusion X = (Xt)t≥0 is in natural scale, then the Wronskian Wλ is a
constant. In the smooth case, when m has a density ν so that m(dx) = ν(x)dx and s′′ is
continuous, (2.2) is equivalent to

1

2
σ2(x)f ′′(x) + α(x)f ′(x) = λf(x), (2.3)

where

ν(x) = σ−2(x)eM(x), s′(x) = e−M(x), M(x) =

∫ x

0−
2σ−2(z)α(z)dz.

We will call the solutions to (2.2) the λ-eigenfunctions of the diffusion. We will scale
the λ-eigenfunctions so that ϕλ(X0) = φλ(X0) = 1.

The λ-eigenfunctions are well known to be λ-excessive. We recall that a Borel-
measurable function h : I → R+ is λ-excessive if for all x ∈ I and t ≥ 0, Ex[e−λth(Xt)] ≤
h(x) and if Ex[e−λth(Xt)]→ h(x) pointwise as t→ 0.

Definition 2.1. Let h be a λ-excessive function. The h-transform of a diffusion X =

(Xt)t≥0 is the diffusion Xh = (Xh
t )t≥0 with transition function

Ph(t;x,A) =
1

h(x)

∫
A

e−λtp(t;x, y)h(y)m(dy),

where p is the transition density of X with respect to m.

By the following result due to Dynkin [2] (see also Salminen [8] (3.1)), any diffusion
X can be transformed into a diffusion with a given law at an exponential killing time.
Fix λ > 0 and let X = (Xt)t≥0 be a diffusion with λ-eigenfunctions ϕλ and φλ. Let T be
an exponentially distributed random variable with parameter λ, independent of X.

ECP 17 (2012), paper 50.
Page 2/8

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1976
http://ecp.ejpecp.org/


Diffusions with a given marginal at a random time

Theorem 2.2. Given a probability measure µ on [a, b] let

h(x) =

∫
[a,b]

ξλ(x, y)

ξλ(X0, y)
µ(dy). (2.4)

Then P(Xh
T ∈ dx) = µ(dx). Conversely, let h be a λ-excessive function with h(X0) = 1

and let γhX(dy) = P(Xh
T ∈ dx). Then h has the representation (2.4) with µ = γhX .

The measure γhX in (2.4) is called the representing measure for h. It follows from
Theorem 2.2 that we can start with any diffusion X on [a, b] and construct a killed
diffusion with a given representing measure via an h-transform. Thus, in principle,
since the representing measure coincides with the law of Xh

T , Dynkin’s result solves
the inverse problem of constructing diffusions with a given law at an exponentially
distributed (killing) time.

We will build on this observation to recover consistent diffusions using a characteri-
sation of a representing measure in terms of the λ-eigenfunctions.

3 Characterising consistent diffusions

Without loss of generality, we will restrict the inverse problem to the class of diffu-
sions in natural scale. Recall that results about a diffusion Y with a non-trivial scale
function can be deduced from the corresponding results for X = s(Y ).

We make the trivial observation that h ≡ 1 is a λ-excessive function for any λ > 0.
The h-transform corresponding to h ≡ 1 will be called the λ-transform. The λ-transform
of X, denoted X1, is equivalent to X up to the exponential time T ∼ Exp(λ) when X1 is
killed, while X remains on the state space I. Thus

X1
t =

{
Xt t ≤ T
∆ t > T,

where ∆ is the grave state of the killed diffusion X1. Note that the transition density of
X1 with respect to m is given by q(t;x, y) = e−λtp(t;x, y). Other fundamental quantities
are related similarly, for instance EX0

[e−λHx ] = PX0
(Hx < T ) = PX0

(X1 reaches x).
We are now able to restate our inverse problem as follows. Given a probability

measure µ on [a, b], construct a diffusion X = (Xt)t≥0 such that for all x ∈ [a, b]

1 =

∫
[a,b]

ξλ(x, y)

ξλ(X0, y)
µ(dy), (3.1)

whence by Theorem 2.2, X1
T ∼ µ. Since XT ≡ X1

T ∼ µ, the idea is to construct the class
of consistent diffusions via the λ-eigenfunctions for which (3.1) holds.

The following result is an elementary case (h ≡ 1) of Proposition (3.3) in Salminen
[8].

Proposition 3.1. Given a diffusion X, the representing measure γ = γ1X is given by

γ([a, x)) =
ϕ′λ(x−)

Wλ
, a < x ≤ X0, (3.2)

γ((x, b]) =
−φ′λ(x+)

Wλ
, X0 ≤ x < b, (3.3)

where ϕλ (φλ) are the increasing (decreasing) λ-eigenfunctions of X and Wλ is the
Wronskian.

Remark 3.2. If a is accessible and X0 = a then the representing measure for h = 1

is given by γ((x, b]) =
−φ′

λ(x+)
Wλ

for a ≤ x < b. The case X0 = b with b accessible is
analogous.

ECP 17 (2012), paper 50.
Page 3/8

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1976
http://ecp.ejpecp.org/


Diffusions with a given marginal at a random time

The characterisation of the representing measure in Proposition 3.1 will be used to
arrive at our main result. Suppose we are given a probability measure µ on [a, b]. Let
Uµ(x) =

∫
[a,b]
|x−y|µ(dy), Cµ(x) =

∫
[a,b]

(y−x)+µ(dy) and Pµ(x) =
∫
[a,b]

(x−y)+µ(dy). Let

X = (Xt)t≥0 be a one-dimensional diffusion in natural scale and let T be an independent
exponentially distributed random variable with parameter λ > 0.

Theorem 3.3. Suppose X0 ∈ (a, b). Then XT ∼ µ if and only if the speed measure of X
satisfies

m(dx) =

{
1
2λ

µ(dx)
Pµ(x)−Pµ(X0)+1/Wλ

, a < x ≤ X0

1
2λ

µ(dx)
Cµ(x)−Cµ(X0)+1/Wλ

, X0 ≤ x < b.

where Wλ > 0 is the Wronskian of X.

Proof. Suppose first that XT ∼ µ. Then since XT ≡ X1
T , by Theorem 2.2 µ is the

representing measure for h ≡ 1. Differentiating both sides of (3.2) we find that for all
points x such that a < x ≤ X0 and which are not atoms of µ,

µ(dx) =
1

Wλ
ϕ′′λ(x)dx.

(If µ has an atom at x then µ({x}) = 1
Wλ

(ϕ′′λ(x+)− ϕ′′λ(x−)). The case x ≥ X0 is similar,
with φλ replacing ϕλ.

On the other hand, integrating the two sides of (3.2) we have

Pµ(x) + k1 =
ϕλ(x)

Wλ
, x ≤ X0

Cµ(x) + k2 =
φλ(x)

Wλ
, x ≥ X0,

for constants k1, k2 ∈ R. Now using the fact that ϕλ(X0) = φλ(X0) = 1 we find that
k1 = 1/Wλ − P (X0) and k2 = 1/Wλ − C(X0). Since ϕλ and φλ are the λ-eigenfunctions
for X and solutions to (2.2), the speed measure of X satisfies

m(dx) =

{
1
2λ

ϕ′′
λ(x)dx
ϕλ(x)

, a < x ≤ X0

1
2λ

φ′′
λ(x)dx
φλ(x)

, X0 ≤ x < b.

Substituting for ϕλ and φλ we thus have

m(dx) =

{
1
2λ

µ(dx)
Pµ(x)+k1

, a < x ≤ X0

1
2λ

µ(dx)
Cµ(x)+k2

, X0 ≤ x < b

as required.
Conversely suppose that X has the given speed measure on (a, b). Define a function

η : [a, b]→ R+ as follows. Let Wλ > 0 be the Wronskian associated with X and set

η(x) =

{
Wλ(Pµ(x)− Pµ(X0)) + 1, a ≤ x ≤ X0

Wλ(Cµ(x)− Cµ(X0)) + 1, X0 ≤ x ≤ b.

Then η solves (2.2) on the domain (a, b) and we therefore have

η(x) =

{
ϕλ(x), a ≤ x ≤ X0

φλ(x), X0 ≤ x ≤ b.

By Proposition 3.1 the representing measure for h ≡ 1 is given by
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γ([a, x)) =
η′(x−)

Wλ
= µ([a, x)), a < x ≤ X0

γ((x, b]) =
−η′(x+)

Wλ
= µ((x, b]), X0 ≤ x < b,

and it follows that XT ∼ µ.

Remark 3.4. If X is started at an accessible end-point, a say, then XT ∼ µ if and only
if for all x ∈ [a, b), m(dx) = 1

2λ
µ(dx)

Cµ(x)−Cµ(a)+1/Wλ
. The case X0 = b where b is accessible

is analogous. Compare Remark 3.2.

We have the following interpretation for the Wronskian.

Corollary 3.5. If XT ∼ µ then the Wronskian satisfies

Wλ

2λ
=
m(dz)

µ(dz)

∣∣∣∣
z=X0

.

Intuition for Corollary 3.5 is provided by the fact that 2/Wλ = EX0
[LX0

AT
] (see Lemma

VI. 54.1 in Rogers and Williams [7]).

4 The Wronskian and the martingale property

Let τ ≡ inf{t ≥ 0 : Xt /∈ int(I)}. It is well known (see for instance [7]) that Xτ =

(Xt∧τ )t≥0 is a local martingale. We will say that X is a martingale diffusion whenever
Xτ is a martingale. In this section we will see that when the first moment of the target
law is finite, there exists a unique consistent martingale diffusion.

Let x̄µ =
∫
[a,b]

xµ(dx). For the remainder of this section suppose that
∫
[a,b]
|x|µ(dx) <

∞ and X0 = x̄µ. We then have the following corollary to Theorem 3.3.

Corollary 4.1. XT ∼ µ if and only if for a < x < b,

m(dx) =
1

λ

µ(dx)

Uµ(x)− |x−X0| − 2Cµ(X0) + 2/Wλ
. (4.1)

Proof. For x ≥ X0, Uµ(x)−2Cµ(x) = Cµ(x) +Pµ(x)−2Cµ(x) = Pµ(x)−Cµ(x) = |x−X0|.
Similarly for x ≤ X0, Uµ(x) − 2Pµ(x) = |x −X0|. Noting also that Pµ(X0) = Cµ(X0) the
result follows from Theorem 3.3.

By inspection of (4.1), the most natural choice of Wλ is Wλ = 1/Cµ(x̄µ) which, we
note, also recovers the construction in [1]. By the following result, the diffusion corre-
sponding to this choice of Wλ is in fact the unique martingale diffusion consistent with
µ.

Theorem 4.2. Suppose X0 = x̄µ and a = −∞ or b = ∞. Then X is a martingale
diffusion consistent with µ if and only if Wλ = 1/Cµ(x̄µ).

The author would like to thank David Hobson for providing the proof used below

that
∫∞ xC′′

µ (x)

Cµ(x)
dx =∞.

Proof. We suppose b = ∞ (the case a = ∞ is analogous). Since m is positive, Wλ ≥
1/Cµ(x̄µ). Suppose Wλ > 1/Cµ(x̄µ) then

m(dx) =
1

λ

µ(dx)

Uµ(x)− |x− x̄µ |+ c
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for some c > 0 and lim
x↑∞

m(dx)

µ(dx)
= 1/λc. Thus

∫∞ |x|m(dx) ∝
∫∞ |x|µ(dx) < ∞. It follows

from Theorem 1 in Kotani [6] that X is not a martingale diffusion.

Conversely suppose that Wλ = 1/Cµ(x̄µ). We will show that
∫∞ xC′′

µ (x)

Cµ(x)
dx =∞. Write

h(x) = xC′′(x)
2C(x) . For fixed y and x > y, let D(x) = Ex

[
exp

(
−
∫Hy
0

h(Bs)
Bs

ds
)]

. Note that

D(y) = 1 and D is positive and decreasing. Let Mt = exp
(
−
∫ t
0
h(Bs)
Bs

)
D(Bt). Then

M = (Mt∧Hy )t≥0 is a bounded martingale. In particular, by Itô’s formula, 1
2D
′′(Bs) =

h(Bs)
Bs

D(Bs), so that D(x) =
Cµ(x)
Cµ(y)

. It follows that lim
x→∞

D(x) = 0 and that

lim
x↑∞
B0=x

∫ Hy

0

h(Bs)

Bs
ds =∞

almost surely. Then we must have

∞ = lim
x↑∞
B0=x

E

[∫ Hy

0

h(Bs)

Bs
ds

]

= lim
x↑∞

{∫ x

y

h(z)

z
(z − y)dz +

∫ ∞
x

h(z)

z
(x− y)dz

}
=

∫ ∞
y

h(z)

z
(z − y)dz,

and thus
∫∞

h(z)dz =∞. It follows by Theorem 1 in [6] that X is a martingale diffusion.

Remark 4.3. An alternative (less direct) proof of Theorem 4.2 is available using a result
in Hulley and Platen [5]. By Theorem 1.2 and Proposition 2.2 in [5], X is a martingale
diffusion if and only if lim

x↑∞
φλ(x) = 0. Now recall that since X is consistent with µ we

have φλ(x) = WµCµ(x)−WµCµ(X0) + 1 for x ≥ X0. Clearly lim
x↑∞

φλ(x) = 0 if and only if

Wµ = 1/Cµ(X0).

5 Examples

Example 5.1. Let B = (Bt)t≥0 be Brownian motion, and T ∼ Exp(λ). Then we find that
BT ∼ µλ, where for x > 0

µ((x,∞)) = µ((−∞,−x)) =
1

2
e−
√
2λx.

Let us recover the class of consistent diffusions started at X0 = 0 with the same law
at an exponential time as Brownian motion. The consistent diffusions have speed mea-
sures mW (x) = νW (x)dx, where

νW (x) =
e−
√
2λ|x|

e−
√
2λ|x| −

√
λ/2 + 2λ/W

.

The choice W = 1/C(0) = 2
√

2λ corresponds to Brownian motion. Any choice of W ∈
(0, 1/C(0)) corresponds to a strict local martingale diffusion with the same marginal
law.
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Figure 1: Plot of νW (x) for λ = 1/2 and W ∈ (0, 2]. Note that ν2(x) ≡ 1 corresponds to
Brownian motion which has Wronskian W = 2

√
2λ = 2.

Example 5.2. Suppose that a = −1, b = 1 and we wish to recover diffusions started
at X0 = 0 that are uniformly distributed at an exponential time. We find that the con-
sistent diffusions are parametrised by W ∈ (0, 4] with corresponding speed measures
mW (dx) = νW (x)dx given by

1/νW (x) =


λ(x2 + 2x+ 4/W ), −1 ≤ x ≤ 0

λ(x2 − 2x+ 4/W ), 0 ≤ x ≤ 1

∞, otherwise.

The canonical choice for W is 1/W = C(0) = 1/4. Since ν4(−1) = ν4(1) = ∞ the
boundary points are inaccessible whence X4

T ∼ U(−1, 1).

For W ∈ (0, 4), the speed measure is finite on [−1, 1]. The consistent diffusions
reflect at the boundaries and XW

T ∼ U [−1, 1].

Now suppose instead that X0 = 1/2. Then

1/νW (x) =


λ(x2 + 2x+ 1/4 + 4/W ), −1 ≤ x ≤ 1/2

λ(x2 − 2x+ 9/4 + 4/W ), 1/2 ≤ x ≤ 1

∞, otherwise.

Figure 2: Plot of νW (x) for λ = 1/2 and W = 1 when X0 = 0 (solid line) and X0 = 1/2

(dashed line), and X0 = −1 (alternating line). Note that νW (X0) = W
4λ = 1/2, see

Corollary 3.5.
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