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Abstract

We consider a problem of predicting of the ultimate maximum of the process over
a finite interval of time. Mathematically, this problem relates to a particular opti-
mal stopping problem. In this paper we discuss exponential Lévy processes. As the
Lévy processes, we discuss α-stable Lévy processes, 0 < α ≤ 2, and generalized
hyperbolic Lévy processes. The method of solution uses the representations of these
processes as time-changed Brownian motions with drift. Our results generalize re-
sults of papers [10] and [24].
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1 Introduction

Throughout this paper we consider optimal stopping problems

sup
0≤τ≤T

E

 Sτ
max

0≤t≤T
St

 (1.1)

and

inf
0≤τ≤T

E

 max
0≤t≤T

St

Sτ

 , (1.2)

where process S = (St)t≤T , T <∞, is an exponential Lévy process

St = eHt .

These two problems were discussed primarily in papers [10] and [24] in connection
with a problem of optimal stock liquidation. In both papers it is supposed that the stock
price S is evaluated as a geometric Brownian motion,

dSt = rStdt+ σStdBt, S0 = 1, t ≤ T,
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Predicting the ultimate maximum

where B = (Bt)t≤T is a Brownian motion. In [24], the authors consider problem (1.1)
in cases r ≥ σ2/2 and r ≤ 0. In the first case, the solution of (1.1), i.e. a stopping time
0 ≤ τ∗ ≤ T such that

sup
0≤τ≤T

E

 Sτ
max

0≤t≤T
St

 = E

 Sτ∗

max
0≤t≤T

St

 ,

is τ∗ = T , and the optimal liquidation strategy for the seller of the asset is ”buy and
hold”. If r ≤ 0, then τ∗ = 0 and the optimal strategy is ”stop immediately”. The authors
of [10] discuss the case 0 < r < σ2/2 in (1.1) and prove that the solution is τ∗ = 0 there.
Moreover, they solve (1.1) independently when r ∈ [σ2/2, σ2) and consider problem (1.2)
for all ratios between r and σ deriving that its solution τ∗ = T if r ≥ σ2, τ∗ = 0 if r ≤ 0

and proving that there exists an increasing boundary function which determines the
optimal stopping time if 0 < r < σ2.

Concerning other works at the same direction, let the authors mention paper [12],
where the problem of minimizing of square-quadratic error between a Brownian motion
and its ultimate maximum is discussed, papers [4] and [13] in which for the logarith-
mic utility function and a Brownian motion with randomly changing drift the ultimate
maximum of the process is detected, [9], where geometric and arithmetic averages are
discussed instead of the maximum in problems (1.1) and (1.2), and works [7] and [8], in
which authors solve an infinite time horizon problem of stopping as close as possible to
the zero hitting time considering a mean-reverting diffusion process.

As we mentioned above, instead of a geometric Brownian motion, in this paper we
discuss exponential Lévy processes, which are very popular as a model of dynamics of
assets in mathematical finance (among others, see, for example, recent papers [1], [5],
[15], [26] on pricing and hedging theory). Our results correspond to the exponentials
of the Lévy processes, both problems (1.1) and (1.2), logarithmic and linear utilities.
On empirical tests which support a suggestion that log-returns of financial assets have
α-stable or generalized hyperbolic distributions we refer to papers [11], [17], [20].

The paper is constructed as follows. Section 2 is dedicated to α-stable Lévy processes
H with drift and problem (1.1) is solved in Section 2 in case of positive drift. All
0 < α ≤ 2 are discussed. Our result extends a result of [24], see Remark 2.1 and
Theorem 2.3. In Section 3, we consider a time-changed Brownian motion. The results
give full solution of problem (1.1) and extend results on (1.2) (when the optimal stop-
ping time is 0 or T ) which are obtained by [10] for geometric Brownian motion. Proofs
are set in Section 4. In comparison with a recent work [16], the proofs do not depend on
the particular change of time. The proof of Theorem 2.3 is based on well-known time-
changed representation of α-stable Lévy processes and properties of an extra function
introduced in the proof of Theorem 2.1 from [24]. The proof of Theorem 3.2 is simpler
and straightly exploits the results of [10] and [24]. The paper is completed by a list of
literature.

2 α-stable Lévy processes

Let Z = (Zt)t≤T be a symmetric α-stable Lévy process with characteristic function

ϕt(θ) = EeiθZt = e−t|θ|
α

, (2.1)

where 0 < α < 2.
If X(γ) is a positive random variable with Laplace transform

Ee−λX
(γ)

= e−λ
γ

, λ > 0,
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0 < γ < 1, it is not difficult to prove that

Zt = BT̃ (t), t ≤ T, (2.2)

where T̃ (t) an α/2 -stable subordinator with

Law(T̃ (1)) = Law(X(α/2)). (2.3)

Remark 2.1. The proof of decomposition (2.2) is given e.g. in [23] and consists in
straight calculation of the characteristic function of BT̃ (t) which appears to be equiva-
lent to (2.1).

Throughout this section, we model the price process of the asset S by the exponen-
tial Lévy process of the symmetric α-stable Lévy process with drift, i.e.

Ht = Zt + µt, µ ∈ R. (2.4)

Such defined process H can be used as a model of evolution of log-returns of stock
prices, see [20].

Remark 2.2. Keeping in mind studying of work [24], one could observe that a geomet-
ric Brownian motion with σ = 1 is St = eHt , where

Ht = Bt +

(
r − 1

2

)
t.

Setting µ = r − 1
2 , we are able to include the 2-stable symmetric Lévy process, a Brow-

nian motion, in framework of (2.4) with Zt = Bt.

Recalling proofs of results for a geometric Brownian motion ([10] and [24]), one
could observe that the proofs are based on exploiting the closed form expression of the
density of the maximum of the Brownian motion. We are able to obtain the next result
on the exponentials of the stable Lévy processes without knowledge of the distribution
of their maxima.

Theorem 2.3. Assume that H is an α-stable symmetric Lévy process with 0 < α ≤ 2

and drift µ. If µ ≥ 0, the solution of (1.1) is time T .

Example 2.4. If α = 2, the 2-stable symmetric Lévy process is a Brownian motion
B = (Bt)t≤T . As it is mentioned above, if the price of the asset is supposed to be a
geometric Brownian motion, i.e.

St = eµt+Bt , (2.5)

it was established (see [10] and [24]) that for µ ≤ 0 the optimal stopping moment is
τ∗ = 0 and for µ ≥ 0 τ∗ = T in (1.1). Therefore, the result of Theorem 2.3 extends that
result of [10] and [24] if µ ≥ 0.
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3 Time-changed Brownian motion

Let H = (Ht)t≤T be a time-changed Brownian motion with drift, i.e.

Ht = βγ(t) + σBγ(t), (3.1)

where β ∈ R, σ > 0 and random change of time (in sense of definition (a)–(b), p.109,
[22]) γ is independent of B and satisfies condition

P(γ(T ) <∞) = 1.

Remark 3.1. Such defined time-changed Brownian motion determines a pure discon-
tinuous Lévy process in many cases. This fact is obtained by straightforward calculation
of its characteristic function for a particular change of time, see paper [2] and mono-
graph [23] on generalized hyperbolic processes, and examples below. The proof of the
next theorem is based on (3.1) and the results of [10] and [24].

Theorem 3.2. The solution of (1.1) is τ∗ = T if β ≥ 0 and τ∗ = 0 if β ≤ 0. For problem
(1.2), solution τ∗ = T if β ≥ σ2/2 and τ∗ = 0 if β ≤ −σ2/2.

Example 3.3. Normal-inverse Gaussian process. A normal-inverse Gaussian distribu-
tion (NIG), introduced in [2] (see also [3] and [23]), is a normal variance-mean mixture
where the mixing density is an independent inverse Gaussian distribution, i.e. the NIG
random variable H = H(α, β, δ) is defined as

H = βX +
√
XN,

where N is normally distributed and the density of X is

pX(x) =

√
b

2π
e
√
ab 1

x3/2
exp

(
−1

2

(
ax+

b

x

))
,

where a = α2 − β2, b = δ2. Parameters α, β, δ are suggested to satisfy conditions

α > 0, 0 ≤ |β| < α, δ ≥ 0.

The density function f of H is

f(x) =
αδK1

(
α
√
δ2 + x2

)
π
√
δ2 + x2

eδ
√
α2−β2+βx, (3.2)

where K1 is modified Bessel function of the second type. The NIG process (Ht)t≥0 is
defined as a Lévy process such that H1 has density (3.2).

It is known, see for details [23], that for a Brownian motion B̃ = (B̃s)s≥0, a change
of time

T̃ (t) = inf{s > 0 : B̃s +
√
as ≥

√
bt}

and an independent Brownian motion B = (Bt)t≥0 process Ht can be represented in
form

Ht = BT̃ (t) + βT̃ (t).

Therefore, solutions of (1.1) and (1.2) for a NIG process do not depend on parameters
α and δ, due to Theorem 3.2.
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Example 3.4. Variance-gamma process. A variance-gamma (VG) process Y = (Yt)t≤T
can be written (see e. g. [19]) as a time-changed Brownian motion B = (Bt)t≥0, where
the random time change follows a gamma process with unit mean Γ(t; 1, ν), ν > 0, i.e.

Yt = βΓ(t; 1, ν) + σBΓ(t;1,ν).

Despite the fact that parameters β ∈ R, σ > 0 and ν reflect only indirectly such pa-
rameters of the VG distribution as variance, skewness and kurtosis (it can be shown by
straightforward calculation of moments of Y ), we immediately use such parametrization
of the VG process as above since it is usually used in literature, see [14], [17], [19]).

Together with the NIG process, the VG process is often used as a model of distri-
bution of market returns. The symmetric VG distribution was primarily studied in [17]
and [18]. In [19], the general case of VG process with application to option pricing was
discussed. For further investigations on the VG process, see [14] and [25].

Solutions of (1.1) and (1.2) for a VG process are determined by conditions of Theo-
rem 3.2 on β and σ.

Remark 3.5. In case of logarithmic utility, problems (1.1) and (1.2) can be rewritten as

sup
0≤τ≤T

E(Hτ −HT )q and inf
0≤τ≤T

E(HT −Hτ )q,

respectively, with q = 1. For q = 2 these problems were discussed in [12] for a Brownian
motion. Their result was extended to all q > 0 by [21]. For q = 1 and a Brownian motion
with spontaneously changing drift, see [4] and [13].

Assume that H is a Lévy process which has decomposition

Ht = µt+ βϕ(t) + σBϕ(t), (3.3)

where µ ∈ R, β ∈ R, σ > 0 and stochastic change of time (in the sense of definition
(a)–(b), p.109, [22]) ϕ satisfies condition

E
√
ϕ(T ) <∞.

Since H is a Lévy process (3.3), it is submartingale if EHt ≥ 0 and it is supermartingale
if EHt ≤ 0. Keeping in mind Hunt’s stopping time theorem ((A.2), p.60, [22]) and Wald
identity ((3.2.5), p.61, [22]), we conclude that solution of both problems (1.1) and (1.2)
for logarithmic utility here is

τ∗ = τ∗ = T if µ ≥ −βEϕ(1) and τ∗ = τ∗ = 0 if µ ≤ −βEϕ(1).

In particular, for the VG process the solutions are time T if µ ≥ −β and time 0 if µ ≤ −β.

4 Proofs

Proof of Theorem 2.3. Set for t ≥ 0

Ht = max
0≤u≤t

Hu and St = max
0≤u≤t

Su = eHt . (4.1)

Then problem (1.1) can be rewritten as

sup
0≤τ≤T

E(Sτ/ST ).
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Due to (2.2) and (2.4) for any τ ≤ T

E
(
Sτ/ST

)
= E

(
E

(
Sτ

ST

∣∣∣T̃ (t), t ≤ T
))

(4.2)

and

E

(
Sτ

ST

∣∣∣T̃ (t), t ≤ T
)

= E
(

exp
(
Hτ −HT

) ∣∣∣T̃ (t), t ≤ T
)

=

E

(
exp

(
BT̃ (τ) + µτ −max

t≤T
(BT̃ (t) + µt)

) ∣∣∣T̃ (t), t ≤ T
)
.

Observe that

E

(
exp

(
BT̃ (τ) + µτ −max

t≤T
(BT̃ (t) + µt)

) ∣∣∣T̃ (t), t ≤ T
)

=

E

(
min

{
exp

(
BT̃ (τ) + µτ −max

t≤τ

(
BT̃ (t) + µt

))
,

exp

(
− max
τ≤t≤T

(
BT̃ (t) + µt−BT̃ (τ) − µτ

))}∣∣∣T̃ (t), t ≤ T

)
. (4.3)

Set

Gµ(s, x) = E

(
min

{
exp(−x),

exp

(
− max
s≤t≤T

(
BT̃ (t) + µt−BT̃ (s) − µs

))}∣∣∣T̃ (t), t ≤ T
)
. (4.4)

Then we get from (4.3) and (4.4) that

E
(

exp
(
Hτ −HT

) ∣∣∣T̃ (t), t ≤ T
)

=

E

(
Gµ
(
τ,max

t≤τ

(
BT̃ (t) + µt

)
−BT̃ (τ) − µτ

) ∣∣∣T̃ (t), t ≤ T
)
, (4.5)

and, clearly, at the same path (T̃ (t))t≤T

Gµ(s, x) ≤ G(s, x),

where we imply that

G(s, x) =

E

(
min

{
exp(−x), exp

(
− max
s≤t≤T

(
BT̃ (t) −BT̃ (s)

))}∣∣∣T̃ (t), t ≤ T
)
.

Next,

Gµ
(
T,max

t≤T

(
BT̃ (t) + µt

)
−BT̃ (T ) − µT

)
=

min

{
exp

(
BT̃ (T ) + µT −max

t≤T

(
BT̃ (t) + µt

))
, 1

}
≥

G

(
T,max

t≤T
BT̃ (t) −BT̃ (T )

)
,
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and hence

E

{
E

[
Gµ
(
T,max

t≤T

(
BT̃ (t) + µt

)
−BT̃ (T ) − µT

) ∣∣∣∣
max
t≤s

(
BT̃ (t) + µt

)
−BT̃ (s) − µs = x

]
−

E

[
G

(
T,max

t≤T
BT̃ (t) −BT̃ (T )

) ∣∣∣∣
max
t≤s

BT̃ (t) −BT̃ (s) = x

]∣∣∣∣∣T̃ (u), u ≤ T

}
≥ 0.

It can be proved in the way of the proof of Proposition 5.1 from [24] that at the same
path (T̃ (t))t≤T

E

{[
G

(
T,max

t≤T
BT̃ (t) −BT̃ (T )

) ∣∣∣∣max
t≤s

BT̃ (t) −BT̃ (s) = x

]∣∣∣∣∣T̃ (u), u ≤ T

}
≥ G(s, x),

and hence

E

{
E

[
Gµ
(
T,max

t≤T

(
BT̃ (t) + µt

)
−BT̃ (T ) − µT

) ∣∣∣∣
max
t≤s

(
BT̃ (t) + µt

)
−BT̃ (s) − µs = x

]∣∣∣∣T̃ (u), u ≤ T

}
≥ Gµ(s, x). (4.6)

Keeping in mind arbitrariness of s and x, we conclude from (4.6) that

E

{
E

[
Gµ
(
T,max

t≤T

(
BT̃ (t) + µt

)
−BT̃ (T ) − µT

) ∣∣∣∣
max
t≤τ

(
BT̃ (t) + µt

)
−BT̃ (τ) − µτ

]
−

Gµ
(
τ,max

t≤τ

(
BT̃ (t) + µt

)
−BT̃ (τ) − µτ

) ∣∣∣∣∣T̃ (u), u ≤ T

}
≥ 0,

and taking into account (4.2) and (4.5), we conclude that τ∗ = T is optimal. �

Proof of Theorem 3.2. Let us consider the case of problem (1.2) and β ≤ −σ2/2.
In designations (4.1) problem (1.2) has form

inf
0≤τ≤T

E(ST /Sτ ). (4.7)

Then because of (3.1) we have that

inf
0≤τ≤T

E

(
ST
Sτ

)
≥ E

(
inf

0≤τ≤T
E

(
ST
Sτ

∣∣∣γ(t), t ≤ T
))

, (4.8)

and

E

(
ST
Sτ

∣∣∣γ(t), t ≤ T
)

=

E

[
exp

(
max
t≤T

(
βγ(t) + σBγ(t)

)
− βγ(τ) + σBγ(τ)

) ∣∣∣γ(t), t ≤ T
]
.
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Notice that γ(τ) is a stopping time again, due to definition of change of time (see p.109,
[22])). Hence, if β ≤ −σ2/2, we have similarly to results of [10] that for any 0 ≤ τ ≤ T

E

[
exp

(
max
t≤T

(
βγ(t) + σBγ(t)

)
− βγ(τ) + σBγ(τ)

)
−

exp

(
max
t≤T

(
βγ(t) + σBγ(t)

)) ∣∣∣γ(t), t ≤ T
]
≥ 0,

and therefore

E

(
inf

0≤τ≤T
E

(
ST
Sτ

∣∣∣γ(t), t ≤ T
))
≥ EST ≥ inf

0≤τ≤T
E

(
ST
Sτ

)
. (4.9)

It immediately follows from (4.8) and (4.9) that τ∗ = 0 is optimal in (4.7).
In other cases we have similar proofs. For example, in case of β ≥ 0 to problem (1.1)

we use inequalities

sup
0≤τ≤T

E

(
Sτ

ST

)
≤ E

(
sup

0≤τ≤T
E

(
Sτ

ST

∣∣∣γ(t), t ≤ T
))

and

E

(
sup

0≤τ≤T
E

(
Sτ

ST

∣∣∣γ(t), t ≤ T
))
≤ E

ST

ST
≤ sup

0≤τ≤T
E

(
Sτ

ST

)
instead of (4.8) and (4.9). �

Remark 4.1. One can easily observe that the method of the proof of Theorem 3.2 is not
suitable for Theorem 2.3. Indeed, it tends to problem (1.1) for Brownian motion with
time-dependent drift instead of Brownian motion with constant drift, and there are no
results in the way of results of papers [10] and [24] for it.
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