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Abstract

We first give an example of a negatively associated measure which does not satisfy the van den
Berg-Kesten inequality. Next we show that the class of measures satisfying the van den Berg-
Kesten inequality is not closed under either of conditioning, introduction of external fields or
convex combinations. Finally we show that this class also includes measure which have rank
sequence which is not logconcave.

1 Introduction

In 2009 Petter Brändén gave lecture series on the results of [BBL09] at the Newton Institute. After
the one of the lectures the following problem came up during a discussion between the current
author and Petter Brändén, Jeff Kahn and Rob van den Berg: Construct an example of a measure
which is negatively associated but does not satisfy the van den Berg Kesten-Inequality. Note that
all measures satisfying the BK-inequality are negatively associated [DR98]. In fact this had been
stated as an open problem already in 1998 by Dubhashi and Ranjan [DR98]. At the end of the
workshop the author had found one such such example and the first aim of this paper is to give
the construction. In fact we will give a simpler example than the original one.
In [BBL09] Borcea, Brändén and Liggett considered the class of Strongly Rayleigh measures, the
Rayleigh measures were introduced by [Wag08] in the context of matroid theory, for which they
could show a number of correlation results, extending negative association, and also that the
class was closed under several operations earlier discussed in [Pem00] in connection with general
negatively associated measures. Two of these operations are conditioning on a variable and intro-
ducing an external field. The second aim of this paper is to construct a measure which shows that
the class of measurers satisfying the BK-inequality is not closed under conditioning or external
fields. This means that even though the class of measure satisfying the BK-inequality have strictly
stronger negative correlation properties than a general negatively associated measure they are not
as robust as the strongly Rayleigh measures. Whether a strongly Rayleigh measure in turn must
satisfy the BK-inequality or not is currently unknown.
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We begin with some definitions. Let Bn denote the boolean lattices of subsets of 1, . . . , n, equiv-
alently this can be interpreted as the set of binary strings of length n in the standard way. Let
X = (X1, . . . , Xn) denote a random binary vector from Bn distributed according to a measure µ on
Bn.

Definition 1.1. Two functions f and g depend on disjoint set of variables if there exist a set
of indices A such that f only depends on the X i with i ∈ A and g depends only on X j with
c ∈ ({1, . . . , n} \ A)
A probability measure µ on Bn is negatively associated if every pair of increasing functions f :
Bn→ R+, g : Bn→ R+ such that f and g depend on disjoint sets of variables satisfies

∫

f g dµ≤
∫

f dµ

∫

g dµ (1)

Since any increasing function can be written as a linear combination of indicator functions of
upsets we see that it suffices for condition 1 to hold for all such pairs of indicator functions.
Recall that an event is increasing if its indicator function is increasing. Next we need to define
the concept that two events A and B occur disjointly, denoted A�B. This is most easily done by
interpreting the the boolean lattice Bn in terms of sets. Then A�B = {C ∈ Bn|∃A′ ⊂ C ,∃B′ ⊂
C , A′ ∩ B′ = ;,such that for any D ∈ Bn : A′ ⊂ D ⇒ D ∈ A, B′ ⊂ D ⇒ D ∈ B}. This can be
interpreted as saying that A happens in A′ and B in the set B′ which is disjoint from A′.

Definition 1.2. A probability measure µ on Bn satisfies the van den Berg-Kesten, abbreviated BK,
inequality if any pair of increasing events A and B satisfies

µ(A�B)≤ µ(A)µ(B) (2)

This inequality was first studied in [vdBK85] where it was proven that the product measure on Bn
satisfies the BK-inequality. This result has proven to be one of the most important tools in the study
of both percolation and random graphs. Those authors also conjectured that for product measures
the inequality holds for all pairs of events, not just increasing ones. This conjecture was proven
only recently [Rei00]. However there are still numerous unsolved basic questions regarding the
class of measures which satisfies the BK-inequality. One of the most fundamental such question
is the conjecture by Dubhashi and Ranjan that the class of BK-measures is closed under direct
products [DR98].

2 Negative association does not imply the BK-inequality

One of the main problems in trying to find counterexamples regarding the properties of BK-
measures is that apart from product measures and some trivial examples, such as uniformly ran-
dom sets of size 1, it is hard to find explicit examples satisfying the inequality. For finite sets one
can in principle try to find such examples by applying an inequality solving algorithm to the full
set of inequalities in the definition, however even for sets as small as those considered here this
seems to be out of range for the standard computer algebra packages. The original counterex-
ample mentioned in the introduction was found using a randomized construction and the simpler
examples given here were derived without computer.
We now give two examples of measures which are negatively associated but do not satisfy the BK-
inequality. We will describe our measures in terms of the probabilities for a binary string x1 x2 x3,
which can be seen as the characteristic function of a set in B3 in the standard way.
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Example 2.1.
p(111) = 0

p(110) =
294

1000
, p(101) = p(011) =

10

1000

p(001) =
6

1000
, p(010) = p(100) =

240

1000

p(000) =
200

1000

The first example is in fact sufficiently robust that some mass can be moved to make the measure
strictly positive.

Example 2.2.

p2(111) =
2

1000

p2(110) =
294

1000
, p2(101) = p(011) =

10

1000

p2(001) =
6

1000
, p2(010) = p(100) =

240

1000

p2(000) =
198

1000

For these examples we have have the following result.

Theorem 2.3. The measures in Examples 2.1 and 2.2 are negatively associated but do not satisfy the
BK-inequality.

Verifying that these measures satisfy Definition 1.1 is simplified by the fact that the measures
are invariant under exchange of x1 and x2, but the calculation is still so long that we will here
only verify it for the first example, where p(111) = 0 simplifies the calculations further. For both
examples we have verified the calculations by computer algebra as well.

Proof. For n = 3 there are 9 pairs of increasing events for which we need to check the condition
of Definition 1.1. Due to the symmetries of the measures the number of distinct pairs is smaller.

1. A pair of events of the form x i = 1:

p(x1 = 1) = p(x2 = 1) =
1

1000
(240+ 10+ 294) =

544

1000

p(x3 = 1) =
1

1000
(6+ 10+ 10) =

26

1000

p(x1 = 1∧ x3 = 1) = p(x2 = 1∧ x3 = 1) =
1

1000
(10+ 0) =

10

1000
≤

≤ p(x1 = 1)p(x3 = 1) =
221

15625
≈ 0.0141

p(x1 = 1∧ x2 = 1) =
1

1000
(294+ 0) =

294

1000
≤ p(x1 = 1)p(x2 = 1) =

=
4624

15625
≈ 0.2959
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2. A single variable and event of the form (x i = 1∧ x j = 1): For i, j, k all distinct:

p((x i = 1∧ x j = 1))∧ (xk = 1)) = p(x1 = 1∧ x2 = 1∧ x3 = 1) = 0 (3)

3. The events (x1 = 1∨ x2 = 1) and x3 = 1:

p(x1 = 1 ∨ x2 = 1) =
1

1000
(240 + 240 + 10 + 10 + 294) =

794

1000
p((x1 = 1∨ x2 = 1)∧ (p(x3 = 1))) = p(x1 = 1∧ x3 = 1) + p(x2 = 1∧ x3 = 1) + 0=

=
1

1000
(10+ 10+ 0) =

20

1000
≤ p((x1 = 1∨ x2 = 1))p((x3 = 1) =

5161

250000
≈ 0.0206

4. For distinct i, j, the events (x i = 1∨ x3 = 1) and x j = 1:

p(x1 = 1∨ x3 = 1) = p(x2 = 1∨ x3 = 1) =
1

1000
(240+ 6+ 10+ 10+ 294+ 0) =

=
560

1000
p((x2 = 1∨ x3 = 1)∧ (p(x1 = 1))) = p((x1 = 1∨ x3 = 1)∧ (p(x2 = 1))) =

= p(x1 = 1∧ x2 = 1) + p(x2 = 1∧ x3 = 1) + 0=
1

1000
(294+ 10) =

=
304

1000
≤ p((x1 = 1∨ x3 = 1))p((x2 = 1) =

952

3125
≈ 0.3046

This concludes the proof that the measure is negatively associated.
In order to prove that the measure does not satisfy a BK-inequality it suffices to give an explicit
pair of events for which the inequality fails. For this measure the events (x1 = 1 ∨ x3 = 1) and
(x2 = 1∨ x3 = 1) gives

p((x1 = 1∨ x3 = 1)�(x2 = 1∨ x3 = 1)) =
1

1000
(10+ 10+ 294+ 0) =

314

1000

p((x1 = 1∨ x3 = 1))p((x2 = 1∨ x3 = 1)) =
5602

10002 =
196

625
= 0.3136 (4)

3 The BK-inequality is not preserved under conditioning or ex-
ternal fields

We first need two definitions which are extensions of properties considered for negatively associ-
ated measures in [Pem00] to measures satisfying the BK-inequality.

Definition 3.1. A measure µ on Bn is conditionally BK if all measures, on Bn−1, of the form
µ(A|x i = j), for i = 1, . . . , n and j = 0, 1 satisfy the BK-inequality.



Measures violating the BK-inequality 453

Definition 3.2. Let W : {1, . . . , n} → R+ be a non-negative weight function and let µ′ be the
reweighted measure obtained from µ as

µ′(X = (y1, y2, . . . , yn)) = Cµ(X = (y1, . . . , yn))
∏

i

W (i)yi ,

where C is a constant normalising the total measure to 1.

Note that taking W (i) = 1 for all values of i except j and then letting W ( j) go to 0 or ∞ corre-
sponds to conditioning on x j being 1 and 0 respectively. We call the latter the extremal external
fields.
Our third example is again a modification of Example 2.1. In this case we have moved some mass
in order to make the measure satisfy the BK-inequality.

Example 3.3.
q(111) = 0

q(110) =
294

1000
, q(101) = q(011) =

10

1000

q(001) =
7

1000
, q(010) = q(100) =

240

1000

q(000) =
199

1000
We now have

Theorem 3.4. The measure in Example 3.3 satisfies the BK-inequality but is not conditionally BK
and does not satisfy the BK-inequality for some non-extremal external fields.

Proof. The proof breaks into three parts:

1. Checking that the measure satisfies the BK-inequality in this case reduces to verifying that
the measure is negatively associated and satisfies three inequalities of the form used in
equations 4. Checking that the measure is negatively associated is easy and only a small
modification of the calculations done in the proof of Theorem 2.3 so we will leave them out
and instead verify the final three inequalities.

Again the calculations are simplified by the symmetries of the measure.

q((x1 = 1∨ x2 = 1)�(x1 = 1∨ x3 = 1)) = q((x1 = 1∨ x2 = 1)�(x2 = 1∨ x3 = 1)) =
1

1000
(10+ 10+ 294+ 0) =

314

1000
q((x1 = 1∨ x2 = 1))q((x1 = 1∨ x3 = 1)) = q((x1 = 1∨ x2 = 1))q((x2 = 1∨ x3 = 1)) =

240+ 240+ 10+ 10+ 294

1000

240+ 7+ 10+ 10+ 294

1000
=

222717

500000
≈ 0.44.

The two inequalities just verified do in fact hold for Example 2.1 as well. The more critical
inequality is the one which fails for Example 2.1

q((x1 = 1∨ x3 = 1)�(x2 = 1∨ x3 = 1)) =
1

1000
(10+ 10+ 294+ 0) =

314

1000

q((x1 = 1∨ x3 = 1))q((x2 = 1∨ x3 = 1)) =
(240+ 7+ 10+ 10+ 294)2

10002 =

314721

1000000
≈ 0.3147
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2. To see that this measure is not conditionally BK we look at the case where we condition on
the event x3 = 0. The conditioned measure is then

q3(111) = 0

q3(110) =
294

973
, q3(101) = q3(011) = 0

q3(001) = 0, q3(010) = q3(100) =
240

973

q3(000) =
199

973

Here we find that

q3(x1 = 1)q3(x2 = 1) =
(240+ 294)2

9732 ≈ 0.3012

and

q3(x1 = 1∧ x2 = 1) =
294

973
≈ 0.3021

This means that the conditioned measure violates the BK-inequality for the pair of events
x1 = 1 and x2 = 1, and in fact the measure is not even negatively associated.

3. Since the inequality we found in the previous case was a strict inequality we can use that the
introduction of of an external field is a continuous transformation of the measure, and the re-
lation to conditioning mentioned earlier, to deduce that there must exist non-extremal fields
of the form W (x1, x2, x3) = sx3 for which the measure does not satisfy the BK-inequality.

More explicitly, if we consider the weight W (x1, x2, x3) = sx3 and use a computer algebra
package to reduce the set of inequalities in the definition of the BK-inequality we find that the
reweighted measure satisfies the BK-inequality if and only if s ≥ 1

189
(−719+

p

(688195))≈
0.585. (This was done by using the Reduce function in Mathematica.)

4 Convex Combinations

Recall that a measure µ1 stochasticly dominates a measure µ2 if µ1(A) ≥ µ2(A) for all increasing
events A. We denote this by µ1 � µ2. It i well known, see e.g. chapter 2 of [Lig85], that if µ1
and µ2 satisfy the FKG-inequality and µ1 � µ2 then every convex combination tµ1 + (1− t)µ2,
0 ≤ t ≤ 1 also satisfies the FKG-inequality. Without the stochastic domination condition this does
not hold.
Our final example shows that convex combinations do not preserve the BK-inequality, even for
product measures.

Example 4.1. We will consider two product measures on B2. Let µ1 be the product measure with
µ1(x1 = 1) = 8

10
and µ2 be the product measure with µ2(x1 = 1) = 1

10
.

Let us now consider the event A= (x1 = 1∨ x2 = 1).

(tµ1 + (1− t)µ2)(A) =
24t

25
+

19(1− t)
100
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(tµ1 + (1− t)µ2)(A�A) = (tµ1 + (1− t)µ2)(x1 = 1∧ x2 = 1) =
64t

100
+

1− t

100

We may now solve the inequality

64t

100
+

1− t

100
≤
�

24t

25
+

19(1− t)
100

�2

for t. Some basic algebra gives a quadratic equation in t and we find that the inequality is satisfied
if an only if

t ≤
1

847
(241± 10

p

265)≤ t

meaning that t must be less than approximately 0.08 or greater than approximately 0.48.
Hence the measure tµ1 + (1− t)µ2 does not satisfy the BK-inequality for an intervall of values of
t.

5 Log-Concavity for the rank sequence

In [Pem00] a number of conjectures regarding the properties of negatively associated measures
were given, in particular the conjecture that the rank sequence of such a measure should be ultra-
logconcave received a lot of attention due to it’s connection with Mason’s conjecture [Wag08].
Recall that the rank sequence is the numbers ri =

∑

µ(A), where the sum runs over all sets A with
cardinality i. In [Mar07] the author constructed a minimum counterexample to this conjecture,
and in [BBL09] several families of such examples were given.
Our final example is a measure which satisfies the BK-inequality but has a rank sequence which is
not logconcave, a property strictly weaker than ultra-logconcavity. Verifying the claimed properties
is done exactly as for our earlier measures and we leave the calculations out.

Example 5.1.

µ (000) = µ ({111}) =
1

100

µ (100) = µ (010) =
30

100
µ (001) =

32

100

µ (110) = µ (101) = µ (011) =
2

100

The rank sequence for this measure is: 1/100, 92/100, 6/100, 1/100 and since 1 · 92 ≥ 62 the
sequence is not log-concave.
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