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Abstract

The purpose of this note is to prove a central limit theorem for the third integrated moment of the
Brownian local time increments using techniques of stochastic analysis. The main ingredients of
the proof are an asymptotic version of Knight’s theorem and the Clark-Ocone formula for the third
integrated moment of the Brownian local time increments.

1 Introduction

Let {B,,t > 0} be a standard one-dimensional Brownian motion. We denote by {L,t > 0,x € R}
a continuous version of its local time. The following central limit theorem for the L2 modulus of
continuity of the local time has been recently proved:

-3 X X £ 8 X %
h™> UR(Lﬁh — LY)*dx —4th) — 5 UR(Lt)de) n, )

where 7 is a N(0, 1) random variable independent of B and £ denotes the convergence in law.
This result has been first proved in [3] by using the method of moments. In [4] we gave a simple
proof based on Clark-Ocone formula and an asymptotic version of Knight’s theorem (see Revuz
and Yor [9], Theorem (2.3), page 524). Another simple proof of this result with the techniques of
stochastic analysis has been given in [11].

The following extension of this result to the case of the third integrated moment has been proved
recently by Rosen in [12] using the method of moments.
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Theorem 1. For each fixed t > 0

1 2
FJ (LM — 1)%dx 5 8v3 U (Lf)de) n
R R

as h tends to zero, where 1 is a normal random variable with mean zero and variance one that is
independent of B.

The purpose of this paper is to provide a proof of Theorem 1 using the same ideas as in [4]. The
main ingredient is to use Clark-Ocone stochastic integral representation formula which allows us
to express the random variable

Fl = J (LXth —L¥)3dx 2
R

as a stochastic integral. In comparison with the L2 modulus of continuity, the situation is here more
complicated and we require some new and different techniques. First, there are four different
terms (instead of two) in the stochastic integral representation, and two of them are martingales.
Surprisingly, some of the terms of this representation converge in L%(Q) to the derivative of the
self-intersection local time and the limits cancel out. Finally, there is a remaining martingale term
to which we can apply the asymptotic version of Knight’s theorem. As in the proof of (1), to show
the convergence of the quadratic variation of this martingale and other asymptotic results we
make use of Tanaka’s formula for the time-reversed Brownian motion and backward It6 stochastic
integrals.

We believe that a similar result could be established for the integrated moment of order p for
an integer p > 4 using Clark-Ocone representation formula, but the proof would be much more
involved.

These results are related to the behavior of the Brownian local time in the space variable. It was
proved by Perkins [7] that for any fixed t > 0, {L},x € R} is a semimartingale with quadratic

variation (L), — (L), =4 fab L¥dx. This property provides an heuristic explanation of the central
limit theorems presented above. The proof of these theorems, however, requires more complicated
tools.

The paper is organized as follows. In the next section we recall some preliminaries on Malliavin
calculus. In Section 3 we establish a stochastic integral representation for the derivative of the
self-intersection local time, which has its own interest, and for the random variable F th defined
in (2). Section 4 is devoted to the proof of Theorem 1, and the Appendix contains two technical
lemmas.

2 Preliminaries on Malliavin Calculus

Let us recall some basic facts on the Malliavin calculus with respect the Brownian motion B =
{B;,t > 0}. We refer to [5] for a complete presentation of these notions. We assume that B is
defined on a complete probability space (2, %, P) such that & is generated by B. Consider the set
& of smooth random variables of the form F = f (le’ ... ,Btn) ,, where tq,...,t, >0,n€N and
f is bounded and infinitely differentiable with bounded derivatives of all orders. The derivative
operator D on a smooth random variable of this is defined by

" 5
D,F = ; 3_>J; (Beps-+Be,) Loaa(0):
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We denote by D'? the completion of # with respect to the norm ||F||;, given by

IFI}, =E [F*] +E (L

The classical It6 representation theorem asserts that any square integrable random variable can
be expressed as

e}

(D.F)* dt) :

e}

F=E[F]+ J u,dB,,
0

where u = {u,,t > 0} is a unique adapted process such that E (fooo ufdt) < oo. If F belongs to

D2, then u, = E[D,F|%,], where {Z,,t > 0} is the filtration generated by B, and we obtain the
Clark-Ocone formula (see [6])

[0.9)

F =E[F]+J E[D,F|Z]dB,. )
0

3 Stochastic integral representations

Consider the random variable y, defined rigorously as the limit in L?(Q)

t u
e =limJ J p.(B, — B,)dsdu, ¢
e—0 o Jo

where p,(x) = (27‘[6)7% exp(—x?2/2¢). The process y, coincides with the derivative —%at(y)lyzo
of the self-intersection local time

af(y)=f J 5,(B, — By)dsdu.
0 Jo

The derivative of the self-intersection local time has been studied by Rogers and Walsh in [10] and
by Rosen in [11]. We are going to use Clark-Ocone formula to show that the limit (4) exists and
to provide an integral representation for this random variable.

Lemma 2. Set y{ = fot f; p.(B, — By)dsdu. Then, y¢ converges in L%(Q) as ¢ tends to zero to the

random variable . .
Ye= ZJ (J pe—r(B, —By)ds — Lfr) dB,.
0 0

Proof. By Clark-Ocone formula applied to y; we obtain the integral representation

1
e :f E(D,y;{|Z.)dB,,
0

where {Z,,t > 0} denotes the filtration generated by the Brownian motion. Then,

t u
Dmfzf f pY(B, — Bl 1 (r)dsdu,
0 0
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and forany r <t

E(D,v(|%,)

J J p6+u (B, — By)dsdu = 2 f J OPesu- ——""(B, — B,)dsdu

zf (pe-H—r(Br _Bs) _pe(Br - BS))dS
0

As ¢ tends to zero this expression converges in L2(Q2 x [0, t]) to

2 (f Pi—+(B, —By)ds — Lf') ,
0

which completes the proof. O

Let us now obtain a stochastic integral representation for the third integrated moment Fth =

fR(Lf+h — LY )3dx. Notice first that E(F g‘) = 0 because F ? is an odd functional of the Brown-
ian motion.

Proposition 3. We have F!' = f ®.dB,, where ®, —Zf 89, and

z z 2

o) = 6J (Lr+h_Lr) 1jo (B, —2)dz
R

" 2
= _6J J (Lf”‘—Li) pi—r(B, —z — y)dydz
3) 12h 3 .
& = p,__w2(B, —B,+y)z :(1—e :)dzdyds
@) B, —as [ i—e b

= ——= _ —B)ds | z72(1—e 2)dz.

r m o [—h,h] r s 2

t—r

Proof. Let us write

3

Fh hmJ (J [pe(B; —x —h) —p.(B, — x)] ds) dx

61imf f l_[ [pe(Bsi —x—h)—p.(B; —x)} dxds,
¢20 )p Jr =1

where D = {(s;,5,,53) € [0,t]% : 5; < s, <s3}. We can pass to the limit as e tends to zero the first
factor p,(B;, — x —h) — p.(B;, — x), and we obtain

Fth = LI_I)%6J { [pe(Bsz _le) _ps(Bsz _le +h)] [ps(Bs3 _le) _pe(Bs3 _le +h)j|
D
- [ps(Bsz _le - h) _pe(Bsz _le):| |:pe(Bs3 _le - h) _ps(Bs3 _le):l }ds

= lin(1) 6J &, (s)ds.
E— D



400 Electronic Communications in Probability

We are going to apply the Clark-Ocone formula to the random variable f D ®,.(s)ds. Fixr € [0, t].

We need to compute fD E (D, [®.(s)] |Z,) ds. To do this we decompose the region D, up to a set
of zero Lebesgue measure, as D = Dy U D; U D,, where

D; = {s:0<s;<sy,<r<s;=<t},
D, = {s:0<s;<r<s,<s3=t},

and Dy ={s: 0 <r <s;}U{s:s3 <r <t}. Notice that on Dy, D, [®.(s)] = 0.
Step 1 For the region D; we obtain

E(D, [8.()]17,) = [p.(B,—B,)—p.(B,,—B; +Mh]
x [pgﬂrr(sr ~B,)~ply, (B, — By + h)]
— [pe(B,, — B, —h)— p.(B;, — B,) ]
x [p;+53_r(3r ~ B, ~h)—pl,, (B — le)] .

We can write this in the following form

E(D,[2.()] %)

h
J [ps(Bsz - le + h) - ps(Bsz - le):| p;/+s3_r(Br - le + .y)d.y
0

h
- f [pe(By, = B,) = p.(B;, — B, —h)| pl,, (B, — B, — y)dy
0

h
ap£+s -r
= zf I:ps(Bsz _le +h) _pg(Bsz _le)j| TS(Br _le +.y)d.y
0 3
h
3p +s3—
_ZJ [ps(Bsz _le) _pe(352 _le - h):l %(Br _le - )’)d}’
0 3

Integrating with respect to the variable s5 yields

h
f E(D, [®.()]|Z,)ds = 2 J f [pe(B;, — B, +h) — p.(B;, —B,)]
D 0<s;<s,<r JO
X |:pe+t7r(Br - le + .y) - ps(Br - le + y):| dyd81d52

h
_ZJ J [pe(Bsz _le)_ps(Bsz _le _h):l
0<s5;<5,<r JO
X |:p£+t—r(Br - le - }’) _ps(Br - le - )’)J dydsldSZ'
This expression can be written in terms of the local time:
h prr
J E(D, [®.(s)]|F,)ds = ZJ J J [pe(x —z+h)—p.(x —2)] (L¥ — LY)LE,
D rR2Jo Jo

x |:p8+t—r(Br -z +y) _pe‘(Br —Z +}’)] d.dedZ

h pr
R2JO Jo

X [Pete—r(B, =2 —y) = pe(B, —z —y)] dydxdz.
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We make the change of variables y — h—y and z — z + h in the last integral and we obtain

J E (Dr [q)s(s)] |gr) ds = f f J [Pg(x —z+h)—p.(x —z)] (Lx - LX) (Lfis - Lgs_h)
D

pe‘+t r(B Z+y) pe(B Z+}’)] ddedZ

Taking the limit as ¢ tends to zero in L2(Q x [0, t]) and integrating in x yields

JJJ(Lzh Lzh Lz+Lz)(Lz_Lzh
RJO

X [pe—r(B, —2+y) = 8o(B, —2+y)] dydz
f (Lt — Lf)2 14 (B, —2)dz
R

h
2
—f J (Lf”‘ - Lf) pe+(B, —z— y)dydz := ¥,
R Jo

Step 2 For the region D,, taking first the conditional expectation with respect to #; which contains
Z,, and integrating with respect to the law of By, — B, we obtain

limf E(D,[®.(s)]|F,) ds
e—0 D

E(D, [®.(®]|Z,) = fdypsz {NA[pL(B, — B, +y)—p.(B, — B, +y +h)]
R

p£+s3—sz(B B +y)— p8+s3—52(Br — le +h+ y):|
pe(B, — By, +y) pe(B, — B, +y +h)]
X PL+53_5 — By +) = Ply, (B, By +h+ )]

<[
+ [p.(8
[
— [p.(B, — B, +y —h)—p.(B, — B, + )]
[
—[p.(B
Iz

X

p€+s3—sz(B le +ty - h) - p£+s3—52(Br - le + y):|
pe( le +y —h)—p.(B, — B, +)]
X £+s3—52 le + Y- h) p£+53—sz(Br - le + y):l }

Integrating by parts yields

E (Dr [‘1’8(3)] |gr) = - dypgz_r(A’){ I:pe(Br _le +y) _pe(Br _le +y +h):|

R

X Pe+s, sZ(B le +y) _ps+s3fsz(Br _le +h+y):|

[
|:p le+y_h)_p£(Br_le+y):|
[

X p6+53 52(B le +ty-— h) _p£+s3752(Br _le +.y):| }

Letting ¢ tend to zero we obtain

lll%E (D, [2.()]1F,) = [Ps3—sz(0) — p53—52(h):| [ps’z_r(Br — B, +h)— pslz_,(Br — B, — h)]

h
= [ps3—32(0) - p53—52(h)j| f p;;_r(Br - le + _)’)d_)’
—h
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Hence,

limJ E(D, [®.(s)]1Z,) ds
e—0 D,

p52 r

—B, +y)dy:= \1152). (5)

J J 52 ( f : [Ps,—5,(0) = Py, (W] dsg)
[

We have
t [e]
h 3 :
65, (0) = ps._s. (M) | ds3 = — z 2(1—e 2)dz. (6)
LZ [p3 2( ) p3 2( ):I 3 mvfﬁz ( )

Substituting (6) into (5) yields

-t
v = J J f J OPu- "(B, —B,+y) xz 2(1 —e i)dsdudzdy.

Now we integrate in the variable u and we obtain

v = f f j Po,2(B, =Bt y)z :(1-e 3)dsdzdy
[0 9)
1 (B, — B,)ds Z 2(1—6 Z)dz
'_271: . [—h,h] fh
Thus,
t t
Mt=6f wMdB, +6 f v2dB,,

0 0

which completes the proof. O

4 Proof of Theorem 1

The proof will be done in several steps. Along the proof we will denote by C a generic constant,
which may be different from line to line.
Step 1 Notice first that by Lemma 2 and the equation

1 ., .
— “2(1—e3)dz =1, 7
\/%Joz( e 2)dz @)

we obtain that h™2 fot(Cb(r?’) + d>(r4))dBr converges in L2(Q) to 12y,.
Step 2 In order to handle the term h™2 fot (@ + &)dB, we consider the function

h
Pr(&) = J Pe—r(E=¥)dy — 1o 1(8),
0
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and we can write
. N2
o)+ = —6f (LB — L2 gy (x)dx.
R

Applying Tanaka’s formula to the time reversed Brownian motion {B, — B,,0 < s < r}, we obtain
1 _ _
3 (LBt —LB) = —(—x+h)" + ()" + (B, —x +h)" — (B, —x)*
r
- f 1[—h,0] (Br — B, - x)st:
0
where dB, denotes the backward It6 integral. Clearly, the only term that gives a nonzero contri-

bution is )
24J U 1[h’0](Br—Bs—x)d§s) Pn(x)dx.
R 0

We are going to use the following notation

1[—h,0] (Br — Bs - X), (8)

5" (x)

Al (x) = J 8" (x)dB;, )

o

where 0 < o < r. With this notation we want to find the limit in distribution of

Y, = —24h°2 f ( J (Ag,,<x))2¢h(x)dx) dB
0 R

as h tends to zero. By It6’s formula,

A%, (x))? :zf AL (x)8" (x)dB, + f &% (x)ds.
0 0

Y, = —48h” ZJ (f (J Ah’r(x)ch’O(x)dB\U) th(x)dx) dB

U f 5" (x)d)h(x)dsdx) dB,. (10)
Notice that, by Lemma 2

—24h‘2J ( J J 5Qs(x)¢h(x)dsdx) dB,

0 RJO
t r h

= _24h_2f (j f 1[—h,0](Br —B, - X) (J pt—r(x - y)dy - 1[O,h] (X)) dex) dBr
0 RJO 0

converges in L2(Q) to —12y,, which cancels with the limit obtained in Step 1.

Therefore,

—24h72
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To handle the first summand in the right-hand side of (10) we make the decomposition

f U A’;,r(x)éﬁa(x)dﬁg) $u(x)dx =Ty — Ay
R 0

h r
Ton =J J U A’;,r(x)aig(x)dé‘g) Pe—s(x = y)dxdy, (an
0 R 0

h r
A =f U A’;)r(x)éﬁa(x)dfia) dx, (12)
0 0

lim h*E(T2,) =0, (13)

where
and

Step 3 We claim that

which implies that h=2 f Ot I',,dB, converges to 0 in L?(2) as h tends to zero. Let us prove (13).
We can write

r h 2
E(T?,) = J U fA’z,,r(x)é’:,a(x)pt_r(x—y)dxdy) do
0 0 JR

r h 2
< E( sup supIA};r(x)sz (f Jb'}rlg(x)pt_,(x—y)dxdy) do).
0<o<r<txeR ’ 0 o Jr

Clearly, for any p > 1,
r h 2
h“‘f U f 8" ()p,_.(x —y)dxdy) do
0 0o Jr

converges in LP(Q) to for p._,(B, — B;)?ds, and, on the other hand, by Lemma 4 in the Appendix,

Il SUPy<y<r<¢ SUPxer |A’; (|||, converges to zero as h tend to zero, for any p > 2. This completes
the proof of (13).
Step 4 Finally, we will discuss the limit of the martingale

t

M= 48h~2 f A,,dB,,
0

where A, is defined in (12). Applying the asymptotic version of Knight’s theorem (see Revuz
and Yor [9], Theorem 2.3 page 524) as in [4], it suffices to show the following convergences in
probability as h tends to zero

(M",B), =0, (14)

uniformly in compact sets, and
MMy, — 192f (L¥)*dx. (15)
R

Exchanging the order of integration we can write A, as

r h r
Ar,hzf U A};,r(x)5f,o(x)dx) dB, = f w! dB,, (16)
0 0 0
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where
h
ho_ h h
v, —J Aa’r(x)5w(x)dx. a7
0

Step 5 Let us prove (14). For any p > 2 we have, by Burkholder’s inequality

s t prh 2
cph*ZPE f (J f A’;r(x)5’:0(x)dxdr) do
o \Js Jo '
t t rh 2
+cph—2PEJ (J J A};’r(x)ai‘)a(x)dxdr) do
s o JO

= Cph_zp(Bl +Bz)

N

E|[(M",B), — (M",B),|"

IA

(SN

For the term B; we can write

6’;’0(x)dxdr

X€R 0<o<s<r<t

B, <E (sup sup |A};‘7 N9l

P
do) .

Applying Cauchy-Schwarz inequality and lemmas 4 and 5 in the Appendix we obtain

By < Cpe(t—s)2 IS

A similar estimate can be deduced for the term B,. Finally, an application of the Garsia-Rodemich-

Rumsey lemma allows us to conclude that the convergence in (14) holds in probability, uniformly
in compact sets.

Step 6 Let us prove (15). We have, by It0’s formula and in view of (16) and (17)
t
(M"y, = 48h~ f A2 dr = 48%h" f J (w! Ydodr

+482 x 2h~ f f U v dB ) dB,dr

= 48°h* (R}, +2R2,). (18)

We are going to see that only the first summand in the above expression gives a nonzero contribu-
tion to the limit. Consider first the term R} ,. We can express (¥" )? as

h rh
(\Iﬂ;,a)z:f f Al (AL (18!, (X)) (y)dxdy,
0 JO

and, by It6’s formula

r r r

Al (x)8" (y)dB, +f Al (y)8" (x)dB.

o

AL (Al ()= J

o

5’r1,s(x)5’rl)s(y)ds +f

o
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. . . . . h 2 .
Substituting the above equality in the expression of (¥} )* yields

t pr pr prh ph
R}, = f f f f J &8 ()57 (y)8! ,(x)6" (y)dxdydsdodr
0 JOo Jo JO JO
t rr prh ph r
+f f f J U Aﬁr(x)af;s(y)dﬁs) §"_(x)5" (y)dxdydodr
0Jo Jo Jo \Jos 7 ’ ’ '
t r h prh
L

+ f ( f A}sl’r(y)5ﬁs(x)d§5) 5!, (x)8! (y))dxdydodr
0 o

3

— i,h
- S
i=1

Only the first term in the above sum will give a nonzero contribution to the limit. Let us consider
first this term. We have

h
f 525()(‘)5};’0()()(1)( = gn(B, — B;,B, —B,),
0
where

(%, ) = (h = |x[ = |y D4 Lgxy<op + [(h =[x Dy A= |y D4]1 1y 03

As a consequence,

t r r
48°h7AM" = 482h_4f jJ gn(B, — B, B, —B,)? dsdodr
0 JO Jo
1 t r r
= —482h4J J J gn(B, — B, B, — B,)?* dsdodr
2 0 Jo 0
t

1 24 2
= =—48%h gn(B, —x,B, —y)* L7LYdxdy |dr.
2 0 R?

As h tends to zero this converges to }1482 fot(Lfr)zdr =192 fR(Lf)de. This follows form the fact
that

1
f gn(x,y)?dxdy = -h*.
R2 2

Let us show that the other terms h™*A?" and h™*A>" converge to zero in L!(2) as h tends to zero.
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Using Holder’s inequality with % + Cll =1 yields

t rr [ rh ;R ;
h4azh| < h“f J U J 5’,ig(x)5’:,g(y)dxdy)
0 Jo o Jo
h prh r q é
X (J J JA?r(x)éfs(y)dﬁs dxdy) dodr
0o Jo [Jo ’
t r 2 h h r q q
< h‘4J J (h—|B, — B, UJ JA’;r(x)es’;s(y)dEs dxdy) dodr
0 Jo 0o Jo |Jo |
<

h™*sup (J (h—|B, —Bgl)ida)
r 0

t h rh

XJ (supJ. f

0 g Jo Jo

—4nplLhp2h
h~*BLhB2h,

TN
dxdy) dr

.
h h o
f A" (x)8" (y)dB,

g

The term Btl’h can be estimated as follows

Jr(h—lB _B I)idazf(h—lB —x|)§Lde<2—p( sup L") Bt
o r ol/+ & r +r —p+2 r

r<t,xeR

2 .
Furthermore, for the term Bt’h we can write

h rh r q q
= cSup( f J EJA’;,r(x)é’;s(y)dB; dxdy)
rt o Jo 0

q 1
q

IA

2

h rh r
Csup f J E f A};’r(x)25’;,s(y)ds dxdy
0 Jo 0

<
r<t
1
. q r rh 7
< Chisup | E | sup sup A’;r(x)‘ J f 5fs(y)dsdy
r<t x€R0<s<r<t ! 7 o Jo
1
3 N q a
< Che | E(sup sup |A] (x)| Xsup sup L} .
x€RO0<s<r<t!| ~ x€R 0<r<t

Using Lemma 4 in the Appendix with the exponent q yields
2, = ches.

As a consequence,

and for 0 < g < 2(1 — €) this converges to zero. In the same way we can show that h™*E Af’h

tends to zero as h tends to zero.
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It only remains to show that the term h™ 4R2h in the right-hand side of (18) converges to zero.
Using Fubini’s theorem we can write

t r r t t r
=J f ot U \If’}’sdﬁs) dB,dr =f U ot U \Iff’sdﬁs) dr) dB,,
0 Jo o 0 o o

2
ER?,)* = J U U wﬁsdﬁs)dr) do
= J f J VA U\yh dE) qu/h dﬁ)drd d
- ro - P,0 r,s s 0,8 s paoc
r 20
(J \If’risdﬁs) drdpdo
o ([ o)
r 0

t
‘ sup( wh )
t r ‘ 2
(f sup (J \Illrlsdﬁs) dr)
o O=r s

with i + % + % = 1. Using lemmas 4 and 5 in the Appendix we can show that the first two factors

hence,

2F v, xph

IA

2

IA

b

X

C

are bounded by a constant times h>~¢ for some arbitrarily small € > 0. Using Doob’s maximal
inequality, the third factor can be estimated by

f (\Ifh )zds

J (¥" Y2ds <sup sup |Ah |2J (h—|B, —B,)2ds < Ch’sup sup |Ah |ZsupLx
0

x€R 0<s<r<t x€R 0<s<r<t

sup
0<r<t

>

Finally, applying Lemma 4, we obtain
-8p(p2 )2 1-5
h™"E(R;;)* < Ch

for some arbitrary small §. This completes the proof of Theorem 1.

5 Appendix

In this section we prove two technical results used in the paper.

Lemma 4. Consider the random variable AZ . introduced in (9). Then, for any p > 2 and € € (0, g)

there exists a constant C, , . such that

h p_
Esup sup IAU’r(x)lpSC h2"°¢.

t,p,€
X€R 0<o<r<t
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Proof. By Tanaka’s formula applied to the time reversed Brownian motion we can write
A,,(x) = —(B,—B,+h)"+B,—B,)"+B, —x+h)"—(B, —x)"
+% (Lg,—x+h _ Lg,—x _ Lff‘“h + Lzrz,—x) )
Therefore,

A, o(x)| < 2h+sup sup |LX™"—L*|. (19)

x€R 0<r=<t

Finally, the result follows from the inequalities for the local time proved by Barlow and Yor in
[1]. O

Lemma 5. Let 5’:0()() be the random variable defined in (9). Then, for any p > 2 there exists a
constant C, , such that for all 0 <s < t

t rh
f f &%, (x)dxdr
s JO

t rh t
f f &t ,()dxdr = f(h—|B,—BU|)+dr:J(Lf—L;)(h—|x—Bg|)+dx
s 0 s R

< h*sup(L} — LY). (20)
X

p

E sup ShZPCt,p(t—s)g.

0<0<s

Proof. We can write

Finally,
t

sup(Ly — L)) < supf 6,(B, — By)du,
X X

S

and f: 0, (B, — By)du has the same distribution as L}__, or, by the scaling properties of the local
time, as vt — st/m, SO

Esup(LY — L) < (t —s)2 Esup(LY)P.
O
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