EXPONENTIAL MOMENTS OF FIRST PASSAGE TIMES AND RELATED QUANTITIES FOR RANDOM WALKS

ALEXANDER IKSANOV

Faculty of Cybernetics, National T. Shevchenko University of Kiev, 01033 Kiev, UA
email: iksan@unicyb.kiev.ua
MATTHIAS MEINERS ${ }^{1}$
Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, SE email: matthias.meiners@math.uu.se

Submitted 28 May 2010, accepted in final form 13 September 2010
AMS 2000 Subject classification: 60K05, 60G40
Keywords: first-passage time, last exit time, number of visits, random walk, renewal theory

Abstract

For a zero-delayed random walk on the real line, let $\tau(x), N(x)$ and $\rho(x)$ denote the first passage time into the interval (x, ∞), the number of visits to the interval $(-\infty, x]$ and the last exit time from $(-\infty, x]$, respectively. In the present paper, we provide ultimate criteria for the finiteness of exponential moments of these quantities. Moreover, whenever these moments are finite, we derive their asymptotic behaviour, as $x \rightarrow \infty$.

1 Introduction and main results

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. real-valued random variables and $X:=X_{1}$. Further, let $\left(S_{n}\right)_{n \geq 0}$ be the zero-delayed random walk with increments $S_{n}-S_{n-1}=X_{n}, n \geq 1$. For $x \in \mathbb{R}$, define the first passage time into (x, ∞)

$$
\tau(x):=\inf \left\{n \in \mathbb{N}_{0}: S_{n}>x\right\},
$$

the number of visits to the interval $(-\infty, x]$

$$
N(x):=\#\left\{n \in \mathbb{N}: S_{n} \leq x\right\}=\sum_{n \geq 1} \mathbb{1}_{\left\{S_{n} \leq x\right\}},
$$

and the last exit time from $(-\infty, x]$

$$
\rho(x):= \begin{cases}\sup \left\{n \in \mathbb{N}: S_{n} \leq x\right\}, & \text { if } \inf _{n \geq 1} S_{n} \leq x, \\ 0, & \text { if } \inf _{n \geq 1} S_{n}>x .\end{cases}
$$

Note that, for $x \geq 0$,

$$
\rho(x)=\sup \left\{n \in \mathbb{N}_{0}: S_{n} \leq x\right\} .
$$

[^0]For typographical ease, throughout the text we write τ for $\tau(0), N$ for $N(0)$ and ρ for $\rho(0)$.
Our aim is to find criteria for the finiteness of the exponential moments of $\tau(x), N(x)$ and $\rho(x)$, and to determine the asymptotic behaviour of these moments, as $x \rightarrow \infty$.
Assuming that $0<\mathbb{E} X<\infty$, Heyde [11, Theorem 1] proved that

$$
\mathbb{E} e^{a \tau(x)}<\infty \text { for some } a>0 \quad \text { iff } \quad \mathbb{E} e^{b X^{-}}<\infty \text { for some } b>0
$$

See also [3, Theorem 2] and [6, Theorem II] for relevant results.
When $\mathbb{P}\{X \geq 0\}=1$ and $\mathbb{P}\{X=0\}<1$,

$$
\begin{equation*}
\tau(x)-1=N(x)=\rho(x), \quad x \geq 0 \tag{1}
\end{equation*}
$$

Plainly, in this case, criteria for all the three random variables are the same (Proposition 1.1). An intriguing consequence of our results in the case when $\mathbb{P}\{X<0\}>0$ and $\mathbb{P}\{X>0\}>0$, in which

$$
\begin{equation*}
\tau(x)-1 \leq N(x) \leq \rho(x), \quad x \geq 0 \tag{2}
\end{equation*}
$$

is that provided the abscissas of convergence of the moment generating functions of $\tau(x), N(x)$ and $\rho(x)$ are positive there exists a unique value $R>0$ such that

$$
\mathbb{E} e^{a \tau(x)}<\infty, \mathbb{E} e^{a N(x)}<\infty \text { iff } a \leq R, \text { and } \mathbb{E} e^{a \rho(x)}<\infty \text { if } a<R
$$

whereas $\mathbb{E} e^{R \rho(x)}$ is finite in some cases and infinite in others. Also we prove that whenever the exponential moments are finite they exhibit the following asymptotics:

$$
\mathbb{E} e^{a \tau(x)} \sim C_{1} e^{\gamma x}, \mathbb{E} e^{a N(x)} \sim C_{2} e^{\gamma x}, \mathbb{E} e^{a \rho(x)} \sim C_{3} e^{\gamma x}, x \rightarrow \infty
$$

for an explicitly given $\gamma>0$ and distinct positive constants $C_{i}, i=1,2,3$ (when the law of X is lattice with span $\lambda>0$ the limit is taken over $x \in \lambda \mathbb{N}$). Our results should be compared (or contrasted) to the known facts concerning power moments (see [13, Theorem 2.1 and Section 4.2] and [13, Theorem 2.2], respectively): for $p>0$

$$
\begin{gathered}
\mathbb{E}(\tau(x))^{p+1}<\infty \Leftrightarrow \mathbb{E}(N(x))^{p}<\infty \Leftrightarrow \mathbb{E}(\rho(x))^{p}<\infty \\
\mathbb{E}(\tau(x))^{p} \asymp \mathbb{E}(N(x))^{p} \asymp \mathbb{E}(\rho(x))^{p} \asymp\left(\frac{x}{\mathbb{E} \min \left(X^{+}, x\right)}\right)^{p}, x \rightarrow \infty
\end{gathered}
$$

where $f(x) \asymp g(x)$ means that $0<\liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)} \leq \limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}<\infty$.
Proposition 1.1 is due to Beljaev and Maksimov [2, Theorem 1]. A shorter proof can be found in [12, Theorem 2.1].

Proposition 1.1. Assume that $\mathbb{P}\{X \geq 0\}=1$ and let $\beta:=\mathbb{P}\{X=0\} \in[0,1)$. Then for $a>0$ the following conditions are equivalent:

$$
\begin{gathered}
\mathbb{E} e^{a \tau(x)}<\infty \text { for some (hence every) } x \geq 0 \\
a<-\log \beta
\end{gathered}
$$

where $-\log \beta:=\infty$ if $\beta=0$. The same equivalence holds for $N(x)$ and $\rho(x)$.

Our first theorem provides sharp criteria for the finiteness of exponential moments of $\tau(x)$ and $N(x)$ in the case when $\mathbb{P}\{X<0\}>0$. Before we present it, we introduce some notation. Let

$$
\begin{equation*}
\varphi:[0, \infty) \rightarrow(0, \infty], \quad \varphi(t):=\mathbb{E} e^{-t X} \tag{3}
\end{equation*}
$$

be the Laplace transform of X and

$$
\begin{equation*}
R:=-\log \inf _{t \geq 0} \varphi(t) \tag{4}
\end{equation*}
$$

Theorem 1.2. Let $a>0$ and $\mathbb{P}\{X<0\}>0$. Then the following conditions are equivalent:

$$
\begin{gather*}
\sum_{n \geq 1} \frac{e^{a n}}{n} \mathbb{P}\left\{S_{n} \leq x\right\}<\infty \text { for some (hence every) } x \geq 0 \tag{5}\\
\mathbb{E} e^{a \tau(x)}<\infty \text { for some (hence every) } x \geq 0 \tag{6}\\
\mathbb{E} e^{a N(x)}<\infty \text { for some (hence every) } x \geq 0 \tag{7}\\
a \leq R . \tag{8}
\end{gather*}
$$

Our next theorem provides the corresponding result for the last exit time $\rho(x)$.
Theorem 1.3. Let $a>0$ and $\mathbb{P}\{X<0\}>0$. Then the following conditions are equivalent:

$$
\begin{array}{r}
\sum_{n \geq 0} e^{a n} \mathbb{P}\left\{S_{n} \leq x\right\}<\infty \text { for some (hence every) } x \geq 0 \\
\mathbb{E} e^{a \rho(x)}<\infty \text { for some (hence every) } x \geq 0 \\
a<R \quad \text { or } \quad a=R \text { and } \varphi^{\prime}\left(\gamma_{0}\right)<0 \tag{11}
\end{array}
$$

where γ_{0} is the unique positive number such that $\varphi\left(\gamma_{0}\right)=e^{-R}$.
It is worth pointing out that Theorem 1.3 and Proposition 1.1 could be merged into one result. Indeed, if one sets $\gamma_{0}:=\infty$ and $\varphi^{\prime}(\infty):=\lim _{t \rightarrow \infty} \varphi^{\prime}(t)(=0)$ in the case that $\mathbb{P}\{X<0\}=0$, then (11) includes the criterion given in Proposition 1.1 for the finiteness of $\mathbb{E} e^{a \tau(x)}$ which, in this case, is equivalent to the finiteness of $\mathbb{E} e^{a \rho(x)}$ due to Eq. (1).
Now we turn our attention to the asymptotic behaviour of $\mathbb{E} e^{a \tau(x)}, \mathbb{E} e^{a N(x)}$ and $\mathbb{E} e^{a \rho(x)}$ and start by quoting a known result which, given in other terms, can be found in [12, Theorem 2.2]. In view of equality (1) we only state it for $\mathbb{E} e^{a \tau(x)}$. The phrase 'The law of X is λ-lattice' used in Proposition 1.4 and Theorem 1.5 is a shorthand for 'The law of X is lattice with span $\lambda>0$ '.

Proposition 1.4. Let $a>0, \mathbb{P}\{X \geq 0\}=1$ and $\mathbb{P}\{X=0\}<1$. Assume that $\mathbb{E} e^{a \tau(x)}<\infty$ for some (hence every) $x \geq 0$. Then, as $x \rightarrow \infty$,

$$
\mathbb{E} e^{a \tau(x)} \sim e^{\gamma x} \times \begin{cases}\frac{1-e^{-a}}{\gamma \mathbb{E} X e^{-\gamma X}}, & \text { if the law of } X \text { is non-lattice }, \\ \frac{\lambda\left(1-e^{-a}\right)}{\left(1-e^{-\lambda r}\right) \mathbb{E} X e^{-\gamma X}}, & \text { if the law of } X \text { is } \lambda \text {-lattice }\end{cases}
$$

where γ is the unique positive number such that $\varphi(\gamma)=\mathbb{E} e^{-\gamma X}=e^{-a}$, and in the λ-lattice case the limit is taken over $x \in \lambda \mathbb{N}$.

When $0<a \leq R$ and $\mathbb{P}\{X<0\}>0$, there exists a minimal $\gamma>0$ such that $\varphi(\gamma)=e^{-a}$. This γ can be used to define a new probability measure \mathbb{P}_{γ} by

$$
\begin{equation*}
\mathbb{E}_{\gamma} h\left(S_{0}, \ldots, S_{n}\right)=e^{a n} \mathbb{E} e^{-\gamma S_{n}} h\left(S_{0}, \ldots, S_{n}\right), \quad n \in \mathbb{N} \tag{12}
\end{equation*}
$$

for each nonnegative Borel function h on \mathbb{R}^{n+1}, where \mathbb{E}_{γ} denotes expectation with respect to \mathbb{P}_{γ}. Since $\mathbb{E}_{\gamma} X=\mathbb{E}_{\gamma} S_{1}=-e^{a} \varphi^{\prime}(\gamma)$ (where φ^{\prime} denotes the left derivative of φ) and since φ is decreasing and convex on $[0, \gamma]$, there are only two possibilities:

$$
\begin{equation*}
\text { Either } \mathbb{E}_{\gamma} X \in(0, \infty) \text { or } \mathbb{E}_{\gamma} X=0 \tag{13}
\end{equation*}
$$

When $a<R$, then the first alternative in (13) prevails. When $a=R$, then typically $\varphi^{\prime}(\gamma)=0$ since γ is then the unique minimizer of φ on [0, ∞). In particular, $\mathbb{E}_{\gamma} X=0$. But even if $a=R$ it can occur that $\mathbb{E}_{\gamma} X>0$ or, equivalently, $\varphi^{\prime}(\gamma)<0$. Of course, then γ is the right endpoint of the interval $\{t \geq 0: \varphi(t)<\infty\}$. We provide an example of this situation in Section3.
Now we are ready to formulate the last result of the paper.
Theorem 1.5. Let $a>0$ and $\mathbb{P}\{X<0\}>0$.
(a) Assume that $\mathbb{E} e^{a \tau(x)}<\infty$ for some (hence every) $x \geq 0$. Then $\mathbb{E}_{\gamma} S_{\tau}$ is positive and finite, and, as $x \rightarrow \infty$,

$$
\mathbb{E} e^{a \tau(x)} \sim e^{\gamma x} \times \begin{cases}\frac{\mathbb{E}\left(e^{a \tau}-1\right)}{\gamma \mathbb{E}_{V} S_{\tau}}, & \text { if the law of } X \text { is non-lattice, } \tag{14}\\ \frac{\lambda \mathbb{E}\left(e^{a \tau}-1\right)}{\left(1-e^{-\lambda \gamma}\right) \mathbb{E}_{\gamma} S_{\tau}}, & \text { if the law of } X \text { is } \lambda \text {-lattice. }\end{cases}
$$

(b) Assume that $\mathbb{E} e^{a N(x)}<\infty$ for some (hence every) $x \geq 0$. Then $\mathbb{E}_{\gamma} S_{\tau}$ is positive and finite, and, as $x \rightarrow \infty$,

$$
\mathbb{E} e^{a N(x)} \sim e^{\gamma x} \times \begin{cases}\frac{e^{-a} \mathbb{E}_{\gamma}}{\int_{0} s_{\tau} e^{\gamma y} \mathbb{E}\left[e^{a N(-y)}\right] \mathrm{d} y} \tag{15}\\ \mathbb{E}_{\gamma} S_{\tau} \\ \frac{\lambda e^{-a} \mathbb{E}_{\gamma} \sum_{k=1}^{\tau_{\tau} /} e^{\gamma \lambda k} \mathbb{E}\left[e^{a N(-\lambda k}\right]}{\mathbb{E}_{\gamma} S_{\tau}}, & \text { if the law of } X \text { is non-lattice }, \\ \frac{\text { if the law of } X \text { is } \lambda \text {-lattice. }}{} .\end{cases}
$$

(c) Assume that $\mathbb{E} e^{a \rho(x)}<\infty$ for some (hence every) $x \geq 0$. Then $M:=\inf _{n \geq 1} S_{n}$ is positive with positive probability, and, as $x \rightarrow \infty$,

$$
\mathbb{E} e^{a \rho(x)} \quad \sim \quad e^{\gamma x} \times \begin{cases}\frac{e^{-a}\left(1-\mathbb{E} e^{-\gamma M^{+}}\right)}{\gamma \mathbb{E} X e^{-\gamma X}}, & \text { if the law of } X \text { is non-lattice }, \tag{16}\\ \frac{\lambda e^{-a}\left(1-\mathbb{E} e^{-\gamma M^{+}}\right)}{\left(1-e^{-\lambda r}\right) \mathbb{E} X e^{-\gamma X}}, & \text { if the law of } X \text { is } \lambda \text {-lattice } .\end{cases}
$$

In the λ-lattice case the limit is taken over $x \in \lambda \mathbb{N}$.
The rest of the paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1.2 , 1.3 and 1.5 . In Section 3 we provide three examples illustrating our main results.

2 Proofs of the main results

Proof of Theorem 1.2 (8) (5). Pick any $a \in(0, R]$ and let γ be as defined on p. 367. With this γ, the equality

$$
Z_{\gamma}(A):=\sum_{n \geq 1} \frac{\mathbb{P}_{\gamma}\left\{S_{n} \in A\right\}}{n}
$$

where $A \subset \mathbb{R}$ is a Borel set, defines a measure which is finite on bounded intervals. Furthermore, according to [1, Theorem 1.2], if $\mathbb{E}_{\gamma} X>0$ then $Z_{\gamma}((-\infty, 0])<\infty$, whereas if $\mathbb{E}_{\gamma} X=0$ (this may only happen if $a=R)$, then the function $x \mapsto Z_{\gamma}((-x, 0]), x>0$, is of sublinear growth. Hence, for every $x \geq 0$,

$$
\sum_{n \geq 1} \frac{e^{a n}}{n} \mathbb{P}\left\{S_{n} \leq x\right\}=\sum_{n \geq 1} \frac{1}{n} \mathbb{E}_{\gamma} e^{\gamma S_{n}} \mathbb{1}_{\left\{S_{n} \leq x\right\}}=\int_{(-\infty, x]} e^{\gamma y} Z_{\gamma}(\mathrm{d} y)<\infty
$$

(5) \Rightarrow (8). Suppose (5) holds for some $x=x_{0} \geq 0$ and $a>R$. Pick $\varepsilon \in(0, a-R)$. Then $\sum_{n \geq 0} e^{(a-\varepsilon) n} \mathbb{P}\left\{S_{n} \leq x_{0}\right\}<\infty$ which is a contradiction to [12, Theorem 2.1(aiii)] (reproduced here as equivalence (9) \Leftrightarrow (11) of Theorem 1.3).
(5) \Rightarrow (6). The argument given below will also be used in the proof of Theorem 1.5 .

If (5) holds for some $x \geq 0$ then, according to the already proved equivalence (5) \Leftrightarrow (8), first, $a \leq R$ and, secondly, (5) holds for every $x \geq 0$. For $0<a \leq R$ and $x \geq 0$, we have

$$
\begin{align*}
\mathbb{E} e^{a \tau(x)} & =1+\left(e^{a}-1\right) \sum_{n \geq 0} e^{a n} \mathbb{P}\{\tau(x)>n\} \\
& =1+\left(e^{a}-1\right) \sum_{n \geq 0} e^{a n} \mathbb{P}\left\{M_{n} \leq x\right\} \tag{17}
\end{align*}
$$

where $M_{n}:=\max _{0 \leq k \leq n} S_{k}, n \in \mathbb{N}_{0}$. According to [6, Formula (2.9)],

$$
\begin{equation*}
\sum_{n \geq 0} e^{a n} \mathbb{P}\left\{M_{n} \leq x\right\}=\frac{\mathbb{E} e^{a \tau}-1}{e^{a}-1} \sum_{j \geq 0} e^{a j} \mathbb{P}\left\{L_{j}=j, S_{j} \leq x\right\} \tag{18}
\end{equation*}
$$

where $L_{j}=\inf \left\{i \in \mathbb{N}_{0}: S_{i}=M_{j}\right\}, j \in \mathbb{N}_{0}$. Since $a \leq R$, we can use the exponential measure transformation introduced in (12), which gives

$$
e^{a j} \mathbb{P}\left\{L_{j}=j, S_{j} \leq x\right\}=\mathbb{E}_{\gamma} e^{\gamma S_{j}} \mathbb{1}_{\left\{L_{j}=j, S_{j} \leq x\right\}}
$$

Observe that $L_{j}=j$ holds iff $j=\sigma_{k}$ for some $k \in \mathbb{N}_{0}$ where $\sigma_{k}\left(\sigma_{0}:=0\right)$ denotes the k th strictly ascending ladder epoch of the random walk $\left(S_{n}\right)_{n \geq 0}$. Thus,

$$
\begin{array}{rl}
\sum_{j \geq 0} e^{a j} & \mathbb{P}\left\{L_{j}=j, S_{j} \leq x\right\}=\sum_{j \geq 0} \mathbb{E}_{\gamma} e^{\gamma S_{j}} \mathbb{1}_{\left\{L_{j}=j, S_{j} \leq x\right\}} \\
& =\sum_{j \geq 0} \mathbb{E}_{\gamma} \sum_{k \geq 0} e^{\gamma S_{\sigma_{k}}} \mathbb{1}_{\left\{\sigma_{k}=j, S_{\sigma_{k}} \leq x\right\}}=\mathbb{E}_{\gamma} \sum_{k \geq 0} e^{\gamma S_{\sigma_{k}}} \mathbb{1}_{\left\{S_{\sigma_{k}} \leq x\right\}} \\
& =e^{\gamma x} \int_{\mathbb{R}} e^{-\gamma(x-y)} \mathbb{1}_{[0, \infty)}(x-y) U_{\gamma}^{>}(\mathrm{d} y)=: e^{\gamma x} Z_{\gamma}^{>}(x) \tag{19}
\end{array}
$$

where $U_{\gamma}^{>}$denotes the renewal function of the random walk $\left(S_{\sigma_{k}}\right)_{k \geq 0}$ under \mathbb{P}_{γ}, that is, $U_{\gamma}^{>}(\cdot)=$ $\sum_{k \geq 0} \mathbb{P}_{\gamma}\left\{S_{\sigma_{k}} \in \cdot\right\}$. Thus, $Z_{\gamma}^{>}(x)$ is finite for all $x \geq 0$ since it is the integral of a directly Riemann integrable function with respect to $U_{\gamma}^{>}$.
(6) \Rightarrow (5) and (7) (5). Since $\tau(y) \leq N(y)+1, y \geq 0$, it suffices to prove the first implication. To this end, let

$$
K(a):=\sum_{n \geq 1} \frac{e^{a n}}{n} \mathbb{P}\left\{S_{n} \leq 0\right\}
$$

By a generalization of Spitzer's formula [6] Formula (2.6)], the assumption $\mathbb{E} e^{a \tau}<\infty$ immediately entails the finiteness of $K(a)$:

$$
\infty>\mathbb{E} e^{a \tau}=1+\left(e^{a}-1\right) \sum_{n \geq 0} e^{a n} \mathbb{P}\left\{M_{n}=0\right\}=1+\left(e^{a}-1\right) e^{K(a)}
$$

We already know that if the series in (5) converges for $x=0$, i.e., if $K(a)<\infty$, then it converges for every $x \geq 0$.
(6) \Rightarrow (7). By the equivalence (5) \Leftrightarrow (6), E $e^{a \tau(x)}<\infty$ for every $x \geq 0$. According to [13, Formula (3.54)],

$$
\mathbb{P}\{N=k\}=\mathbb{P}\left\{\inf _{n \geq 1} S_{n}>0\right\} \mathbb{P}\{\tau>k\}, k \in \mathbb{N}_{0}
$$

where $\mathbb{P}\left\{\inf _{n \geq 1} S_{n}>0\right\}>0$, since, under the present assumptions, $\left(S_{n}\right)_{n \geq 0}$ drifts to $+\infty$ a.s. Hence, $\mathbb{E} e^{a N}<\infty$. Further, for $y \in \mathbb{R}$,

$$
\begin{equation*}
\widehat{N}(x, y):=\sum_{n>\tau(x)} \mathbb{1}_{\left\{S_{n}-S_{\tau(x)} \leq y\right\}} \tag{20}
\end{equation*}
$$

is a copy of $N(y)$ that is independent of $\left(\tau(x), S_{\tau(x)}\right)$. We have

$$
\begin{equation*}
N(x)=\tau(x)-1+\widehat{N}\left(x, x-S_{\tau(x)}\right) \leq \tau(x)+\widehat{N}(x, 0) \tag{21}
\end{equation*}
$$

Hence, $\mathbb{E} e^{a N(x)}<\infty$, for every $x \geq 0$. The proof is complete.
Proof of Theorem 1.3 The equivalence (9) $\Leftrightarrow(11)$ has been proved in [12, Theorem 2.1].
(9) \Rightarrow (10). According to the just mentioned equivalence, if (9) holds for some $x \geq 0$ it holds for every $x \geq 0$. It remains to note that for $x \geq 0$

$$
\begin{equation*}
\mathbb{P}\{\rho(x)=n\}=\int_{(-\infty, x]} \mathbb{P}\left\{\inf _{k \geq 1} S_{k}>x-y\right\} \mathbb{P}\left\{S_{n} \in \mathrm{~d} y\right\} \leq \mathbb{P}\left\{S_{n} \leq x\right\} \tag{22}
\end{equation*}
$$

(10) \Rightarrow (11). Suppose $\mathbb{E} e^{a \rho\left(x_{0}\right)}<\infty$ for some $x_{0} \geq 0$ and $a>0$. Since $\mathbb{E} e^{a \rho(x)}$ is increasing in x, we have $\mathbb{E} e^{a \rho}<\infty$. Condition $a \leq R$ must hold in view of (2) and implication (6) \Rightarrow (8) of Theorem 1.2. If $a<R$, we are done. In the case $a=R$ it remains to show that

$$
\begin{equation*}
\mathbb{E} X e^{-\gamma_{0} X}>0 \tag{23}
\end{equation*}
$$

Define the measure V by

$$
\begin{equation*}
V(A):=\sum_{n \geq 0} e^{R n} \mathbb{P}\left\{S_{n} \in A\right\} \tag{24}
\end{equation*}
$$

for Borel sets $A \subset \mathbb{R}$. Then from (22) we infer that

$$
\begin{equation*}
\infty>\mathbb{E} e^{R \rho}=\int_{(-\infty, 0]} \mathbb{P}\left\{\inf _{n \geq 1} S_{n}>-y\right\} V(\mathrm{~d} y) \tag{25}
\end{equation*}
$$

Under the present assumptions, the random walk $\left(S_{n}\right)_{n \geq 0}$ drifts to $+\infty$ a.s. Therefore, $\mathbb{P}\left\{\inf _{n \geq 1} S_{n}>\right.$ $\varepsilon\}>0$ for some $\varepsilon>0$. With such an ε,

$$
\infty>\int_{(-\varepsilon, 0]} \mathbb{P}\left\{\inf _{n \geq 1} S_{n}>-y\right\} V(\mathrm{~d} y) \geq \mathbb{P}\left\{\inf _{n \geq 1} S_{n}>\varepsilon\right\} V((-\varepsilon, 0])
$$

Thus,

$$
\infty>V((-\varepsilon, 0])=\sum_{n=0}^{\infty} \mathbb{E}_{\gamma_{0}} e^{\gamma_{0} S_{n}} \mathbb{1}_{\left\{S_{n} \in(-\varepsilon, 0]\right\}} \geq e^{-\gamma_{0} \varepsilon} \sum_{n=0}^{\infty} \mathbb{P}_{\gamma_{0}}\left\{-\varepsilon<S_{n} \leq 0\right\}
$$

Hence $\left(S_{n}\right)_{n \geq 0}$ must be transient under $\mathbb{P}_{\gamma_{0}}$, which yields the validity of (11) in view of (13) and $\mathbb{E}_{\gamma_{0}} S_{1}=e^{R} \mathbb{E} X e^{-\gamma_{0} X}$. The proof is complete.

Proof of Theorem 1.5, (a) In view of (17), (18) and (19), in order to find the asymptotics of $\mathbb{E} e^{a \tau(x)}$, it suffices to determine the asymptotic behaviour of $Z_{\gamma}^{>}(x)$ defined in (19). By the key renewal theorem on the positive half-line,

$$
Z_{\gamma}^{>}(x) \underset{x \rightarrow \infty}{\rightarrow} \begin{cases}\frac{1}{\gamma \mathbb{E}_{\gamma} S_{\tau}} & \text { if the law of } X \text { is non-lattice } \tag{26}\\ \frac{\lambda}{\left(1-e^{-\lambda \gamma}\right) \mathbb{E}_{\gamma} S_{\tau}} & \text { if the law of } X \text { is } \lambda \text {-lattice }\end{cases}
$$

where the limit $x \rightarrow \infty$ is taken over $x \in \lambda \mathbb{N}$ when the law of X is lattice with span $\lambda>0$.
It remains to check that $\mathbb{E}_{\gamma} S_{\tau}$ is finite. As pointed out in (13), either $\mathbb{E}_{\gamma} X \in(0, \infty)$ or $\mathbb{E}_{\gamma} X=0$. In the first case, $S_{n} \rightarrow \infty$ a.s. under \mathbb{P}_{γ} and, therefore, $\mathbb{E}_{\gamma} \tau<\infty$, see, for instance, [4], Theorem 2, p. 151], which yields $\mathbb{E}_{\gamma} S_{\tau}<\infty$ by virtue of Wald's identity. If, on the other hand, $\mathbb{E}_{\gamma} X=0$, then $\mathbb{E}_{\gamma} \tau=\infty$ and we cannot argue as above. But in this case, by [5], Formula (4a)], $\mathbb{E}_{\gamma}\left(S_{1}^{+}\right)^{2}<\infty$ is sufficient for $\mathbb{E}_{\gamma} S_{\tau}<\infty$ to hold. Now the finiteness of

$$
\mathbb{E}_{\gamma} e^{\gamma S_{1}}=\varphi(\gamma)^{-1}<\infty
$$

implies the finiteness of $\mathbb{E}_{\gamma}\left(S_{1}^{+}\right)^{2}$, and the proof of part (a) is complete.
(b) We only consider the case when the law of X is non-lattice since the lattice case can be treated similarly. Denote by $R_{x}:=S_{\tau(x)}-x$ the overshoot. Since $\mathbb{E} e^{a \tau(x)}=\mathbb{E}_{\gamma} \gamma^{\gamma S_{\tau(x)}}$, we have in view of the already proved part (a)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \mathbb{E}_{\gamma} e^{\gamma R_{x}}=\frac{\mathbb{E} e^{a \tau}-1}{\gamma \mathbb{E}_{\gamma} S_{\tau}} \tag{27}
\end{equation*}
$$

By Theorem 1.2, if $\mathbb{E} e^{a N(x)}<\infty$, then $\mathbb{E} e^{a \tau(x)}<\infty$. Therefore, according to part (a), we have $0<\mathbb{E}_{\gamma} S_{\tau}<\infty$. This implies (see, for instance, [10, Theorem 10.3 on p. 103]) that, as $x \rightarrow \infty, R_{x}$ converges in distribution to a random variable R_{∞} satisfying

$$
\mathbb{P}_{\gamma}\left\{R_{\infty} \leq x\right\}=\frac{1}{\mathbb{E}_{\gamma} S_{\tau}} \int_{0}^{x} \mathbb{P}_{\gamma}\left\{S_{\tau}>y\right\} \mathrm{d} y, \quad x \geq 0
$$

In particular, under $\mathbb{P}_{\gamma}, e^{\gamma R_{x}}$ converges in distribution to $e^{\gamma R_{\infty}}$. Further,

$$
\mathbb{E}_{\gamma} e^{\gamma R_{\infty}}=\frac{1}{\mathbb{E}_{\gamma} S_{\tau}} \int_{0}^{\infty} e^{\gamma y} \mathbb{P}_{\gamma}\left\{S_{\tau}>y\right\} \mathrm{d} y=\frac{\mathbb{E}_{\gamma} e^{\gamma S_{\tau}}-1}{\gamma \mathbb{E}_{\gamma} S_{\tau}}=\frac{\mathbb{E} e^{a \tau}-1}{\gamma \mathbb{E}_{\gamma} S_{\tau}}
$$

Therefore, (27) can be rewritten as follows:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \mathbb{E}_{\gamma} e^{\gamma R_{x}}=\mathbb{E}_{\gamma} e^{\gamma R_{\infty}} \tag{28}
\end{equation*}
$$

Now we invoke a variant of Fatou's lemma sometimes called Pratt's lemma [14, Theorem 1]. To this end, note that, by a standard coupling argument, we can assume w.l.o.g. that $R_{x} \rightarrow R_{\infty} \mathbb{P}_{\gamma}$-a.s. From (21) we infer that for $f(y):=\mathbb{E} e^{a N(y)}, y \in \mathbb{R}$ we have

$$
f(x)=\mathbb{E} e^{a N(x)}=e^{-a} \mathbb{E} e^{a \tau(x)} f\left(-R_{x}\right)=e^{\gamma x} e^{-a} \mathbb{E}_{\gamma} e^{\gamma R_{x}} f\left(-R_{x}\right)
$$

f is an increasing function and, therefore, has only countably many discontinuities. Hence $e^{\gamma R_{x}} f\left(-R_{x}\right)$ converges \mathbb{P}_{γ}-a.s. to $e^{\gamma R_{\infty}} f\left(-R_{\infty}\right)$. Further,

$$
e^{\gamma R_{x}} f\left(-R_{x}\right) \leq e^{\gamma R_{x}} f(0)
$$

and $e^{\gamma R_{x}} f(0)$ converges \mathbb{P}_{γ}-a.s. to $e^{\gamma R_{\infty}} f(0)$. Finally,

$$
\lim _{x \rightarrow \infty} \mathbb{E}_{\gamma} e^{\gamma R_{x}} f(0)=\mathbb{E}_{\gamma} e^{\gamma R_{\infty}} f(0) .
$$

Therefore the assumptions of Pratt's lemma are fulfilled and an application of the lemma yields

$$
\begin{aligned}
\lim _{x \rightarrow \infty} e^{-\gamma x} f(x) & =e^{-a} \lim _{x \rightarrow \infty} \mathbb{E}_{\gamma} e^{\gamma R_{x}} f\left(-R_{x}\right)=e^{-a} \mathbb{E}_{\gamma} e^{\gamma R_{\infty}} f\left(-R_{\infty}\right) \\
& =\frac{e^{-a}}{\mathbb{E}_{\gamma} S_{\tau}} \int_{0}^{\infty} e^{\gamma y} f(-y) \mathbb{P}_{\gamma}\left\{S_{\tau}>y\right\} \mathrm{d} y \\
& =\frac{e^{-a} \mathbb{E}_{\gamma} \int_{0}^{S_{\tau}} e^{\gamma y} f(-y) \mathrm{d} y}{\mathbb{E}_{\gamma} S_{\tau}}
\end{aligned}
$$

(c) $>$ From (22) and (24) (with R replaced by a and $M=\inf _{k \geq 1} S_{k}$), we infer

$$
\begin{aligned}
\mathbb{E} e^{a \rho(x)} & =\int_{(-\infty, x]} \mathbb{P}\{M>x-y\} V(\mathrm{~d} y) \\
& =V(x) \mathbb{P}\{M>0\}-\int_{(0, \infty)} V(x-y) \mathbb{P}\{M \in \mathrm{~d} y\}, \quad x \geq 0 .
\end{aligned}
$$

Assume that the law of X is non-lattice and set $D_{1}:=\frac{e^{-a}}{\gamma \mathbb{E} X e^{-r X}}$. It follows from (11) that $D_{1} \in(0, \infty)$ and from [12, Theorem 2.2] that

$$
\begin{equation*}
V(x) \sim D_{1} e^{\gamma x}, x \rightarrow \infty \tag{29}
\end{equation*}
$$

The latter implies that for any $\varepsilon>0$ there exists an $x_{0}>0$ such that

$$
\left(D_{1}-\varepsilon\right) e^{\gamma y} \leq V(y) \leq\left(D_{1}+\varepsilon\right) e^{\gamma y}
$$

for all $y \geq x_{0}$. Fix one such x_{0}. Then for all $x \geq x_{0}$,

$$
\begin{aligned}
\left(D_{1}-\varepsilon\right) e^{\gamma x} \int_{\left(0, x-x_{0}\right]} e^{-\gamma y} \mathbb{P}\{M \in \mathrm{~d} y\} & \leq \int_{\left(0, x-x_{0}\right]} V(x-y) \mathbb{P}\{M \in \mathrm{~d} y\} \\
& \leq\left(D_{1}+\varepsilon\right) e^{\gamma x} \int_{\left(0, x-x_{0}\right]} e^{-\gamma y} \mathbb{P}\{M \in \mathrm{~d} y\}
\end{aligned}
$$

and $\int_{\left(x-x_{0}, \infty\right)} V(x-y) \mathbb{P}\{M \in \mathrm{~d} y\} \in\left[0, V\left(x_{0}\right)\right]$. Letting first $x \rightarrow \infty$ and then $\varepsilon \rightarrow 0$ we conclude that

$$
\lim _{x \rightarrow \infty} e^{-\gamma x} \int_{(0, \infty)} V(x-y) \mathbb{P}\{M \in \mathrm{~d} y\}=D_{1} \mathbb{E} e^{-\gamma M} \mathbb{1}_{\{M>0\}}
$$

Together with (29) the latter yields

$$
\begin{aligned}
\mathbb{E} e^{a \rho(x)} & \sim D_{1}\left(\mathbb{P}\{M>0\}-\mathbb{E} e^{-\gamma M} \mathbb{1}_{\{M>0\}}\right) e^{\gamma x} \\
& =D_{1}\left(1-\mathbb{E} e^{-\gamma M^{+}}\right) e^{\gamma x}, x \rightarrow \infty
\end{aligned}
$$

Under the present assumptions, the random walk $\left(S_{n}\right)_{n \geq 0}$ drifts to $+\infty$ a.s. Therefore, $\mathbb{P}\{M>$ $0\}>0$ which implies that $1-\mathbb{E} e^{-\gamma M^{+}}>0$ and completes the proof in the non-lattice case.
The proof in the lattice case is based on the lattice version of [12, Theorem 2.2] and follows the same path.

3 Examples

In this section, retaining the notation of Section 1, we illustrate the results of Theorem 1.2 and Theorem 1.3 by three examples.
Example 3.1 (Simple random walk). Let $1 / 2<p<1$ and $\mathbb{P}\{X=1\}=p=1-\mathbb{P}\{X=-1\}=: 1-q$. Then the Laplace transform φ of X is given by $\varphi(t)=p e^{-t}+q e^{t}$ and $R=-\log (2 \sqrt{p q})$. According to [8, Formula (3.7) on p. 272] and [7, Example 1], respectively,

$$
\begin{gathered}
\mathbb{P}\{\tau=2 n-1\}=\frac{1}{2 q} \frac{\binom{2 n}{n}}{2^{2 n}(2 n-1)}(2 \sqrt{p q})^{2 n}, \mathbb{P}\{\tau=2 n\}=0, \quad n \in \mathbb{N} ; \\
\mathbb{P}\{\rho=2 n\}=(p-q)\binom{2 n}{n}(p q)^{n}, \mathbb{P}\{\rho=2 n+1\}=0, \quad n \in \mathbb{N}_{0} .
\end{gathered}
$$

Stirling's formula yields

$$
\begin{equation*}
\frac{\binom{2 n}{n}}{2^{2 n}} \sim \frac{1}{\sqrt{\pi n}}, n \rightarrow \infty \tag{30}
\end{equation*}
$$

which implies that

$$
\mathbb{E} e^{R \tau}<\infty \quad \text { and } \quad \mathbb{E} e^{R \rho}=\infty
$$

Example 3.2. Let $X \stackrel{d}{=} Y_{1}-Y_{2}$ where Y_{1} and Y_{2} are independent r.v.'s with exponential distributions with parameters α and κ, respectively, $0<\alpha<\kappa$. Then $\varphi(t)=\mathbb{E} e^{-t X}=\frac{\alpha \kappa}{(\alpha+t)(\kappa-t)}$ and $R=$ $-\log \left(\frac{4 \alpha \kappa}{(\alpha+\kappa)^{2}}\right)$. According to [9, Formula (8.4) on p. 193], for $a \in(0, R]$,

$$
\mathbb{E} e^{a \tau}=(2 \alpha)^{-1}\left(\alpha+\kappa-\sqrt{(\alpha+\kappa)^{2}-4 \alpha \kappa e^{a}}\right)<\infty
$$

Further, for $n \in \mathbb{N}_{0}$,

$$
\begin{aligned}
\mathbb{P}\{\rho=n\} & =\int_{(-\infty, 0]} \mathbb{P}\left\{\inf _{k \geq 1} S_{k}>-x\right\} \mathbb{P}\left\{S_{n} \in \mathrm{~d} x\right\} \\
& =\int_{(-\infty, 0](-x, \infty)} \int_{k \geq 0} \mathbb{P}\left\{\inf _{k} S_{k}>-x-y\right\} \mathbb{P}\left\{S_{1} \in \mathrm{~d} y\right\} \mathbb{P}\left\{S_{n} \in \mathrm{~d} x\right\}
\end{aligned}
$$

According to [9, Formula (5.9) on p. 410],

$$
\mathbb{P}\left\{\inf _{k \geq 0} S_{k}>-x-y\right\}=\mathbb{P}\left\{\sup _{k \geq 0}\left(-S_{k}\right)<x+y\right\}=1-\frac{\alpha}{\kappa} e^{-(\kappa-\alpha)(x+y)}
$$

Note that S_{n} has the same law as the difference of two independent random variables with gamma distribution with parameters (n, α) and (n, κ), respectively, which particularly implies that, for $x>0$, the density of S_{1} takes the form $\frac{\alpha \kappa e^{-\alpha x}}{\alpha+\kappa}$. Thus ${ }^{2}$, for $n \in \mathbb{N}$,

$$
\begin{aligned}
\mathbb{P}\{\rho=n\} & =\int_{(-\infty, 0]} \int_{-x}^{\infty}\left(1-\frac{\alpha}{\kappa} e^{-(\kappa-\alpha)(x+y)}\right) \frac{\alpha \kappa e^{-\alpha y}}{\alpha+\kappa} \mathrm{d} y \mathbb{P}\left\{S_{n} \in \mathrm{~d} x\right\} \\
& =\frac{\kappa-\alpha}{\kappa} \int_{(-\infty, 0]} e^{\alpha x} \mathbb{P}\left\{S_{n} \in \mathrm{~d} x\right\} \\
& =\frac{\kappa-\alpha}{\kappa} \int_{0}^{\infty} \int_{0}^{t} e^{\alpha(s-t)} \frac{\alpha^{n} s^{n-1} e^{-\alpha s}}{(n-1)!} \frac{\kappa^{n} t^{n-1} e^{-\kappa t}}{(n-1)!} \mathrm{d} s \mathrm{~d} t \\
& =\frac{\kappa-\alpha}{\kappa} \frac{\alpha^{n} \kappa^{n}}{n!(n-1)!} \int_{0}^{\infty} t^{2 n-1} e^{-(\alpha+\kappa) t} \mathrm{~d} t \\
& =\frac{\kappa-\alpha}{(\kappa+\alpha)^{2 n}} \alpha^{n} \kappa^{n-1}\binom{2 n-1}{n}
\end{aligned}
$$

and

$$
\mathbb{P}\{\rho=0\}=\frac{\kappa-\alpha}{\kappa} .
$$

Hence,

$$
\mathbb{E} e^{R \rho}=\frac{\kappa-\alpha}{\kappa}\left(1+\sum_{n \geq 1} 4^{-n}\binom{2 n-1}{n}\right)=\infty
$$

since relation (30) implies that the summands are of order $1 / \sqrt{n}$, as $n \rightarrow \infty$.
Finally, we point out an explicit form of distribution of X for which $\mathbb{E} e^{R \rho(x)}<\infty$ for every $x \geq 0$.
Example 3.3. Fix $h>0$ and take any probability law μ_{1} on \mathbb{R} such that the Laplace-Stieltjes transform

$$
\psi(t):=\int_{\mathbb{R}} e^{-t x} \mu_{1}(\mathrm{~d} x), \quad t \geq 0
$$

is finite for $0 \leq t \leq h$ and infinite for $t>h$, and the left derivative of ψ at $h, \psi^{\prime}(h)$, is finite and positive. For instance, one can take

$$
\mu_{1}(\mathrm{~d} x):=c e^{-h|x|} /\left(1+|x|^{r}\right) \mathrm{d} x, \quad x \in \mathbb{R}
$$

where $r>2$ and $c:=\left(\int_{\mathbb{R}} e^{-h|x|}\left(1+|x|^{r}\right)^{-1} \mathrm{~d} x\right)^{-1}>0$.
Now choose s sufficiently large such that $\psi^{\prime}(h)<s \psi(h)$. Then $\varphi(t)=e^{-s t} \psi(t)$ is the LaplaceStieltjes transform of the distribution $\mu:=\delta_{s} * \mu_{1}$. Let X be a random variable with distribution μ. Plainly, $\varphi(t)$ is finite for $0 \leq t \leq h$ but infinite for $t>h$. Furthermore,

$$
\varphi^{\prime}(t)=e^{-s t}\left(\psi^{\prime}(t)-s \psi(t)\right), \quad|t| \leq h
$$

In particular, $\varphi^{\prime}(h)<0$ which, among other things, implies that $R=-\log \varphi(h)$ and that $\gamma_{0}=h$. Therefore, $\mathbb{E} X e^{-\gamma_{0} X}=-\varphi^{\prime}(h)>0$, and by Theorem $1.2, \mathbb{E} e^{R \rho(x)}<\infty$ for all $x \geq 0$.

[^1]
References

[1] Alsmeyer, G. (1991). Some relations between harmonic renewal measures and certain first passage times. Stat. Prob. Lett. 12, 19-27. MR1116754
[2] Beljaev, Ju. K. and Maksimov, V. M. (1963). Analytical properties of a generating function for the number of renewals. Theor. Probab. Appl. 8, 108-112. MR0162298
[3] Borovkov, A.A. (1962). New limit theorems in boundary-value problems for sums of independent terms. Siber. Math. J. 3, 645-694. MR0145568
[4] Chow, Y. S. and Teicher, H. (1988). Probability theory: independence, interchangeability, martingales. Springer Texts in Statistics. Springer-Verlag, New York. MR0953964
[5] Doney, R.A. (1980). Moments of ladder heights in random walks. J. Appl. Prob. 17, 248-252. MR0557453
[6] Doney, R.A. (1989). On the asymptotic behaviour of first passage times for transient random walk. Probab. Theory Relat. Fields. 81, 239-246. MR0982656
[7] Doney, R.A. (1989). Last exit times for random walks. Stoch. Proc. Appl. 31, 321-331. MR0998121
[8] Feller, W. (1968). An introduction to probability theory and its applications, Vol. 1, 3rd edition, John Wiley \& Sons, New York etc. MR0228020
[9] Feller, W. (1971). An introduction to probability theory and its applications, Vol. 2, 2nd edition, John Wiley \& Sons, New York etc. MR0270403
[10] Gut, A. (2009). Stopped random walks: Limit theorems and applications, 2nd edition, Springer: New York. MR2489436
[11] Heyde, C.C. (1964). Two probability theorems and their applications to some first passage problems. J. Austral. Math. Soc. Ser. B. 4, 214-222. MR0183004
[12] Iksanov, A. and Meiners, M. (2010). Exponential rate of almost sure convergence of intrinsic martingales in supercritical branching random walks. J. Appl. Prob. 47, 513-525. MR2668503
[13] Kesten, H. and Maller,R.A. (1996). Two renewal theorems for general random walks tending to infinity. Probab. Theory Relat. Fields.106, 1-38. MR1408415
[14] Pratt J. W. (1960). On interchanging limits and integrals. Ann. Math. Stat. 31, 74-77. MR0123673

[^0]: ${ }^{1}$ RESEARCH SUPPORTED BY DFG-GRANT ME 3625/1-1

[^1]: ${ }^{2}$ We do not claim that this formula is new, but we have not been able to locate it in the literature.

