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Abstract
Consider a nn matrix from the Gaussian Unitary Ensemble (GUE). Given a finite collection of
bounded disjoint real Borel sets (∆i,n, 1≤ i ≤ p) with positive distance from one another, even-
tually included in any neighbourhood of the support of Wigner’s semi-circle law and properly
rescaled (with respective lengths n−1 in the bulk and n−2/3 around the edges), we prove that the
related counting measures Nn(∆i,n), (1 ≤ i ≤ p), where Nn(∆) represents the number of eigen-
values within ∆, are asymptotically independent as the size n goes to infinity, p being fixed.
As a consequence, we prove that the largest and smallest eigenvalues, properly centered and
rescaled, are asymptotically independent; we finally describe the fluctuations of the ratio of the
extreme eigenvalues of a matrix from the GUE.

1 Introduction and main result

Denote byHn the set of nn random Hermitian matrices endowed with the probability measure

Pn(d M) := Z−1
n exp

§

−
n

2
Tr (M)2

ª

d M ,

where Zn is the normalization constant and where

d M=
n
∏

i=1

d Mii

∏

1≤i< j≤n

R
�

d Mi j

�
∏

1≤i< j≤n

I
�

d Mi j

�
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for every M = (Mi j)1≤i, j≤n in Hn (R [z] being the real part of z ∈ C and I [z] its imaginary
part). This set is known as the Gaussian Unitary Ensemble (GUE) and corresponds to the case
where a nn Hermitian matrix M has independent, complex, zero mean, Gaussian distributed
entries with variance E|Mi j |2 =

1
n

above the diagonal while the diagonal entries are independent
real Gaussian with the same variance. Much is known about the spectrum of M. Denote by
λ
(n)
1 ,λ(n)2 , · · · ,λ(n)n the eigenvalues of M (all distinct with probability one), then:

• [1] The joint probability density function of the (unordered) eigenvalues (λ(n)1 , · · · ,λ(n)n )
is given by

pn(x1, · · · , xn) = Cne−
n
∑

x2
i

2

∏

j<k

|x j − xk|2 ,

where Cn is the normalization constant.

• [19] The empirical distribution of the eigenvalues 1
n

∑n
i=1 δλ(n)i

(δx stands for the Dirac
measure at point x) converges toward Wigner’s semi-circle law as n→∞, whose density
is:

1

2π
1(−2,2)(x)

p

4− x2 .

Fluctuations of linear statistics of the eigenvalues of large random matrices (and of the
GUE in particular) have also been extensively addressed in the literature, see for instance
[2, 9] and the references therein; for a determinantal point of view, one can refer to [15].

• [3] The largest eigenvalue λ(n)max (resp. the smallest eigenvalue λ(n)min) almost surely con-
verges to 2 (resp. −2), the right-end (resp. left-end) point of the support of the semi-circle
law as n→∞.

• [16] The centered and rescaled quantity n
2
3

�

λ(n)max − 2
�

converges in distribution toward
Tracy-Widom distribution function F+GU E as n→∞, which can be defined in the following
way

F+GU E(s) = exp

�

−
∫ ∞

s

(x − s)q2(x) d x

�

,

where q solves the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x) ,
q(x)∼ Ai(x) as x →∞ ,

and Ai(x) denotes the Airy function. In particular, F+GU E is continuous. Similarly, n
2
3

�

λ
(n)
min + 2

�

D−→
F−GU E where

F−GU E(s) = 1− F+GU E(−s) .

If ∆ is a Borel set in R, denote by

Nn(∆) = #
n

λ
(n)
i ∈∆

o

,

the number of eigenvalues of M in ∆. The following theorem is the main result of the article.
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Theorem 1. Let M be a nn matrix from the GUE with eigenvalues (λ(n)1 , · · · ,λ(n)n ). Let p ≥ 2 be a
fixed integer and let µ = (µ1, · · · ,µp) ∈ Rp be such that −2 = µ1 < µ2 < · · · < µp = 2. Denote
by ∆ = (∆1, · · · ,∆p) a collection of p bounded Borel sets in R and consider ∆n = (∆1,n, · · · ,∆p,n)
defined by

(ed ge) ∆1,n := −2+
∆1

n2/3
, ∆p,n := 2+

∆p

n2/3
,

(bulk) ∆i,n := µi +
∆i

n
, 2≤ i ≤ p− 1 .

Let (`1, · · · ,`p) ∈ Np, then

lim
n→∞

 

P
�

Nn(∆1,n) = `1, · · · ,Nn(∆p,n) = `p

�

−
p
∏

k=1

P
�

Nn(∆k,n) = `k

�

!

= 0 .

Remark 1. An important corollary of Theorem 1 is the asymptotic independence of the random

variables n
2
3

�

λ
(n)
min + 2

�

and n
2
3

�

λ(n)max − 2
�

, where λ(n)min and λ(n)max are the smallest and largest

eigenvalues of M. This in turn enables us to describe the fluctuations of the ratio
λ(n)max

λ
(n)
min

.

Remark 2. For fluctuations of the eigenvalues within the bulk or near the spectrum edges at
various scales (different from those studied here), one can refer to [6, 7, 8].

Proof of Theorem 1 is postponed to Section 3. In Section 2, we prove the asymptotic indepen-
dence of the rescaled smallest and largest eigenvalues of M; we then describe the asymptotic

fluctuations of the ratio
λ(n)max

λ
(n)
min

. Remaining proofs are provided in Section 4.
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2 Asymptotic independence of extreme eigenvalues

In this section, we prove that the random variables n
2
3

�

λ(n)max − 2
�

and n
2
3

�

λ
(n)
min + 2

�

are asymp-
totically independent as the size of matrix M goes to infinity. We then apply this result to describe

the fluctuations of
λ(n)max

λ
(n)
min

. For a nice and short operator-theoretic proof of this result (subsequent

to the present article, although previously published), one can also refer to [5]. In the sequel,
we drop the superscript (n) to lighten the notations.

2.1 Asymptotic independence

Specifying p = 2, µ1 = −2, µ2 = 2 and getting rid of the boundedness condition over ∆1 and
∆2 in Theorem 1 yields the following
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Corollary 1. Let M be a nn matrix from the GUE. Denote by λmin and λmax its smallest and largest
eigenvalues, then the following holds true

P
�

n
2
3
�

λmin + 2
�

< x , n
2
3
�

λmax − 2
�

< y
�

− P
�

n
2
3
�

λmin + 2
�

< x
�

P
�

n
2
3
�

λmax − 2
�

< y
�

−−→
n→∞

0 .

Thus
�

n
2
3 (λmin + 2), n

2
3 (λmax − 2)

�

D−−→
n→∞

(λ−,λ+),

where λ− and λ+ are independent random variables with distribution functions F−GU E and F+GU E .

Proof. Denote by (λ(i)) the ordered eigenvalues of M λmin = λ(1) ≤ λ(2) ≤ · · · ≤ λ(n) = λmax. Let
(x , y) ∈ R2 and take α≥max(|x |, |y|). Let ∆1 = (−α, x) and ∆2 = (y,α) so that

∆1,n =

�

−2−
α

n
2
3

,−2+
x

n
2
3

�

and ∆2,n =

�

2+
y

n
2
3

, 2+
α

n
2
3

�

.

We have
¦

N (∆1,n) = 0
©

=
n

n
2
3 (λmin + 2)> x

o

∪
¨

∃i ∈ {1, · · · , n}; λ(i) ≤−2−
α

n
2
3

, λ(i+1) ≥−2+
x

n
2
3

«

,

=:
n

n
2
3 (λmin + 2)> x

o

∪ {Π(−α, x) } , (1)

with the convention that if i = n, the condition simply becomes λmax ≤ −2− αn−
2
3 . Note that

both sets in the right-hand side of the equation are disjoint. Similarly
¦

N (∆2,n) = 0
©

=
n

n
2
3 (λmax − 2)< y

o

∪
¨

∃i ∈ {1, · · · , n}; λ(i−1) ≤ 2+
y

n
2
3

, λ(i) ≥ 2+
α

n
2
3

«

, (2)

=:
n

n
2
3 (λmax − 2)< y

o

∪ { Π̃(y,α) } , (3)

with the convention that if i = 1, the condition simply becomes λmin ≥ 2+αn−
2
3 . Gathering the

two previous equalities enables to write {N (∆1,n) = 0,N (∆2,n) = 0} as the following union of
disjoint events
¦

N (∆1,n) = 0 , N (∆2,n) = 0
©

=
n

Π(−α, x) , n
2
3 (λmax − 2)< y

o

∪
¦

Π(−α, x) , Π̃(y,α)
©

∪
n

n
2
3 (λmin + 2)> x , Π̃(y,α)

o

∪
n

n
2
3 (λmin + 2)> x , n

2
3 (λmax − 2)< y

o

. (4)

Define

un := P
n

n
2
3 (λmin + 2)> x , n

2
3 (λmax − 2)< y

o

−P
n

n
2
3 (λmin + 2)> x

o

P
n

n
2
3 (λmax − 2)< y

o

,

= P
¦

N (∆1,n) = 0 , N (∆2,n) = 0
©

−P
¦

N (∆1,n) = 0
©

P
¦

N (∆2,n) = 0
©

+ εn(α) , (5)
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where by equations (1), (3) and (4)

εn(α) :=−P
n

Π(−α, x) , n
2
3 (λmax − 2)< y

o

− P
¦

Π(−α, x) , Π̃(y,α)
©

− P
n

n
2
3 (λmin + 2)> x , Π̃(y,α)

o

+ P
¦

N (∆1,n) = 0
©

P
¦

Π̃(y,α)
©

+ P {Π(−α, x)}P
¦

N (∆2,n) = 0
©

− P {Π(−α, x)}P
¦

Π̃(y,α)
©

.

Using the triangular inequality, we obtain:

|εn(α)| ≤ 6max
�

P {Π(−α, x)} ,P
¦

Π̃(y,α)
©�

.

As {Π(−α, x) } ⊂ {n
2
3 (λmin + 2)<−α}, we have

P{Π(−α, x) } ≤ P{n
2
3 (λmin + 2)<−α} −−→

n→∞
F−GU E(−α)−−→α→∞

0 .

We can apply the same arguments to { Π̃(y,α) } ⊂ {n
2
3 (λmax − 2)> α}. We thus obtain:

lim
α→∞

limsup
n→∞

|εn(α)|= 0 . (6)

The difference P
¦

N (∆1,n) = 0 , N (∆2,n) = 0
©

−P
¦

N (∆1,n) = 0
©

P
¦

N (∆2,n) = 0
©

in the right­-
hand side of (5) converges to zero as n → ∞ by Theorem 1 for every α large enough. We
therefore obtain

lim sup
n→∞

|un|= lim sup
n→∞

|εn(α)| .

The lefthand side of the above equation is a constant w.r.t. α while the second term (whose
behaviour for small α is unknown) converges to zero as α → ∞ by (6). Thus, limn→∞ un = 0.
The mere definition of un together with Tracy and Widom fluctuation results yields

lim
n→∞
P
n

n
2
3 (λmin + 2)> x , n

2
3 (λmax − 2)< y

o

=
�

1− F−GU E(x)
�

F+GU E(y) .

This completes the proof of Corollary 1.

2.2 Application: Fluctuations of the ratio of the extreme eigenvalues in
the GUE

As a simple consequence of Corollary 1, we can easily describe the fluctuations of the ratio
λmax

λmin
. The counterpart of such a result to Gaussian Wishart matrices is of interest in digital

communication (see [4] for an application in digital signal detection).

Corollary 2. Let M be a nn matrix from the GUE. Denote by λmin and λmax its smallest and largest
eigenvalues, then

n
2
3

�

λmax

λmin
+ 1
�

D−−→
n→∞

−
1

2
(λ− +λ+) ,

where
D−→ denotes convergence in distribution, λ− and λ+ are independent random variable with

respective distribution F−GU E and F+GU E .
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Proof. The proof is a mere application of Slutsky’s lemma (see for instance [18, Lemma 2.8]).
Write

n
2
3

�

λmax

λmin
+ 1
�

=
1

λmin

h

n
2
3 (λmax − 2) + n

2
3 (λmin + 2)

i

. (7)

Now,
�

λmin
�−1 goes almost surely to -2 as n→∞, and n

2
3 (λmax − 2) + n

2
3 (λmin + 2) converges

in distribution to the convolution of F−GU E and F+GU E by Corollary 1. Thus, Slutsky’s lemma yields
the convergence (in distribution) of the right-hand side of (7) to − 1

2
(λ− +λ+) with λ− and λ+

independent and distributed according to F−GU E and F+GU E . Proof of Corollary 2 is completed.

3 Proof of Theorem 1

3.1 Useful results

3.1.1 Kernels

Let {Hk(x)}k≥0 be the classical Hermite polynomials Hk(x) := ex2 �

− d
d x

�k
e−x2

and consider the

function ψ(n)k (x) defined for 0≤ k ≤ n− 1 by:

ψ
(n)
k (x) :=

�n

2

�
1
4 e−

nx2

4

(2kk!
p
π)

1
2

Hk

�
Ç

n

2
x

�

.

Denote by Kn(x , y) the following kernel on R2

Kn(x , y) :=
n−1
∑

k=0

ψ
(n)
k (x)ψ

(n)
k (y) , (8)

=
ψ(n)n (x)ψ

(n)
n−1(y)−ψ

(n)
n (y)ψ

(n)
n−1(x)

x − y
. (9)

Equation (9) is obtained from (8) by the Christoffel-Darboux formula. We recall the two well-
known asymptotic results

Proposition 1. a) Bulk of the spectrum. Let µ ∈ (−2, 2).

∀(x , y) ∈ R2, lim
n→∞

1

n
Kn

�

µ+
x

n
,µ+

y

n

�

=
sinπρ(µ)(x − y)

π(x − y)
, (10)

where ρ(µ) =
p

4−µ2

2π
. Furthermore, the convergence (10) is uniform on every compact set of

R2.

b) Edge of the spectrum.

∀(x , y) ∈ R2, lim
n→∞

1

n2/3
Kn

�

2+
x

n2/3
, 2+

y

n2/3

�

=
Ai(x)Ai′(y)−Ai(y)Ai′(x)

x − y
, (11)

where Ai(x) is the Airy function. Furthermore, the convergence (11) is uniform on every
compact set of R2.
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We will need as well the following result on the asymptotic behavior of functions ψ(n)k .

Proposition 2. Let µ ∈ (−2,2), k ∈ {0, 1} and denote by K a compact set of R.

a) Bulk of the spectrum. There exists a constant C such that

sup
x∈K

�

�

�

�

ψ
(n)
n−k

�

µ+
x

n

�

�

�

�

�

≤ C . (12)

b) Edge of the spectrum. There exists a constant C such that

sup
x∈K

�

�

�

�

ψ
(n)
n−k

�

2
x

n2/3

�

�

�

�

�

≤ n1/6C . (13)

The proof of these results can be found in [11, Chapter 7], see also [1, Chapter 3].

3.1.2 Determinantal representations, Fredholm determinants

There are determinantal representations using kernel Kn(x , y) for the joint density pn of the
eigenvalues (λ(n)i ; 1≤ i ≤ n), and for its marginals (see for instance [10, Chapter 6]):

pn(x1, · · · , xn) =
1

n!
det
¦

Kn(x i , x j)
©

1≤i, j≤n
, (14)

∫

Rn−m

pn(x1, · · · , xn)d xm+1 · · · d xn =
(n−m)!

n!
det
¦

Kn(x i , x j)
©

1≤i, j≤m
(m≤ n) . (15)

Definition 1. Consider a linear operator S defined for any bounded integrable function f : R→ R
by

S f : x 7→
∫

R
S(x , y) f (y)d y ,

where S(x , y) is a bounded integrable Kernel on R2 → R with compact support. The Fredholm
determinant D(z) associated with operator S is defined as follows

∀z ∈ C, D(z) := det(1− zS) = 1+
∞
∑

k=1

(−z)k

k!

∫

Rk

det
¦

S(x i , x j)
©

1≤i, j≤k
d x1 · · · d xk . (16)

It is in particular an entire function and its logarithmic derivative has a simple expression [17,
Section 2.5] given by

D′(z)
D(z)

=−
∞
∑

k=0

T (k+ 1)zk , (17)

where

T (k) =

∫

Rk

S(x1, x2)S(x2, x3) · · ·S(xk, x1) d x1 · · · d xk . (18)

For details related to Fredholm determinants, see for instance [14, 17].
The following kernel will be of constant use in the sequel

Sn(x , y;λ,∆) :=
p
∑

i=1

λi1∆i
(x)Kn(x , y), (19)

where λ = (λ1, · · · ,λp) ∈ Rp or λ ∈ Cp, depending on the need, and ∆ = (∆1, · · · ,∆p) is a
collection of p bounded Borel sets in R.
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Remark 3. The kernel Kn(x , y) is unbounded and one cannot consider its Fredholm determinant
without caution. The kernel Sn(x , y) is bounded in x since the kernel is zero if x is outside the
compact closure of the set ∪p

i=1∆i , but a priori unbounded in y . In all the forthcoming compu-
tations, one may replace Sn with the bounded kernel S̃n(x , y) =

∑p
i,`=1λi1∆i

(x)1∆`(y)Kn(x , y)
and get exactly the same results. For notational convenience, we keep on working with Sn.

Proposition 3. Let p ≥ 1 be a fixed integer, ` = (`1, · · · ,`p) ∈ Np and denote ∆ = (∆1, · · · ,∆p),
where every∆i is a bounded Borel set. Assume that the∆i ’s are pairwise disjoint. Then the following
identity holds true

P
¦

N (∆1) = `1, · · · ,N (∆p) = `p

©

=
1

`1! · · ·`p!

�

−
∂

∂ λ1

�`1

· · ·
�

−
∂

∂ λp

�`p

det
�

1− Sn(λ,∆)
�

�

�

�

�

λ1=···=λp=1

, (20)

where Sn(λ,∆) is the operator associated to the kernel defined in (19).

Proof of Proposition 3 is postponed to Section 4.1.

3.1.3 Useful estimates for kernel Sn(x , y;λ,∆) and its iterations

Consider µ, ∆ and ∆n as in Theorem 1. Assume moreover that n is large enough so that the
Borel sets (∆i,n; 1≤ i ≤ p) are pairwise disjoint. For i ∈ {1, · · · , p}, define κi as

κi =

¨

1 if − 2< µi < 2
2
3

if µi = 2 . (21)

Otherwise stated, κ1 = κp =
2
3

and κi = 1 for 1< i < p.
Let λ ∈ Cp. With a slight abuse of notation, denote by Sn(x , y;λ) the kernel

Sn(x , y;λ) := Sn(x , y;λ,∆n) . (22)

For 1≤ m,`≤ p and Λ⊂ Cp, define

Mm`,n(Λ) := sup
λ∈Λ

sup
(x ,y)∈∆m,n∆`,n

�

�Sn(x , y;λ)
�

� , (23)

where Sn(x , y;λ) is given by (22).

Proposition 4. Let Λ ⊂ Cp be a compact set. There exist two constants R := R(Λ) > 0 and
C := C(Λ)> 0, independent from n, such that for n large enough,

¨

Mii,n(Λ) ≤ R−1nκi , 1≤ i ≤ p

Mi j,n(Λ) ≤ Cn1−
κi+κ j

2 , 1≤ i, j ≤ p, i 6= j
. (24)

Proposition 4 is proved in Section 4.2.
Consider the iterated kernel |Sn|(k)(x , y;λ) defined by

¨

|Sn|(1)(x , y;λ) = |Sn(x , y;λ)|
|Sn|(k)(x , y;λ) =

∫

Rk−1 |Sn(x , u;λ)||Sn|(k−1)(u, y;λ) du k ≥ 2
, (25)
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where Sn(x , y;λ) is given by (22). The next estimates will be stated with λ ∈ Cp fixed. Note
that |Sn|(k) is nonnegative and write

∫

Rk−1

|Sn(x , u1;λ)Sn(u1, u2;λ) · · ·Sn(uk−1, y;λ)|du1 · · · duk−1 .

As previously, define for 1≤ m,`≤ p

M (k)
m`,n(λ) := sup

(x ,y)∈∆m,n∆`,n
|Sn|(k)(x , y;λ) .

The following estimates hold true

Proposition 5. Consider the compact set Λ = {λ} and the associated constants R = R(λ) and
C = C(λ) as given by Prop. 4. Let β > 0 be such that β > R−1 and consider ε ∈ (0, 1

3
). There exists

an integer N0 := N0(β ,ε) such that for every n≥ N0 and for every k ≥ 1,
(

M (k)
mm,n(λ) ≤ β knκm , 1≤ m≤ p

M (k)
m`,n(λ) ≤ Cβ k−1 n

�

1+ε− κm+κ`
2

�

, 1≤ m,`≤ p, m 6= `
. (26)

Proposition 5 is proved in Section 4.3.

3.2 End of proof

Consider µ,∆ and∆n as in Theorem 1. Assume moreover that n is large enough so that the Borel
sets (∆i,n; 1 ≤ i ≤ p) are pairwise disjoint. As previously, denote Sn(x , y;λ) = Sn(x , y;λ,∆n);
denote also Si,n(x , y;λi) = Sn(x , y;λi ,∆i,n) = λi1∆i

(x)Kn(x , y), for 1 ≤ i ≤ p. Note that
Sn(x , y;λ) = Si,n(x , y;λi) if x ∈∆i,n.
For every z ∈ C and λ ∈ Cp, we use the following notations

Dn(z,λ) := det(1− zSn(λ,∆n)) and Dn,i(z,λi) := det(1− zSn(λi ,∆i,n)) . (27)

The following controls will be of constant use in the sequel.

Proposition 6. 1. Let λ ∈ Cp be fixed. The sequences of functions

z 7→ Dn(z,λ) and z 7→ Di,n(z,λi), 1≤ i ≤ p

are uniformly bounded in n on every compact subset of C.

2. Let z = 1. The sequences of functions

λ 7→ Dn(1,λ) and λ 7→ D1,n(1,λi), 1≤ i ≤ p

are uniformly bounded in n on every compact subset of Cp.

3. Let λ ∈ Cp be fixed. For every δ > 0, there exists r > 0 such that

sup
n

sup
z∈B(0,r)

|Dn(z,λ)− 1| < δ ,

sup
n

sup
z∈B(0,r)

|Di,n(z,λi)− 1| < δ , 1≤ i ≤ p ,

where B(0, r) = {z ∈ C, |z|< r}.
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The proof of Proposition 6 is provided in Section 4.4.
We introduce the following functions

dn : (z,λ) 7→ det
�

1− zSn(λ,∆n)
�

−
p
∏

i=1

det
�

1− zSn(λi ,∆i,n)
�

, (28)

fn : (z,λ) 7→
D′n(z,λ)
Dn(z,λ)

−
p
∑

i=1

D′i,n(z,λi)

Di,n(z,λi)
, (29)

where ′ denotes the derivative with respect to z ∈ C. We first prove that fn goes to zero as
n→∞.

3.2.1 Asymptotic study of fn in a neighbourhood of z = 0

In this section, we mainly consider the dependence of fn in z ∈ C while λ ∈ Cp is kept fixed. We
therefore drop the dependence in λ for readability. Equality (17) yields

D′n(z)
Dn(z)

=−
∞
∑

k=0

Tn(k+ 1)zk and
D′i,n(z)

Di,n(z)
=−

∞
∑

k=0

Ti,n(k+ 1)zk (1≤ i ≤ p) , (30)

where ′ denotes the derivative with respect to z ∈ C and Tn(k) and Ti,n(k) are as in (18),
respectively defined by

Tn(k) :=

∫

Rk

Sn(x1, x2)Sn(x2, x3) · · ·Sn(xk, x1)d x1 · · · d xk , (31)

Ti,n(k) :=

∫

Rk

Si,n(x1, x2)Si,n(x2, x3) · · ·Si,n(xk, x1)d x1 · · · d xk . (32)

Recall that Dn and Di,n are entire functions (of z ∈ C). The functions
D′n
Dn

and
D′i,n
Di,n

admit a power

series expansion around zero given by (30). Therefore, the same holds true for fn(z). Moreover

Lemma 1. Define R as in Proposition 4. For n large enough, fn(z) defined by (29) is holomorphic
on B(0, R) := {z ∈ C, |z| < R}, and converges uniformly to zero as n→∞ on each compact subset
of B(0, R).

Proof. Denote by ξ(n)i (x) := λi1∆i,n
(x) and recall that Tn(k) is defined by (31). Using the identity

k
∏

m=1

p
∑

i=1

aim =
∑

σ∈{1,···,p}k

k
∏

m=1

aσ(m)m, (33)

where aim are complex numbers, Tn(k) writes (k ≥ 2)

Tn(k) =

∫

Rk

 

k
∏

m=1

p
∑

i=1

ξ
(n)
i (xm)

!

Kn(x1, x2) · · ·Kn(xk, x1)d x1 · · · d xk ,

=
∑

σ∈{1,··· ,p}k
jn,k(σ) , (34)
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where we define

jn,k(σ) :=

∫

Rk

 

k
∏

m=1

ξ
(n)
σ(m)(xm)

!

Kn(x1, x2) · · ·Kn(xk, x1)d x1 · · · d xk . (35)

We split the sum in the right-hand side of (34) into two subsums. The first is obtained by
gathering the terms with k-tuples σ = (i, i, · · · , i) for 1≤ i ≤ p and writes

p
∑

i=1

∫

Rk

 

k
∏

m=1

λi1∆i,n
(xm)

!

Kn(x1, x2) · · ·Kn(xk, x1)d x1 · · · d xk =
p
∑

i=1

Ti,n(k) ,

where Ti,n(k) is defined by (32). The remaining sum consists of those terms for which there
exists at least one couple (m,`) ∈ {1, · · · , k}2 such that σ(m) 6= σ(`). Let

S =
¦

σ ∈ {1, · · · , p}k : ∃(m,`) ∈ {1, · · · , k}2,σ(m) 6= σ(`)
©

.

We obtain Tn(k) =
∑p

i=1 Ti,n(k) + sn(k) where

sn(k) :=
∑

σ∈S
jn,k(σ)

for every k ≥ 2. For each q ∈ {1, . . . , k − 1}, denote by πq the following permutation for any
k-tuple (a1, . . . , ak)

πq(a1, . . . , ak) = (aq, aq+1, . . . , ak, a1, . . . , aq−1) .

In other words, πq operates a circular shift of q − 1 elements to the left. Clearly, any k-tuple
σ ∈ S can be written as σ = πq(m,`, σ̃) for some q ∈ {1, . . . , k− 1}, (m,`) ∈ {1, . . . , p}2 such
that m 6= `, and σ̃ ∈ {1, . . . , p}k−2. This simply expresses the fact that if σ ∈ S , there exists two
consecutive elements that differ at some point. Thus

|sn(k)| ≤
k−1
∑

q=1

∑

(m,`)∈{1···p}2
m6=`

∑

σ̃∈{1···p}k−2

| jn,k(πq(m,`, σ̃))| .

From (35), function jn,k is invariant up to any circular shift πq, so that jn,k(σ) coincides with
jn,k(πq(m,`, σ̃)) for any σ = πq(m,`, σ̃) as above. Therefore, |sn(k)| writes

|sn(k)| ≤
k−1
∑

q=1

∑

(m,`)∈{1···p}2
m 6=`

∑

σ̃∈{1···p}k−2

| jn,k(πq(m,`, σ̃))| ,

≤ k
∑

(m,`)∈{1···p}2
m6=`

∑

σ̃∈{1···p}k−2

∫

Rk

|ξ(n)m (x1)ξ
(n)
`
(x2)ξ

(n)
σ̃(1)(x3) · · ·ξ

(n)
σ̃(k−2)(xk)|

|Kn(x1, x2) · · ·Kn(xk, x1)|d x1 · · · d xk .
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The latter writes

|sn(k)| ≤ k
∑

1≤m,`≤p
m 6=`

∫

∆m,n∆`,n

�

�

�Kn(x1, x2)ξ
(n)
m (x1)ξ

(n)
`
(x2)

�

�

�







∫

Rk−2

∑

σ̃∈{1···p}k−2

�

�

�ξ
(n)
σ̃(1)(x3) · · ·ξ

(n)
σ̃(k−2)(xk)

�

�

�

�

�Kn(x2, x3) · · ·Kn(xk, x1)
�

� d x3 · · · d xk






d x1d x2 ,

= k
∑

1≤m,`≤p
m 6=`

∫

∆m,n∆`,n

�

�

�

�

�

Kn(x1, x2)
p
∑

i=1

ξ
(n)
i (x1)

�

�

�

�

�

p
∑

i=1

�

�

�ξ
(n)
i (x2)

�

�

�







∫

Rk−2

∑

σ̃∈{1···p}k−2

�

�

�ξ
(n)
σ̃(1)(x3) · · ·ξ

(n)
σ̃(k−2)(xk)

�

�

�

�

�Kn(x2, x3) · · ·Kn(xk, x1)
�

� d x3 · · · d xk






d x1d x2 .

It remains to notice that

p
∑

i=1

�

�

�ξ
(n)
i (x2)

�

�

�

∫

Rk−2

∑

σ̃∈{1···p}k−2

k
∏

m=3

�

�

�ξ
(n)
σ̃(m−2)(xm)

�

�

�

�

�Kn(x2, x3) · · ·Kn(xk, x1)
�

� d x3 · · · d xk

(a)
=

p
∑

i=1

�

�

�ξ
(n)
i (x2)

�

�

�

∫

Rk−2

 

k
∏

m=3

p
∑

i=1

�

�

�ξ
(n)
i (xm)

�

�

�

!

�

�Kn(x2, x3) · · ·Kn(xk, x1)
�

� d x3 · · · d xk ,

=

∫

Rk−2

|Sn(x2, x3)Sn(x3, x4) · · ·Sn(xk, x1)|d x3 · · · d xk ,

(b)
= |Sn|(k−1)(x2, x1) ,

where (a) follows from (33), and (b) from the mere definition of the iterated kernel (25). Thus,
for k ≥ 2, the following inequality holds true

|sn(k)| ≤ k
∑

1≤m,`≤p
m 6=`

∫

∆m,n∆`,n

|Sn(x1, x2)||Sn|(k−1)(x2, x1)d x1d x2 . (36)

For k = 1, let sn(1) = 0 so that equation Tn(k) =
∑

i Ti,n(k) + sn(k) holds for every k ≥ 1.

According to (29), fn(z) writes:

fn(z) =−
∞
∑

k=1

sn(k+ 1)zk .

Let us now prove that fn(z) is well-defined on the desired neighbourhood of zero and converges
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uniformly to zero as n→∞. Let β > R−1, then Propositions 4 and 5 yield

|sn(k)| ≤ k
∑

1≤m,`≤p
m 6=`

∫

∆m,n∆`,n

|Sn(x , y)||Sn|(k−1)(y, x)d xd y ,

≤ k
∑

1≤m,`≤p
m 6=`

Mm`,nM
(k−1)
`m,n |∆m,n||∆`,n| ,

≤ k β k−2
∑

1≤m,`≤p
m 6=`

C2n
�

1− κm+κ`
2

�

n
�

1+ε− κm+κ`
2

�

n−(κm+κ`)|∆m∆`| ,

≤ k β k−2
∑

1≤m,`≤p
m 6=`

C2 |∆m∆`|
n2(κm+κ`−1)−ε ,

(a)
≤ k β k−2

�

max
1≤m≤p

|∆m|
�2 p(p− 1)C2

n
2
3
−ε

,

where (a) follows from the fact that κm+κ`−1≥ 1
3
. Clearly, the power series

∑∞
k=1(k+1)β k−1zk

converges for |z|< β−1. As β−1 is arbitrarily lower than R, this implies that fn(z) is holomorphic
in B(0, R). Moreover, for each compact subset K included in the open disk B(0,β−1) and for
each z ∈ K ,

| fn(z)| ≤

 

∞
∑

k=1

(k+ 1)β k−1(sup
z∈K
|z|)k

!

�

max
1≤m≤p

|∆m|
�2 p(p− 1)C2

n
2
3
−ε

.

The right-hand side of the above inequality converges to zero as n → ∞. Thus, the uniform
convergence of fn(z) to zero on K is proved; in particular, as β−1 < R, fn(z) converges uniformly
to zero on B(0, R). Lemma 1 is proved.

3.2.2 Convergence of dn to zero as n→∞

In this section, λ ∈ Cp is fixed. We therefore drop the dependence in λ in the notations. Consider
function Fn defined by

Fn(z) := log
Dn(z)

∏p
i=1 Di,n(z)

, (37)

where log corresponds to the principal branch of the logarithm and Dn and Di,n are defined in
(30). As Dn(0) = Di,n(0) = 1, there exists a neighbourhood of zero where Fn is holomorphic.
Moreover, using Proposition 6-3), one can prove that there exists a neighbourhood of zero,
say B(0,ρ), where (Fn(z)) is a uniformly compactly bounded family, hence a normal family
(see for instance [13]). Assume that this neighbourhood is included in B(0, R), where R is
defined in Proposition 4 and notice that in this neighbourhood, F ′n(z) = fn(z) as defined in (29).
Consider a compactly converging subsequence Fφ(n) → Fφ in B(0,ρ) (by compactly, we mean
that the convergence is uniform over any compact set K ⊂ B(0,ρ)), then one has in particular
F ′
φ(n)(z)→ F ′φ but F ′

φ(n)(z) = fφ(n)(z)→ 0. Therefore, Fφ is a constant over B(0,ρ), in particular,
Fφ(z) = Fφ(0) = 0. We have proved that every converging subsequence of Fn converges to zero
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in B(0,ρ). This yields the convergence (uniform on every compact of B(0,ρ)) of Fn to zero in
B(0,ρ). This yields the existence of a neighbourhood of zero, say B(0,ρ′) where

Dn(z)
∏p

i=1 Di,n(z)
−−→
n→∞

1 (38)

uniformly on every compact of B(0,ρ′). Recall that dn(z) = Dn(z)−
∏p

i=1 Di,n(z).
Combining (38) with Proposition 6-3) yields the convergence of dn(z) to zero in a small neigh-
bourhood of zero. Now, Proposition 6-1) implies that (dn(z)) is a normal family in C. In partic-
ular, every subsequence (dφ(n)) compactly converges to a holomorphic function which coincides
with 0 in a small neighbourhood of the origin, and thus is equal to 0 over C. We have proved
that

dn(z)−−→n→∞
0, ∀z ∈ C ,

with λ ∈ Cp fixed.

3.2.3 Convergence of the partial derivatives of λ 7→ dn(1,λ) to zero

In order to establish Theorem 1, we shall rely on Proposition 3 where the probabilities of interest
are expressed in terms of partial derivatives of Fredholm determinants. We therefore need to
establish that the partial derivatives of dn(1,λ) with respect to λ converge to zero as well. This
is the aim of this section.
In the previous section, we have proved that ∀(z,λ) ∈ Cp+1, dn(z,λ) → 0 as n → ∞. In
particular,

dn(1,λ)→ 0, ∀λ ∈ Cp .

We now prove the following facts (with a slight abuse of notation, write dn(λ) instead of
dn(1,λ))

1. As a function of λ ∈ Cp, dn(λ) is holomorphic.

2. The sequence
�

λ 7→ dn(λ)
�

n≥1 is a normal family on Cp.

3. The convergence dn(λ)→ 0 is uniform over every compact set Λ⊂ Cp.

Proof of Fact 1) is straightforward and is thus omitted. Proof of Fact 2) follows from Proposition
6-2). Let us now turn to the proof of Fact 3). As (dn) is a normal family, one can extract from
every subsequence a compactly converging one in Cp (see for instance [12, Theorem 1.13])1.
But for every λ ∈ Cp, dn(λ)→ 0, therefore every compactly converging subsequence converges
toward 0. In particular, dn itself compactly converges toward zero, which proves Fact 3).
In order to conclude the proof, it remains to apply standard results related to the convergence
of partial derivatives of compactly converging holomorphic functions of several complex vari-
ables, as for instance [12, Theorem 1.9]. As dn(λ) compactly converges to zero, the following
convergence holds true: Let (`1, · · · ,`p) ∈ Np, then

∀λ ∈ Cp,
�

∂

∂ λ1

�`1

· · ·
�

∂

∂ λp

�`p

dn(λ)−−→n→∞
0 .

This, together with Proposition 3, completes the proof of Theorem 1.

1Notice that in the case of holomorphic functions in several complex variables, the result in reference [13] does not
apply any more.
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4 Remaining proofs

4.1 Proof of Proposition 3

Denote by En(`,∆) the probability that for every i ∈ {1, · · · , p}, the set ∆i contains exactly `i
eigenvalues

En(`,∆) = P
¦

N (∆1) = `1, · · · ,N (∆p) = `p

©

. (39)

Let Pn(m) be the set of subsets of {1, · · · , n} with exactly m elements. If A ∈ Pn(m), denote by
Ac its complementary subset in {1, · · · , n}. The mere definition of En(`,∆) yields

En(`,∆) =

∫

Rn

∑

(A1,··· ,Ap)∈
Pn(`1)···Pn(`p)

p
∏

k=1







∏

i∈Ak

1∆k
(x i)

∏

j∈Ac
k

(1− 1∆k
(x j))







pn(x1 · · · xn)d x1 · · · d xn .

Using the following formula

1

`!

�

−
d

dλ

�` n
∏

i=1

(1−λαi) =
∑

A∈Pn(`)

∏

i∈A

αi

∏

j∈Ac

(1−λα j) ,

we obtain

En(`,∆) =
1

`1! · · ·`p!

�

−
∂

∂ λ1

�`1

· · ·
�

−
∂

∂ λp

�`p

Γ(λ,∆)

�

�

�

�

λ1=···=λp=1

,

where

Γ(λ,∆) =

∫

Rn

n
∏

i=1

(1−λ11∆1
(x i)) · · · (1−λp1∆p

(x i)) pn(x1 · · · xn) d x1 · · · d xn .

Expanding the inner product and using the fact that the ∆k ’s are pairwise disjoint yields

(1−λ11∆1
(x)) · · · (1−λp1∆p

(x)) =

 

1−
p
∑

k=1

λk1∆k
(x)

!

.

Thus

Γ(λ,∆) =

∫

Rn

n
∏

i=1

 

1−
p
∑

k=1

λk1∆k
(x i)

!

pn(x1 · · · xn) d x1 · · · d xn ,

(a)
= 1+

∫

Rn

n
∑

m=1

(−1)m
∑

A∈Pn(m)

∏

i∈A

 

p
∑

k=1

λk1∆k
(x i)

!

pn(x1 · · · xn) d x1 · · · d xn ,

= 1+
n
∑

m=1

(−1)m
∑

A∈Pn(m)

∫

Rn

∏

i∈A

 

p
∑

k=1

λk1∆k
(x i)

!

pn(x1 · · · xn) d x1 · · · d xn ,

(b)
= 1+

n
∑

m=1

(−1)m
�

n

m

�
∫

Rn

m
∏

i=1

 

p
∑

k=1

λk1∆k
(x i)

!

pn(x1 · · · xn) d x1 · · · d xn ,

(c)
= 1+

n
∑

m=1

(−1)m

m!

∫

Rm

m
∏

i=1

 

p
∑

k=1

λk1∆k
(x i)

!

det
¦

Kn(x i , x j)
©

1≤i, j≤m
d x1 · · · d xm ,
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where (a) follows from the expansion of
∏

i

�

1−
∑

k λk1∆k
(x i)
�

, (b) from the fact that the
inner integral in the third line of the previous equation does not depend upon E due to the in-
variance of pn with respect to any permutation of the x i ’s, and (c) follows from the determinantal
representation (15).
Therefore, Γ(λ,∆) writes

Γ(λ,∆) = 1+
n
∑

m=1

(−1)m

m!

∫

Rm

det
¦

Sn(x i , x j;λ,∆)
©

1≤i, j≤m
d x1 · · · d xm , (40)

where Sn(x , y;λ,∆) is the kernel defined in (19). As the operator Sn(λ,∆) has finite rank n,
(40) coincides with the Fredholm determinant det(1− Sn(λ,∆)) (see [17] for details). Proof of
Proposition 3 is completed.

4.2 Proof of Proposition 4

In the sequel, C > 0 will be a constant independent from n, but whose value may change from
line to line. First consider the case i = j. Denote by Sµi

(x , y) the following limiting kernel

Sµi
(x , y) :=























sinπρ(µi)(x − y)
π(x − y)

if − 2< µi < 2

Ai(x)Ai′(y)− Ai(y)Ai′(x)
x − y

if µi = 2

Ai(−x)Ai′(−y)− Ai(−y)Ai′(−x)
−x + y

if µi =−2

.

Proposition 1 implies that n−κi Kn(µi + x/nκi ,µi + y/nκi ) converges uniformly to Sµi
(x , y) on

every compact subset of R2, where κi is defined by (21). Moreover, Sµi
(x , y) being bounded on

every compact subset of R2, there exists a constant Ci such that

Mii,n(Λ) =

�

sup
λ∈Λ
|λi |
�

sup
(x ,y)∈∆2

i,n

�

�Kn
�

x , y
�

�

� ,

=

�

sup
λ∈Λ
|λi |
�

sup
(x ,y)∈∆2

i

�

�

�

�

Kn

�

µi +
x

nκi
,µi +

y

nκi

�

�

�

�

�

,

≤
�

sup
λ∈Λ
|λi |
�

nκi

 

sup
(x ,y)∈∆2

i

�

�

�

�

1

nκi
Kn

�

µi +
x

nκi
,µi +

y

nκi

�

− Sµi
(x , y)

�

�

�

�

+ sup
(x ,y)∈∆2

i

�

�Sµi
(x , y)

�

�

!

,

≤ nκi Ci . (41)

It remains to take R as R−1 =max(C1, · · · , Cp) to get the desired estimate.

Consider now the case where i 6= j. Using notation κi , inequalities (12) and (13) can be conve-
niently merged as follows There exists a constant C such that

sup
x∈∆i,n

�

�

�ψ
(n)
n−k(x)

�

�

�≤ n
1−κi

2 C (42)
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for 1≤ i ≤ p and k = 0,1. For n large enough, we obtain, using (9)

Mi j,n(Λ)
(a)
≤

�

sup
λ∈Λ
|λi |
�

sup
(x ,y)∈∆i,n∆ j,n

|ψ(n)n (x)||ψ
(n)
n−1(y)|+ |ψ

(n)
n (y)||ψ

(n)
n−1(x)|

|x − y|
,

(b)
≤

�

sup
λ∈Λ
|λi |
�

n
1−κi

2
+

1−κ j
2

2C2

inf(x ,y)∈∆i,n∆ j,n
|x − y|

,

(c)
≤ C n1−

κi+κ j
2 ,

where (a) follows from (9), (b) from (42) and (c) from the fact that

lim inf
n→∞

inf
(x ,y)∈∆i,n∆ j,n

|x − y|= |µi −µ j |> 0 .

Proposition 4 is proved.

4.3 Proof of Proposition 5

Let Λ = {λ} be fixed. We drop, in the rest of the proof, the dependence in λ in the notations.
The mere definition of |Sn|(k) yields

0 ≤ |Sn|(k)(x , y) ≤
∫

R
|Sn(x , u)||Sn|(k−1)(u, y)du ,

=
p
∑

i=1

∫

∆i,n

|Sn(x , u)||Sn|(k−1)(u, y)du .

From the above inequality, the following is straightforward

∀(x , y) ∈∆m,n∆`,n, |Sn|(k)(x , y) ≤
p
∑

i=1

|∆i,n|Mmi,nM
(k−1)
i`,n .

Using Proposition 4, we obtain

M (k)
m`,n ≤ R−1M (k−1)

m`,n +α
∑

i 6=m

n(1−
κm+3κi

2
)M (k−1)

i`,n , (43)

where α := max(C |∆1|, · · · , C |∆p|). Now take β > R−1 and ε ∈ (0, 1
3
). Property (26) holds for

k = 1 since

Mmm,n ≤ R−1nκm ≤ βnκm and Mm`,n ≤ Cn
�

1− κm+κ`
2

�

≤ Cn
�

1+ε− κm+κ`
2

�

for every m 6= ` by Proposition 4. Assume that the same holds at step k− 1.
Consider first the case where m= `. Eq. (43) becomes

M (k)
mm,n ≤ R−1β k−1nκm +αCβ k−2

∑

i 6=m

n(1−
κm
2
− 3κi

2
)n(1+ε−

κi
2
− κm

2
) ,

≤ β knκm





R−1

β
+
∑

i 6=m

αC

β2 n(2+ε−2κm−2κi)


 ,

≤ β knκm for n large enough ,
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where the last inequality follows from the fact that 2+ ε− 2κm − 2κi < 0, which implies that
n2+ε−2κm−2κi → 0, which in turn implies that the term inside the parentheses is lower than one
for n large enough.
Now if m 6= `, Eq. (43) becomes

M (k)
m`,n ≤ R−1Cβ k−2n

�

1+ε− κ`+κm
2

�

+αβ k−1n
�

1− κ`+κm
2

�

+
∑

i 6=m,`

Cαβ k−2n
�

1− κm+3κi
2

�

n
�

1+ε− κi+κ`
2

�

,

= Cβ k−1n
�

1+ε− κ`+κm
2

�





R−1

β
+
α

Cnε
+
α

β

∑

i 6=m,`

n1−2κi



 ,

≤ Cβ k−1n
�

1+ε− κ`+κm
2

�

 

R−1

β
+
α

Cnε
+
αp2

βn
1
3

!

,

≤ Cβ k−1n
�

1+ε− κ`+κm
2

�

,

where the last inequality follows from the fact that the term inside the parentheses is lower than
one for n large enough. Therefore, (26) holds for each k ≥ 1 and for n large enough.

4.4 Proof of Proposition 6

Define Un(k,λ) :=
∫

Rk

�

�

�det
¦

Sn(x i , x j;λ)
©

i, j=1···k

�

�

� d x1 · · · d xk. Using Hadamard’s inequality, we

obtain

Un(k,λ) ≤
∫

Rk

k
∏

i=1

√

√

√

√

k
∑

j=1

|Sn(x i , x j;λ)|2d x1 · · · d xk ,

≤
∫

Rk

k
∏

i=1

√

√

√

√

k
∑

j=1

�

�

�

�

�

p
∑

m=1

λm1∆m,n
(x i)

�

�

�

�

�

2

|Kn(x i , x j)|2d x1 · · · d xk .

Therefore, we obtain

Un(k,λ) ≤
∫

Rk

k
∏

i=1

�

�

�

�

�

p
∑

m=1

λm1∆m,n
(x i)

�

�

�

�

�

√

√

√

√

k
∑

j=1

|Kn(x i , x j)|2d x1 · · · d xk ,

≤
∫

Rk

∑

σ∈{1···p}k

k
∏

i=1

�

�λσ(i)
�

�1∆σ(i),n(x i)

√

√

√

√

k
∑

j=1

|Kn(x i , x j)|2d x1 · · · d xk ,

=
∑

σ∈{1···p}k

∫

Rk

k
∏

i=1

√

√

√

√

k
∑

j=1

|λσ(i)1∆σ(i),n(x i)Kn(x i , x j)|2d x1 · · · d xk .
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In the above equation, integral
∫

Rk clearly reduces to an integral on the set ∆σ(1),n · · ·∆σ(p),n.
Thus

sup
λ∈Λ

Un(k,λ) ≤
∑

σ∈{1···p}k

∫

∆σ(1),n···∆σ(p),n

k
∏

i=1

√

√

√

√

k
∑

j=1

M 2
σ(i)σ( j),n(Λ)d x1 · · · d xk ,

=
∑

σ∈{1···p}k

k
∏

i=1

√

√

√

√

k
∑

j=1

�

|∆σ(i),n|Mσ(i)σ( j),n(Λ)
�2

. (44)

We now use Proposition 4 to bound the right-hand side. Clearly, whenσ(i) = σ( j), Proposition 4
implies that |∆σ(i),n|Mσ(i)σ(i),n(Λ)≤ R−1

Λ ∆max, where ∆max =max1≤i≤p |∆i |. This inequality still
holds when σ(i) 6= σ( j) as a simple application of Proposition 4. Therefore, we obtain

sup
λ∈Λ

Un(k,λ)≤
∑

σ∈{1,··· ,p}k
k

k
2∆k

maxR−k
Λ =

�

p∆max

p
k

RΛ

�k

.

Using this inequality, it is straightforward to show that the series
∑

k
supλ∈Λ Un(k,λ)

k!
zk converges for

every z ∈ C and every compact set Λ⊂ Cp. Parts 1) and 2) of the proposition are proved. Based
on the definition of Dn(z,λ) and Di,n(z,λi), we obtain

max
�

|Dn(z,λ)− 1|, |Di,n(z,λi)− 1|, 1≤ i ≤ p
�

≤ |z|
∞
∑

k=1

|z|k−1

k!
Un(k,λ) ,

which completes the proof of Proposition 6.
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