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Abstract

Consider a nn matrix from the Gaussian Unitary Ensemble (GUE). Given a finite collection of
bounded disjoint real Borel sets (A, ,, 1 <i < p) with positive distance from one another, even-
tually included in any neighbourhood of the support of Wigner’s semi-circle law and properly
rescaled (with respective lengths n~! in the bulk and n=2/3 around the edges), we prove that the
related counting measures A, (A, ,),(1 <i < p), where A, (A) represents the number of eigen-
values within A, are asymptotically independent as the size n goes to infinity, p being fixed.
As a consequence, we prove that the largest and smallest eigenvalues, properly centered and
rescaled, are asymptotically independent; we finally describe the fluctuations of the ratio of the
extreme eigenvalues of a matrix from the GUE.

1 Introduction and main result

Denote by %, the set of nn random Hermitian matrices endowed with the probability measure
-1 n 2
P,(dM):=Z_ " exp —3 Tr(M)“tdM,

where Z,, is the normalization constant and where

szlllldMii l_[ %[dMij] l_[ j[dMUJ

1<i<j<n 1<i<j<n
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for every M = (M;;)<; j<n in 5, (B [z] being the real part of z € C and J[z] its imaginary
part). This set is known as the Gaussian Unitary Ensemble (GUE) and corresponds to the case
where a nn Hermitian matrix M has independent, complex, zero mean, Gaussian distributed
entries with variance E|M; j|2 = % above the diagonal while the diagonal entries are independent
real Gaussian with the same variance. Much is known about the spectrum of M. Denote by

A(ln), 1(2"), -+, AW the eigenvalues of M (all distinct with probability one), then:
o [1] The joint probability density function of the (unordered) eigenvalues ()L(l”)’ ... ,)LEI"))

is given by

)

x2
L
o [ —xl?,

j<k

pn(xl’ ’xn) = Cne_

where C, is the normalization constant.

e [19] The empirical distribution of the eigenvalues %Z?:l 0,m (6, stands for the Dirac
measure at point x) converges toward Wigner’s semi-circle law as n — oo, whose density

is:
1 S
ﬂl(_z’z)(x) 4—X2 .

Fluctuations of linear statistics of the eigenvalues of large random matrices (and of the
GUE in particular) have also been extensively addressed in the literature, see for instance
[2, 9] and the references therein; for a determinantal point of view, one can refer to [15].

o [3] The largest eigenvalue Af:gx (resp. the smallest eigenvalue lggi)n) almost surely con-
verges to 2 (resp. —2), the right-end (resp. left-end) point of the support of the semi-circle
law as n — oo.

e [16] The centered and rescaled quantity ns (Aggx - 2) converges in distribution toward
Tracy-Widom distribution function F gUE as n — 0o, which can be defined in the following
way

Fgyg(s) = exp (—J (x = S)qZ(X)dX) ,

where q solves the Painlevé II differential equation

q"(x) = xq(x) +2¢°(x),
g(x)~Ai(x) as x— o0,

+

. . . . . . - 2 2
and Ai(x) denotes the Airy function. In particular, F ;. is continuous. Similarly, ns (Agli)n + 2) -

Foup where

Foyp(s)=1—FF . (=s).
If A is a Borel set in R, denote by
Hdy=#{2"eal,

the number of eigenvalues of M in A. The following theorem is the main result of the article.
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Theorem 1. Let M be a nn matrix from the GUE with eigenvalues (k(ln), e ,Ag”)). Letp>2bea
fixed integer and let w= (uy,-+-,u,) € RP be such that =2 = yy < Uy < -+ < u, = 2. Denote
by A = (A4, -+ ,A,) a collection of p bounded Borel sets in R and consider A, = (Aq,,-+, Ay ;)
defined by

— A — Ap
(edge) Ay, = =2+ ST A, = 2+ 273
A
(bulk) Ay, = ui+j, 2<i<p-1.

Let (€, ,€,) €ENP, then

p
nh—{go (P (‘A/n(Al,n) = eli e ’JKI(AP,H) = Kp) - l_[]P) (JVH(Ak,n) = Kk)) =0.
k=1

Remark 1. An important corollary of Theorem 1 is the asymptotic independence of the random
variables n’ ()Lgli)n + 2) and n’ (A;’:gx — 2), where Ag’i)n and A;’fzx are the smallest and largest

. . . . e
eigenvalues of M. This in turn enables us to describe the fluctuations of the ratio OB

‘min

Remark 2. For fluctuations of the eigenvalues within the bulk or near the spectrum edges at
various scales (different from those studied here), one can refer to [6, 7, 8].

Proof of Theorem 1 is postponed to Section 3. In Section 2, we prove the asymptotic indepen-

dence of the rescaled smallest and largest eigenvalues of M; we then describe the asymptotic
. ) .. . . .

fluctuations of the ratio - Remaining proofs are provided in Section 4.

‘min
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2 Asymptotic independence of extreme eigenvalues

In this section, we prove that the random variables ns (Aggx — 2) and ns (Afgi)n + 2) are asymp-

totically independent as the size of matrix M goes to infinity. We then apply this result to describe

. A . . .
the fluctuations of OB For a nice and short operator-theoretic proof of this result (subsequent

to the present articler";nalthough previously published), one can also refer to [5]. In the sequel,
we drop the superscript ™ to lighten the notations.

2.1 Asymptotic independence

Specifying p = 2, u; = —2, u, = 2 and getting rid of the boundedness condition over A; and
A, in Theorem 1 yields the following
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Corollary 1. Let M be a nn matrix from the GUE. Denote by A;, and A, its smallest and largest
eigenvalues, then the following holds true

P (n§ (Amin +2) <x, 15 (Apax — 2) < y)
2 2
-P (na (Amin +2) < x) P (ns (Amax —2) < y) —0.
Thus
2 2 2
ns (Amin + 2)7 ns (A‘max - 2)) m (A—’ A+);
where A_ and A, are independent random variables with distribution functions Fg;,, and F;UE.

Proof. Denote by (A4;)) the ordered eigenvalues of M A, = A1) < A2) <+ -+ < Ay = Apax- Let
(x,y) € R? and take a > max(|x|,|y|). Let A; = (—a,x) and A, = (y, @) so that

a X y a
Al,n = —2——,—2+—2 and Az,n = 2+—2,2+—2 .

2
3

n ns ns ns
We have
2
{(Ha)=0} = {niQun+2)>x}

a X

U{Hie{l’”' b Ay S 2= =, A 2 —2"‘_2} ,
ns ns

= {0 Gma+2)> 1} U {0,200}, &

2
with the convention that if i = n, the condition simply becomes A,,, < —2 — an” 5. Note that
both sets in the right-hand side of the equation are disjoint. Similarly

{JV(AZ,n)ZO} = {ng(lmax_2)<y}
. Y a
U{Hlé{l,"',n}; A(i_l)S2+—2,7t(i)Z2+—2}, 2
ns ns
= {1 Q-2 <y}uifiy, @}, ®

with the convention that if i = 1, the condition simply becomes A, > 2+ an’s. Gathering the
two previous equalities enables to write {4 (A, ,) = 0,4 (A,,) = 0} as the following union of
disjoint events

{Ha)=0, #(ay,)=0}
= {M(-0,2), 7} Qnax = 2) < y U {TI(=,2) , iy, @)} U {nf o +2) > x , Ty, o)}
U Qunin +2)> %, i =2 <y} . @)
Define
u, = P{né(lmm+2) >x, ng(lmax -2)< y}
—P{ni(xmm +2)> x}P{n%(xm —2)< y} ,
= P{AN(A)=0, H(A;,)=0}
—P{AN(D1,) = O} P{N(Ay,) = 0} +€n(a), ©)
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where by equations (1), (3) and (4)

e, ()= —]P’{H(—a,x) 13 — 2) < y} ~p{0(~a,x), fi(y,a)}
—P {ni(zmm +2)> x 1y, a)} +B{AH(A,) =0} P{fi(y,a)}
+P{II(—a, )} P {A(Ay,) = 0} = P{II(—a, )} P {TI(y,®)} .
Using the triangular inequality, we obtain:
lex(@)] < 6max (P{TI(~a,x)}, P{li(y,a)}) .
As {TI(—a,x)} C {n3 (Amin + 2) < —a}, we have

P{TI(—a,x) } < P{n5 (A +2) < —a} = Foue(=2) 752> 0.

We can apply the same arguments to {[I(y,a)} C {ng (Amax — 2) > a}. We thus obtain:

lim limsup|e,(a)| =0. (6)

0 noco

The difference P {JV(ALH) =0, H(Ay,)= O}—IP’ {JV(ALH) = O} P {JV(AZ’H) = O} in the rightgy-
hand side of (5) converges to zero as n — oo by Theorem 1 for every a large enough. We
therefore obtain

limsup |u,,| =limsup |e,(a)] .

n—oo n—o00

The lefthand side of the above equation is a constant w.r.t. a while the second term (whose
behaviour for small a is unknown) converges to zero as a — oo by (6). Thus, lim,_,. u, = 0.
The mere definition of u, together with Tracy and Widom fluctuation results yields

r‘lanc}oP {ng(xmin + 2) > X, ng(xmax - 2) < }’} = (1 - FEUE(X)) FG+UE(J/) .
This completes the proof of Corollary 1.
O

2.2 Application: Fluctuations of the ratio of the extreme eigenvalues in
the GUE

As a simple consequence of Corollary 1, we can easily describe the fluctuations of the ratio
%. The counterpart of such a result to Gaussian Wishart matrices is of interest in digital
communication (see [4] for an application in digital signal detection).

Corollary 2. Let M be a nn matrix from the GUE. Denote by A, and A, its smallest and largest
eigenvalues, then
A 1
ni (2241 2 (Al +Ay),
Amin n—00 2
where 2> denotes convergence in distribution, A_ and A, are independent random variable with

respective distribution Fg;, and Fgy .
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Proof. The proof is a mere application of Slutsky’s lemma (see for instance [18, Lemma 2.8]).
Write

2 lmax 1 2 2
ns (r+1) = [ng(kmax_2)+n3(kmin+2):| . %)

min kmin

Now, (Amm)’l goes almost surely to -2 as n — oo, and né(lmax -2)+ né(kmin + 2) converges
in distribution to the convolution of F ;. and F;UE by Corollary 1. Thus, Slutsky’s lemma yields
the convergence (in distribution) of the right-hand side of (7) to —%(l_ +AT)with A~ and A*
independent and distributed according to F,, and F;UE. Proof of Corollary 2 is completed. [

3 Proof of Theorem 1

3.1 Useful results
3.1.1 Kernels

Let {H;(x)}i>o be the classical Hermite polynomials Hy(x) := e (—dd—x)k e~ and consider the
function 1/)5(")()() defined for 0 < k <n—1 by:

1 Xz
(%) := (2)4 _* ' u ).
i 2) (2fymi V2
Denote by K, (x, y) the following kernel on R?
n—1
Ko(x,y) o= D 0oy, @®)
k=0

PDE)PD, () = POy, (x)
x—y ’

9

Equation (9) is obtained from (8) by the Christoffel-Darboux formula. We recall the two well-
known asymptotic results

Proposition 1.  a) Bulk of the spectrum. Let u € (—2,2).

1 i —
Y(x,y) €R?, lim —K, (u + f,u + J—/) _ o mp(u)x = y) , (10)
n—oo n n n n(x—y)

where p(u) =
R2.

VA-ut
2

—2
n“ . Furthermore, the convergence (10) is uniform on every compact set of

b) Edge of the spectrum.

V(x,y) €R*, lim 1k (2+ iy ) _ ACIATLY) — Al )AT)

n—>o0 n2/3° " n2/3’ n2/3 x—y ’ (1D

where Ai(x) is the Airy function. Furthermore, the convergence (11) is uniform on every
compact set of R2.



382 Electronic Communications in Probability

We will need as well the following result on the asymptotic behavior of functions 1,05(”).
Proposition 2. Let u € (—2,2), k € {0,1} and denote by K a compact set of R.

a) Bulk of the spectrum. There exists a constant C such that

(n) X
sup (¢, |u+— )| =C. (12)
xeK n
b) Edge of the spectrum. There exists a constant C such that
) X \| <, 1/6
sup v (2575 )| < m°c. a3

The proof of these results can be found in [11, Chapter 7], see also [1, Chapter 3].

3.1.2 Determinantal representations, Fredholm determinants

There are determinantal representations using kernel K, (x, y) for the joint density p, of the
eigenvalues (AE") ;1 <i < n), and for its marginals (see for instance [10, Chapter 6]):

1
pn(xl:"' :xn) Edet {Kn(xi:xj)}lgi’an 5 (14)

—m)!
Mdet {K”(xi’xj)}lsi,jSm (m<n). (15)

J pn(xl:"' rxn)dxm+1"'dxn
Definition 1. Consider a linear operator S defined for any bounded integrable function f : R — R
by

Sf:x HJ SCe,y)f (y)dy ,
R

where S(x,y) is a bounded integrable Kernel on R? — R with compact support. The Fredholm
determinant D(z) associated with operator S is defined as follows

(—2)*
k!

VzeC, D(z) := det(1—2S) = 1+Z J det{S(xi,xj)}l<l_j<kdx1---dxk. (16)
k=1 RE T

It is in particular an entire function and its logarithmic derivative has a simple expression [17,
Section 2.5] given by

D/(Z) 00 .
=—>» T(k+1)z", 17
) ; (k+1)z 17)
where
T(k)= f S(xq,x9)8(x9,x5) - S(x), x7)dxq -+ - dxy . (18)
Rk

For details related to Fredholm determinants, see for instance [14, 17].
The following kernel will be of constant use in the sequel

p
Sn(X,y; A':A) ::ZAilAi(x)Kn(x’y): (19)
i=1
where 4 = (44,---,4,) € R or A € CP, depending on the need, and A = (A4,---,A)) is a
collection of p bounded Borel sets in R.
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Remark 3. The kernel K,,(x, y) is unbounded and one cannot consider its Fredholm determinant
without caution. The kernel S, (x, y) is bounded in x since the kernel is zero if x is outside the
compact closure of the set UleAi, but a priori unbounded in y. In all the forthcoming compu-
tations, one may replace S, with the bounded kernel 3, (x,y) = f,e=1 Ai1p, ()15, (K, (x, ¥)
and get exactly the same results. For notational convenience, we keep on working with S,,.

Proposition 3. Let p > 1 be a fixed integer, £ = ({1,---,£,) € NP and denote A = (Ay, -+, ),
where every A; is a bounded Borel set. Assume that the A;’s are pairwise disjoint. Then the following
identity holds true

PN (D) =by, -, N (A,) =0, }

__ 1 o \" d Zpdt(l 5.4, A)) (20)
T\ oy oA, ¢ e Amemiy =1

where S, (A, A) is the operator associated to the kernel defined in (19).

Proof of Proposition 3 is postponed to Section 4.1.

3.1.3 Useful estimates for kernel S,,(x, y; 4, A) and its iterations

Consider u, A and A, as in Theorem 1. Assume moreover that n is large enough so that the
Borel sets (A, ,;1 < i < p) are pairwise disjoint. For i € {1,---,p}, define ; as

1if —2<yu; <2 @1
K; = .
L § ifu; =2
Otherwise stated, k; =k, = % andk;=1forl <i<p.
Let A € CP. With a slight abuse of notation, denote by S,(x, y; 4) the kernel
Sa(, y5A) :=S,(x, 54, A,) . (22)
For 1 <m,{ < p and A C CP, define
Mun(A) = sup  sup [S,(x,y;2)], (23)

AEA (x,Y)EA 1D
where S, (x, y; A) is given by (22).

Proposition 4. Let A C CP be a compact set. There exist two constants R := R(A) > 0 and
C := C(A) > 0, independent from n, such that for n large enough,

{ M n(A)
M;jn(N)

IA

R™n%i | 1<i<p
Kit+Kj . (24)
1— J .o . .
Cn" "2, 1<i,j<p,i#]

IA

Proposition 4 is proved in Section 4.2.
Consider the iterated kernel |S,|®)(x, y; A) defined by

15,1V Cx, 3 4) = 18,(x, 3 )] ©25)
1S90, 3 A) = [, 18,00, w MNIS, %V, y; M) du k>2
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where S, (x,y;A) is given by (22). The next estimates will be stated with A € CP fixed. Note
that |S,|¥) is nonnegative and write

J |Sn(x’ul; A')Sn(u'l) Us; A‘) ot 'Sn(uk—l) Y A’)Idul e duk—l .
Rk_l

As previously, define for 1 <m,{ <p

/ﬂ(k)

ml,n

W= sup S, P(x,¥;2).

(X:y)eAm,nAE,n
The following estimates hold true

Proposition 5. Consider the compact set A = {A} and the associated constants R = R(A) and
C = C(A) as given by Prop. 4. Let B > 0 be such that B > R™! and consider € € (0, %). There exists
an integer N := Ny(f3, €) such that for every n > N, and for every k > 1,

M) < e, 1<m<p 26)
M () < cp 1 alt") | t<mie<p mAe

Proposition 5 is proved in Section 4.3.

3.2 End of proof

Consider u, A and A,, as in Theorem 1. Assume moreover that n is large enough so that the Borel
sets (A; ;1 < i < p) are pairwise disjoint. As previously, denote S,(x,y;A) = S,(x,y;4,A,);
denote also S;,(x,y;24;) = Sy(x,¥;Ai,Ai ) = Ai1a,(X)K,(x,y), for 1 < i < p. Note that
Sn(X,J’Q 2‘) = Si,n(x:.y; }\'1) ifxe Ai,n’

For every z € C and A € CP, we use the following notations

D,(z,A) :=det(1—-2S,(4,A,)) and D,;(z,4;):=det(1—2S,(A;,A;,)). 27)
The following controls will be of constant use in the sequel.
Proposition 6. 1. Let A € CP be fixed. The sequences of functions
z— D, (z,4) and z2—D;,(2,4;), 1<i<p
are uniformly bounded in n on every compact subset of C.
2. Let z = 1. The sequences of functions
A— D, (1,1) and A—Dy,(1,4), 1<i<p
are uniformly bounded in n on every compact subset of CP.
3. Let A € CP be fixed. For every 6 > 0, there exists r > 0 such that

sup sup |D,(z,A)—1] < &,

n zeB(0,r)

sup sup [Di,(z,24)—1 < &, 1<i<p,
n zeB(0,r)

where B(0,r)={z€C, |z| <r}.
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The proof of Proposition 6 is provided in Section 4.4.
We introduce the following functions

p
d,:(z,2) — det(1-25,(2,A,) - [det(1-25,(2,A.) (28)

i=1
D/(2,4) <DL E4)
Dn(zal) i=1 Di,n(z, A1) ’

fu:(2,2) (29)

where ’ denotes the derivative with respect to z € C. We first prove that f, goes to zero as
n — oo.
3.2.1 Asymptotic study of f, in a neighbourhood of z =0

In this section, we mainly consider the dependence of f, in z € C while 4 € C? is kept fixed. We
therefore drop the dependence in A for readability. Equality (17) yields

D, (2)
D,(z)

Di,(z) & k .
) —;Ti,n(k+ 1zf (1<i<p), (30)

i,n

=— > T,(k+1)z* and
k=0

where ' denotes the derivative with respect to z € C and T, (k) and T;,(k) are as in (18),
respectively defined by

T, (k)

f Sn(x1,x2)8,(x9, x3)  + - Sy (g, X1 )dxy -+ - d Xy, (8D
Rk

T;n(k) = JSi,n(xl,xz)Si,n(xz,xQ---Si,n(xk,xl)dxl---dxk. (32)
Rk

/ /

Recall that D, and D, ,, are entire functions (of z € C). The functions D—" and —~

admit a power
n i,n
series expansion around zero given by (30). Therefore, the same holds true for f,(z). Moreover

Lemma 1. Define R as in Proposition 4. For n large enough, f,(z) defined by (29) is holomorphic
on B(O,R) := {z € C, |z| <R}, and converges uniformly to zero as n — oo on each compact subset
of B(O,R).

Proof. Denote by & E")(x) =1 Am(x) and recall that T, (k) is defined by (31). Using the identity

k k
1_[ Aim = Z l—[ao(m)m’ (33)

p
m=1 i=1 oe{l,-pkm=1

where a;,,, are complex numbers, T, (k) writes (k > 2)

k
f (l_[ Z ggn)(xm)) Kn(xl,xz) .. .Kn(xk,xl)dxl e dxk s
Rk

T (k)

m=1 i=1

= DL o), (34)

o&{l, p}k
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where we define

Jnk(0) = J (]‘[a((m)(xm))x(xl,xz) Ky (g, X )dxy -+ dx (35)
Rk \ m=1

We split the sum in the right-hand side of (34) into two subsums. The first is obtained by
gathering the terms with k-tuples o = (i,i,---,i) for 1 <i < p and writes

Zf (]‘[A 1, (xm))K(xl,xg Ky oo = 3 T30,

i=1

where T; ,(k) is defined by (32). The remaining sum consists of those terms for which there
exists at least one couple (m,£) € {1,---,k}? such that o(m) # o (£). Let

={ae{1,---,p}’< DAm, 0 {1, , k¥, 0(m) # o (0)}

We obtain T,(k) = T; ,(k) +s,(k) where

52(K) = jux(0)

oY
for every k > 2. For each q € {1,...,k — 1}, denote by r, the following permutation for any
k-tuple (ay,...,a;)
(@, s @) = (ags Agirs e+ -5 Ay A1y -5 Agq) -
In other words, 7, operates a circular shift of ¢ — 1 elements to the left. Clearly, any k-tuple
0 € & can be written as o = 14(m,{,5) for some q € {1,...,k — 1}, (m,{) € {1,...,p}? such

that m # ¢, and & € {1,...,p}*2. This simply expresses the fact that if o € %, there exists two
consecutive elements that differ at some point. Thus

k-1
sa < > > juk(mg(m, £,6))]

9=1 (m,0)e{1-p}* Ge{lp}k2
m#(

From (35), function j,  is invariant up to any circular shift 7, so that j, (o) coincides with
Jnx(mq(m, €, &) for any o = 7 (m, £, &) as above. Therefore, |s, (k)| writes

k-1
Isa()| - < DD I I CACN NS
9=1 (m,0)e{1--p}* 5&{1--p}2
m#L
<k D, D] f £ Ge)EP (e)E 52, () -+ £y (i
]Rk

(m0)e{1--p}* Ge{1-p}k2
m#l

|K, (1, x2) - Ky (g, x)|d X - doxye
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The latter writes

s < kY. f
1SmA<p Y Dy nlgn

m#L
J}Rk 2 Gefl-p}k2
1<m£<p JAmnA/n

m#L
J]sz &E{l-'-p}k 2

It remains to notice that

[>T
R (”Ie{lwp}"’zfn 3
)L w P
@ ;\si (xz)f ,,1121

= J |Sn(x2>x3)sn(x3;x4)'”Sn(xerl)'dxﬁi'”dxk s
]Rk*Z

(®) _
= |Sn|(k 1)(x2:x1),

K (1, X2)E™ (x)E ()

£ (xg)--- €W, () X3) -+ Koo, 1) doxs -+ dxye | doxydicy

K(xl,xz)Zi(’”(xl) é")(xg

FPNC SIS 2)(xk)||z< (o, X) -+ Ko, 1) doxs -+ dixye | doxydic, .

g( 5(m— 2)(xm) )Kn(xz,x?))-.-Kn(Xk,Xl)‘dx3-..dxk

£ (xy)
=1

—~
=)

XB)"'Kn(xk:xl)) dxg---dxy,

where (a) follows from (33), and (b) from the mere definition of the iterated kernel (25). Thus,
for k > 2, the following inequality holds true

s, ()l < k E J |Sn(x17x2)||5n|(k_1)(x2:xl)dxldXZ . (36)
1<ml<p v Ay,
m#L

For k =1, let s,(1) = 0 so that equation T, (k) = Zi T; (k) +s,(k) holds for every k > 1.
According to (29), f,(z) writes:
ful@) == sk + 12k

k=1

Let us now prove that f, (z) is well-defined on the desired neighbourhood of zero and converges
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uniformly to zero as n — oo. Let 8 > R}, then Propositions 4 and 5 yield

s < kD f 18,0, IS Dy, x)dxdy
Am,nAZ,n

1<m/{<p
m#l
(k—1)
< k Z '/ﬂml,n'/ﬂgm,n |Am,n”AZ,n|’
1<m/{<p
m#L
Km+Kp Km+K,
< kﬁk_z Z Czn(l_ z[)n(l"'e_ 2[)n_(Km+Kl)|AmA€|’
1<m/<p
m#l
C? A, A
k-2 m={
< kﬁ Z nz(Km+K[—l)—6 ’
1<m,/<p
m#L
(@ 2 p(p—1)C?
< kﬁk-Z(max |Am|) plp—)C7
1<m<p ng—f

where (a) follows from the fact that x,,,+x,—1 > % Clearly, the power series Zi‘;l(lﬁ— 1)pk-1gk
converges for |z| < f~1. As B! is arbitrarily lower than R, this implies that f,(z) is holomorphic
in B(0,R). Moreover, for each compact subset K included in the open disk B(0,37!) and for
each z €K,

00 2 _ 2
OE (Z(kﬂ)ﬁk‘l(sw |z|)k) (max 1ol ) P
£ ek 1=m=<p 2

ns

The right-hand side of the above inequality converges to zero as n — oo. Thus, the uniform
convergence of f,(z) to zero on K is proved; in particular, as ! <R, f,(z) converges uniformly
to zero on B(0,R). Lemma 1 is proved.

O

3.2.2 Convergence of d, to zero as n — 00

In this section, A € CP? is fixed. We therefore drop the dependence in A in the notations. Consider

function F, defined by
D,(2)

€=1 Di,n(z) ’

where log corresponds to the principal branch of the logarithm and D, and D, , are defined in
(30). As D,(0) = D; ,(0) = 1, there exists a neighbourhood of zero where F, is holomorphic.
Moreover, using Proposition 6-3), one can prove that there exists a neighbourhood of zero,
say B(0, p), where (F,(z)) is a uniformly compactly bounded family, hence a normal family
(see for instance [13]). Assume that this neighbourhood is included in B(0,R), where R is
defined in Proposition 4 and notice that in this neighbourhood, F!(z) = f,(2) as defined in (29).
Consider a compactly converging subsequence Fy(,) — F, in B(0, p) (by compactly, we mean
that the convergence is uniform over any compact set K C B(0, p)), then one has in particular
F (;(n)(z) —F (; but F \(2) = fym)(2) — 0. Therefore, F, is a constant over B(0, p), in particular,

¢(n)
F4(z) = F,(0) = 0. We have proved that every converging subsequence of F, converges to zero

F,(2):=log (37)
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in B(0, p). This yields the convergence (uniform on every compact of B(0, p)) of F,, to zero in
B(0, p). This yields the existence of a neighbourhood of zero, say B(0, p’) where

D,(2) )
l_[le Di,n(z) n—0o

uniformly on every compact of B(0, p’). Recall that d,(z) = D,,(z) — ]_[le D; (2).

Combining (38) with Proposition 6-3) yields the convergence of d, (z) to zero in a small neigh-
bourhood of zero. Now, Proposition 6-1) implies that (d,,(z)) is a normal family in C. In partic-
ular, every subsequence (d,(,)) compactly converges to a holomorphic function which coincides
with 0 in a small neighbourhood of the origin, and thus is equal to 0 over C. We have proved
that

(38)

d,(z) — 0, VzeC,
n—oo

with A € CP fixed.

3.2.3 Convergence of the partial derivatives of 4 — d,(1,2) to zero

In order to establish Theorem 1, we shall rely on Proposition 3 where the probabilities of interest
are expressed in terms of partial derivatives of Fredholm determinants. We therefore need to
establish that the partial derivatives of d, (1, A) with respect to A converge to zero as well. This
is the aim of this section.
In the previous section, we have proved that V(z,4) € CP*!, d,(2,A) —» 0 as n — co. In
particular,

d,(1,A)—0, VAecCr.

We now prove the following facts (with a slight abuse of notation, write d,(A) instead of
d,(1,2))

1. As a function of A € CP, d,,(A) is holomorphic.
2. The sequence (A — d,(A)),, is a normal family on C?.
3. The convergence d,(A) — 0 is uniform over every compact set A C CP.

Proof of Fact 1) is straightforward and is thus omitted. Proof of Fact 2) follows from Proposition
6-2). Let us now turn to the proof of Fact 3). As (d,) is a normal family, one can extract from
every subsequence a compactly converging one in CP (see for instance [12, Theorem 1.13]).
But for every A € CP, d,(A) — 0, therefore every compactly converging subsequence converges
toward 0. In particular, d, itself compactly converges toward zero, which proves Fact 3).

In order to conclude the proof, it remains to apply standard results related to the convergence
of partial derivatives of compactly converging holomorphic functions of several complex vari-
ables, as for instance [12, Theorem 1.9]. As d,(A) compactly converges to zero, the following
convergence holds true: Let ({;,---,{,) € NP, then

A ¢,
VAP, (i) (i) d.(2) —— 0.
oA oA, n—00

This, together with Proposition 3, completes the proof of Theorem 1.

INotice that in the case of holomorphic functions in several complex variables, the result in reference [13] does not
apply any more.
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4 Remaining proofs

4.1 Proof of Proposition 3

Denote by E,(£,A) the probability that for every i € {1,---,p}, the set A; contains exactly ¢;

eigenvalues
En(e:A):P{C/V(AI)ZEI’7‘/V(Ap):ep} . (39)

Let &,(m) be the set of subsets of {1,---,n} with exactly m elements. If A € &, (m), denote by
A° its complementary subset in {1,- - ,n}. The mere definition of E, (¢, A) yields

E(eA)—f >, ﬂ [ [1a,GO] [ = 14,660 p puley - x,)dox, - dox
R™ (A,

Ae k=1 | iea JeA
EACIRCACN)

Using the following formula

'( dx) l_[(l ra)= 3, | Ja] Ja-2ap,

AEP (1) i€A  jeA

E,(6,A) = ! 23" ‘ épr(zA)
TUT g, oy o2, ’

we obtain

>

Aq==2,=1

where
r(A,A) = f [T =214, 000 (1= 2,15 () paCy -+ X, ) dixy -+ dx
R" =1

Expanding the inner product and using the fact that the A;’s are pairwise disjoint yields

P
(1= A1y, () (1= A1, () = (1 —Zaklakm) .

k=1
Thus
F(A,A) = ( ZAklAk('x )) pn(_x'1 n)dxl...dx

@ f Z —1" Z H(Zlklﬁk(’c)) po(xy - x,)dxy -+ dx

m=1 A€ (m) i€A \ k=1

p
B 1+Z( v Z J n(zkklm(xi)) Pa(xy - xp)doty - dxy

A (m) JR" ieA \ k=1

n m P
© 1+Z<—1>m(“)f I Zxkuk(xi)) Palxy - x,)doxy - dx
m=1 M/ Jrri=1 =1
n _1\m P
© 1+m2:;(ri!) f U(;kklA (x)) det{K (xi, X; )}1<l]<mdx1 cdxy, ,
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where (a) follows from the expansion of [ ], (1 —Du Ml Ak(xi)), (b) from the fact that the
inner integral in the third line of the previous equation does not depend upon E due to the in-
variance of p, with respect to any permutation of the x;’s, and (c) follows from the determinantal
representation (15).

Therefore, I'(A, A) writes
= (=)™
r(A,A)=1+ 2 e det {S,(xi, x4, AV} dxy e dxy (40)
m=

where S,(x, y; A, A) is the kernel defined in (19). As the operator S, (4, A) has finite rank n,
(40) coincides with the Fredholm determinant det(1 — S,,(4, A)) (see [17] for details). Proof of
Proposition 3 is completed.

4.2 Proof of Proposition 4

In the sequel, C > 0 will be a constant independent from n, but whose value may change from
line to line. First consider the case i = j. Denote by S,, (x, y) the following limiting kernel

sinmtp(u)(x —y)

o —y) if —2<u;<2
S, (x, ) = Ai(x)Ai (yj :?i(y)Ai (x) if = 2
A(—AI(—y) —AI(=y)Ai'(—x)
ifu; =-2
—x+y

Proposition 1 implies that n ™K, (u; + x/n",u; + y/n*?) converges uniformly to S, (x,y) on
every compact subset of R?, where k; is defined by (21). Moreover, Sy, (x, y) being bounded on
every compact subset of R?, there exists a constant C; such that

'/ﬂii,n(A) = (Sup Illl) sup Kn (X, y) )
AeA (x.y)en?,
X y
= |suplA] | sup |K, (Mi +— Ut —K) ,
AeA (x.y)en? n n

IA

1
(sup [A; I) n*i | sup
AeA (x,y)eaz |1

X y
TKH (HI—FE’HI—FF) _Sui(X,J’) + sup |Sui(X,J’)0 )
< n"c;. (41)

' (x,y)en?

It remains to take R as R™! = max(Cy,---,C,) to get the desired estimate.

Consider now the case where i # j. Using notation k;, inequalities (12) and (13) can be conve-
niently merged as follows There exists a constant C such that

sup
X€EA,

w;’?k(x)) <n'i'c 42)

in
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for1 <i<pandk=0,1. For n large enough, we obtain, using (9)

@ [pDCONP T, )]+ DN, ()
M (A 2 (supm,-l) sp P CMnry O+ DI, (O]
AeA (6, Y)EA A, lx =yl
(b)
<

1o 1K 2C?
sup|A;| |n72 77 - )
AEA 1nf(x,y)€A~ AL lx =yl

Ln=rLn

(c) 17Kl'+K'}'
< Cn 2

>

where (a) follows from (9), (b) from (42) and (c) from the fact that

liminf  inf  |x—y|=|u; —u;|>0.

n—=00  (x,y)EA; ,Aj,

Proposition 4 is proved.

4.3 Proof of Proposition 5

Let A = {A} be fixed. We drop, in the rest of the proof, the dependence in A in the notations.
The mere definition of |S,,|®) yields

0 < [8¥(x,y) < f 1S, G, WIS 1% V(w, y)du ,
R

)4
Zf 1S, (e, 1S, 1%V (w, y)du .
i=1 Ain

From the above inequality, the following is straightforward

P
k—
VL Y) € ApnBpn 1P Y) < D A Ml 0t 1

il,n
i=1
Using Proposition 4, we obtain

_ _ _ Km3x; ke
.//l(k) < R 1%(]( 1)+a2n(1 — )‘/ﬂi(e,n 1) , (43)

mén — mé,n
i#m

where a := max(C|A],--+,C|A,|). Now take 8 > R~ ! and e € (0, %). Property (26) holds for
k =1 since

Km+Kp

Mg SR7IN < Br*n and My, < cn(1=25%) < gpive25")

for every m # £ by Proposition 4. Assume that the same holds at step k — 1.
Consider first the case where m = £. Eq. (43) becomes

Km _ 3Ki Ki  Km
ME) < RTBEInn 4 aCpR2y (oS Rt
i#m

R7! aC
< Bkt (_+Z_n(2+6—2)<m—2ki))
< 5 ,

B ZiB
< Bkntn for n large enough ,
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where the last inequality follows from the fact that 2 4+ € — 2k,, — 2«; < 0, which implies that
n*t€=2n=2% _ 0 which in turn implies that the term inside the parentheses is lower than one
for n large enough.

Now if m # £, Eq. (43) becomes

/ﬂrg?n = RﬂCﬁ"_Zn(”e‘W;m)+aﬁk_1n(1_w+%)
+l;m:lc(x/5’< 2 (1 5) (1)
= cp il (FC Ez) ,
S Gt}

< Cﬁk_l (1+s ”K’")

>

where the last inequality follows from the fact that the term inside the parentheses is lower than
one for n large enough. Therefore, (26) holds for each k > 1 and for n large enough.

4.4 Proof of Proposition 6

Define U,(k,4) := ka

det {Sn(xi,xj; l)}i,jzl---k‘ dx;---dx;. Using Hadamard’s inequality, we

obtain
k
U,(k,A) < f]_[ le (x5 A)Pdox; -+ dxy
:1
k| p 2
= J ZZAHIIAMY”(X[) |Kn(xi>xj)|2dxl“'dxk~
j=1 m=1
Therefore, we obtain
k p k
Uy(k,A) < J TTID. Anta,, G| 4| D IKaCxi ) Pdix, -+ dix
i=1 |m=1 j=1
<

k k
J [ T1200| 1o, )y | D IKa, x))Pdocy - dxcy
oefl-p}k i=1

i=1

J Zm(l)l%“(x IK(xi, x))[2doxy -~ doxy
oefl- p}k Rf =1\ j
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In the above equation, integral ka clearly reduces to an integral on the set Ay(py, - A

o(p)n*
Thus

A

k
M Wy

j=1

k
supU,(k,2) < ) f 1
Ach oe{l-pk Y AsynA

Bo(pyn =1

> l_[ Z(|Ao(on|/ﬂo<n)oo)n(/\)) (44)

oe{l-p}k i=1 \ j=1

We now use Proposition 4 to bound the right-hand side. Clearly, when o (i) = o(j), Proposition 4
implies that |A gy ol #o(i)oi)n(A) < Ry Apay, Where Ay, = max; <;<, |A;|. This inequality still
holds when o (i) # o(j) as a simple application of Proposition 4. Therefore, we obtain

pAmaX\/E)k

supU,(k,A) < Z k2 AfnaXRX —( =
A

Aeh o&{l, p}*

Using this inequality; it is straightforward to show that the series Zk %{Mzk converges for
every z € C and every compact set A C CP. Parts 1) and 2) of the proposition are proved. Based

on the definition of D, (z,4) and D; ,(z, A;), we obtain

k—1
max (|D,(z,4) — 1|, 1D, 1(z,2) — 11, 1<l<p)<|z|2 ' U,(k,A),

which completes the proof of Proposition 6.
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