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Abstract
We give a short proof of Theorem 1.2(i) from [5]. We show that the expected size of the intrinsic
ball of radius r is at most C r if the susceptibility exponent γ is at most 1. In particular, this result
follows if the so-called triangle condition holds.
Let G = (V, E) be an infinite connected graph. We consider independent bond percolation on
G. For p ∈ [0, 1], each edge of G is open with probability p and closed with probability 1 − p
independently for distinct edges. The resulting product measure is denoted by Pp. For two vertices
x , y ∈ V and an integer n, we write x ↔ y if there is an open path from x to y , and we write

x
≤n←→ y if there is an open path of at most n edges from x to y . Let C(x) be the set of all y ∈ V

such that x ↔ y . For x ∈ V , the intrinsic ball of radius n at x is the set BI(x , n) of all y ∈ V such

that x
≤n←→ y . Let pc = inf{p : Pp(|C(x)| =∞) > 0} be the critical percolation probability. Note

that pc does not depend on a particular choice of x ∈ V , since G is a connected graph. For general
background on Bernoulli percolation we refer the reader to [2].
In this note we give a short proof of Theorem 1.2(i) from [5]. Our proof is robust and does not
require particular structure of the graph.

Theorem 1. Let x ∈ V . If there exists a finite constant C1 such that Ep|C(x)| ≤ C1(pc − p)−1 for all
p < pc , then there exists a finite constant C2 such that for all n,

Epc
|BI(x , n)| ≤ C2n.

Before we proceed with the proof of this theorem, we discuss examples of graphs for which the
assumption of Theorem 1 is known to hold. It is believed that as p ↗ pc , the expected size of
C(x) diverges like (pc − p)−γ. The assumption of Theorem 1 can be interpreted as the mean-field
bound γ≤ 1. It is well known that for vertex-transitive graphs this bound is satisfied if the triangle
condition holds at pc [1]: For x ∈ V ,

∑

y,z∈V

Ppc
(x ↔ y)Ppc

(y↔ z)Ppc
(z↔ x)<∞.
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This condition holds on certain Euclidean lattices [3, 4] including the nearest-neighbor lattice Zd

with d ≥ 19 and sufficiently spread-out lattices with d > 6. It also holds for a rather general class
of non-amenable transitive graphs [6, 8, 9, 10]. It has been shown in [7] that for vertex-transitive
graphs, the triangle condition is equivalent to the so-called open triangle condition. The latter is
often used instead of the triangle condition in studying the mean-field criticality.

Proof of Theorem 1. Let p < pc . We consider the following coupling of percolation with parameter
p and with parameter pc . First delete edges independently with probability 1 − pc , then every
present edge is deleted independently with probability 1− (p/pc). This construction implies that
for x , y ∈ V , p < pc , and an integer n,

Pp(x
≤n←→ y)≥

�

p

pc

�n

Ppc
(x

≤n←→ y).

Summing over y ∈ V and using the inequality Pp(x
≤n←→ y)≤ Pp(x ↔ y), we obtain

Epc
|BI(x , n)| ≤

�

pc

p

�n

Ep|C(x)|.

The result follows by taking p = pc(1−
1

2n
).
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