UPPER BOUND ON THE EXPECTED SIZE OF THE INTRINSIC BALL

ARTËM SAPOZHNIKOV ${ }^{1}$
EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
email: sapozhnikov@eurandom.tue.nl

Submitted June 08, 2010, accepted in final form June 11, 2010
AMS 2000 Subject classification: 60K35; 82B43
Keywords: Critical percolation; high-dimensional percolation; triangle condition; chemical distance; intrinsic ball.

Abstract

We give a short proof of Theorem 1.2(i) from [5]. We show that the expected size of the intrinsic ball of radius r is at most $C r$ if the susceptibility exponent γ is at most 1. In particular, this result follows if the so-called triangle condition holds.
Let $G=(V, E)$ be an infinite connected graph. We consider independent bond percolation on G. For $p \in[0,1]$, each edge of G is open with probability p and closed with probability $1-p$ independently for distinct edges. The resulting product measure is denoted by \mathbb{P}_{p}. For two vertices $x, y \in V$ and an integer n, we write $x \leftrightarrow y$ if there is an open path from x to y, and we write $x \stackrel{\leq n}{\longleftrightarrow} y$ if there is an open path of at most n edges from x to y. Let $C(x)$ be the set of all $y \in V$ such that $x \leftrightarrow y$. For $x \in V$, the intrinsic ball of radius n at x is the set $B_{I}(x, n)$ of all $y \in V$ such that $x \stackrel{\leq n}{\longleftrightarrow} y$. Let $p_{c}=\inf \left\{p: \mathbb{P}_{p}(|C(x)|=\infty)>0\right\}$ be the critical percolation probability. Note that p_{c} does not depend on a particular choice of $x \in V$, since G is a connected graph. For general background on Bernoulli percolation we refer the reader to [2].
In this note we give a short proof of Theorem 1.2(i) from [5]. Our proof is robust and does not require particular structure of the graph.

Theorem 1. Let $x \in V$. If there exists a finite constant C_{1} such that $\mathbb{E}_{p}|C(x)| \leq C_{1}\left(p_{c}-p\right)^{-1}$ for all $p<p_{c}$, then there exists a finite constant C_{2} such that for all n,

$$
\mathbb{E}_{p_{c}}\left|B_{I}(x, n)\right| \leq C_{2} n .
$$

Before we proceed with the proof of this theorem, we discuss examples of graphs for which the assumption of Theorem 1 is known to hold. It is believed that as $p \nearrow p_{c}$, the expected size of $C(x)$ diverges like $\left(p_{c}-p\right)^{-\gamma}$. The assumption of Theorem 1 can be interpreted as the mean-field bound $\gamma \leq 1$. It is well known that for vertex-transitive graphs this bound is satisfied if the triangle condition holds at p_{c} [1]: For $x \in V$,

$$
\sum_{y, z \in V} \mathbb{P}_{p_{c}}(x \leftrightarrow y) \mathbb{P}_{p_{c}}(y \leftrightarrow z) \mathbb{P}_{p_{c}}(z \leftrightarrow x)<\infty
$$

[^0]This condition holds on certain Euclidean lattices [3, 4] including the nearest-neighbor lattice \mathbb{Z}^{d} with $d \geq 19$ and sufficiently spread-out lattices with $d>6$. It also holds for a rather general class of non-amenable transitive graphs [6, 8, 9, 10]. It has been shown in [7] that for vertex-transitive graphs, the triangle condition is equivalent to the so-called open triangle condition. The latter is often used instead of the triangle condition in studying the mean-field criticality.

Proof of Theorem 1. Let $p<p_{c}$. We consider the following coupling of percolation with parameter p and with parameter p_{c}. First delete edges independently with probability $1-p_{c}$, then every present edge is deleted independently with probability $1-\left(p / p_{c}\right)$. This construction implies that for $x, y \in V, p<p_{c}$, and an integer n,

$$
\mathbb{P}_{p}(x \stackrel{\leq n}{\longleftrightarrow} y) \geq\left(\frac{p}{p_{c}}\right)^{n} \mathbb{P}_{p_{c}}(x \stackrel{\leq n}{\longleftrightarrow} y) .
$$

Summing over $y \in V$ and using the inequality $\mathbb{P}_{p}(x \stackrel{\leq n}{\longleftrightarrow} y) \leq \mathbb{P}_{p}(x \longleftrightarrow y)$, we obtain

$$
\mathbb{E}_{p_{c}}\left|B_{I}(x, n)\right| \leq\left(\frac{p_{c}}{p}\right)^{n} \mathbb{E}_{p}|C(x)| .
$$

The result follows by taking $p=p_{c}\left(1-\frac{1}{2 n}\right)$.
Acknowledgements. I would like to thank Takashi Kumagai for valuable comments and advice.

References

[1] M. Aizenman and Ch. Newman. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36: 107-143, 1984. MR0762034
[2] G. Grimmett. Percolation. Springer-Verlag, Berlin, Second edition, 1999. MR1707339
[3] T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128: 333-391, 1990. MR1043524
[4] M. Heydenreich, R. van der Hofstad and A. Sakai. Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Statist. Phys. 132(6): 1001-1049, 2008. MR2430773
[5] G. Kozma and A. Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent. Math 178(3): 635-654, 2009. MR2551766
[6] G. Kozma. Percolation on a product of two trees. arXiv:1003.5240.
[7] G. Kozma. The triangle and the open triangle. To appear in Ann. Inst. Henri Poincaré Probab. Stat., 2010. arXiv:0907.1959.
[8] R. Schonmann. Multiplicity of phase transitions and mean-field criticality on highly nonamenable graphs. Commun. Math. Phys. 219(2): 271-322, 2001. MR1833805
[9] R. Schonmann. Mean-filed criticality for percolation on planar non-amenable graphs. Commun. Math. Phys. 225(3): 453-463, 2002. MR1888869
[10] C. Wu. Critical behavior of percolation and Markov fields on branching planes. J. Appl. Probab. 30(3): 538-547, 1993. MR1232733

[^0]: ${ }^{1}$ RESEARCH PARTIALLY SUPPORTED BY EXCELLENCE FUND GRANT OF TU/E OF REMCO VAN DER HOFSTAD.

