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Abstract
Under very general conditions the hitting time of a set by a stochastic process is a stopping time.
We give a new simple proof of this fact. The section theorems for optional and predictable sets are
easy corollaries of the proof.

1 Introduction

A fundamental theorem in the foundations of stochastic processes is the one that says that, under
very general conditions, the first time a stochastic process enters a set is a stopping time. The
proof uses capacities, analytic sets, and Choquet’s capacibility theorem, and is considered hard.
To the best of our knowledge, no more than a handful of books have an exposition that starts with
the definition of capacity and proceeds to the hitting time theorem. (One that does is [1].)
The purpose of this paper is to give a short and elementary proof of this theorem. The proof is
simple enough that it could easily be included in a first year graduate course in probability.
In Section 2 we give a proof of the debut theorem, from which the measurability theorem follows.
As easy corollaries we obtain the section theorems for optional and predictable sets. This argument
is given in Section 3.

2 The debut theorem

Suppose (Ω,F ,P) is a probability space. The outer probability P∗ associated with P is given by

P∗(A) = inf{P(B) : A⊂ B, B ∈ F}.

A set A is a P-null set if P(A) = 0. Suppose {Ft} is a filtration satisfying the usual conditions:
∩ε>0Ft+ε = Ft for all t ≥ 0, and each Ft contains every P-null set. Let π : [0,∞)×Ω → Ω be
defined by π(t,ω) =ω.
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Recall that a random variable taking values in [0,∞] is a stopping time if (T ≤ t) ∈ Ft for all
t; we allow our stopping times to take the value infinity. Since the filtration satisfies the usual
conditions, T will be a stopping time if (T < t) ∈ Ft for all t. If Ti is a finite collection or
countable collection of stopping times, then supi Ti and infi Ti are also stopping times.
Given a topological space S , the Borel σ-field is the one generated by the open sets. Let B[0, t]
denote the Borel σ-field on [0, t] andB[0, t]×Ft the product σ-field. A process X taking values
in a topological space S is progressively measurable if for each t the map (s,ω) → Xs(ω) from
[0, t]× Ω to S is measurable with respect to B[0, t]×Ft , that is, the inverse image of Borel
subsets of S are elements ofB[0, t]×Ft . If the paths of X are right continuous, then X is easily
seen to be progressively measurable. The same is true if X has left continuous paths. A subset of
[0,∞)×Ω is progressively measurable if its indicator is a progressively measurable process.
If E ⊂ [0,∞)×Ω, let DE = inf{t ≥ 0 : (t,ω) ∈ E}, the debut of E. We will prove

Theorem 2.1. If E is a progressively measurable set, then DE is a stopping time.

Fix t. LetK 0(t) be the collection of subsets of [0, t]×Ω of the form K ×C , where K is a compact
subset of [0, t] and C ∈ Ft . Let K (t) be the collection of finite unions of sets in K 0(t) and let
Kδ(t) be the collection of countable intersections of sets in K (t). We say A ∈ B[0, t]×Ft is
t-approximable if given ε > 0, there exists B ∈Kδ(t) with B ⊂ A and

P∗(π(A))≤ P∗(π(B)) + ε. (2.1)

Lemma 2.2. If B ∈Kδ(t), then π(B) ∈ Ft . If Bn ∈Kδ(t) and Bn ↓ B, then π(B) = ∩nπ(Bn).

The hypothesis that the Bn be in Kδ(t) is important. For example, if Bn = [1− (1/n), 1)×Ω, then
π(Bn) = Ω but π(∩nBn) = ;. This is why the proof given in [2, Lemma 6.18] is incorrect.

Proof. If B = K × C , where K is a nonempty subset of [0, t] and C ∈ Ft , then π(B) = C ∈ Ft .
Therefore π(B) ∈ Ft if B ∈K 0(t). If B = ∪m

i=1Ai with Ai ∈K 0(t), then π(B) = ∪m
i=1π(Ai) ∈ Ft .

For each ω and each set C , let

S(C)(ω) = {s ≤ t : (s,ω) ∈ C}. (2.2)

If B ∈ Kδ(t) and Bn ↓ B with Bn ∈ K (t) for each t, then S(Bn)(ω) ↓ S(B)(ω), so S(B)(ω) is
compact.
Now suppose B ∈ Kδ(t) and take Bn ↓ B with Bn ∈ Kδ(t). S(Bn)(ω) is a compact subset of
[0, t] for each n and S(Bn)(ω) ↓ S(B)(ω). One possibility is that ∩nS(Bn)(ω) 6= ;; in this case,
if s ∈ ∩nS(Bn)(ω), then (s,ω) ∈ Bn for each n, and so (s,ω) ∈ B. Therefore ω ∈ π(Bn) for each
n and ω ∈ π(B). The other possibility is that ∩nS(Bn)(ω) = ;. Since the sequence S(Bn)(ω)
is a decreasing sequence of compact sets, S(Bn)(ω) = ; for some n, for otherwise {S(Bn)(ω)c}
would be an open cover of [0, t] with no finite subcover. Therefore ω /∈ π(Bn) and ω /∈ π(B). We
conclude that π(B) = ∩nπ(Bn).
Finally, suppose B ∈Kδ(t) and Bn ↓ B with Bn ∈K (t). Then π(B) = ∩nπ(Bn) ∈ Ft .

Proposition 2.3. Suppose A is t-approximable. Then π(A) ∈ Ft . Moreover, given ε > 0 there exists
B ∈Kδ(t) such that P(π(A) \π(B))< ε.

Proof. Choose An ∈ Kδ(t) with An ⊂ A and P(π(An)) → P∗(π(A)). Let Bn = A1 ∪ · · · ∪ An and
let B = ∪nBn. Then Bn ∈ Kδ(t), Bn ↑ B, and P(π(Bn)) ≥ P(π(An)) → P∗(π(A)). It follows that
π(Bn) ↑ π(B), and so π(B) ∈ Ft and

P(π(B)) = limP(π(Bn)) = P∗(π(A)).
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For each n, there exists Cn ∈ F such that π(A) ⊂ Cn and P(Cn) ≤ P∗(π(A)) + 1/n. Setting
C = ∩nCn, we have π(A) ⊂ C and P∗(π(A)) = P(C). Therefore π(B) ⊂ π(A) ⊂ C and P(π(B)) =
P∗(π(A)) = P(C). This implies that π(A)\π(B) is a P-null set, and by the completeness assumption,
π(A) = (π(A) \π(B))∪π(B) ∈ Ft . Finally,

lim
n
P(π(A) \π(Bn)) = P(π(A)) \π(B)) = 0.

We now prove Theorem 2.1.

Proof of Theorem 2.1. Fix t. Let

M = {A∈B[0, t]×Ft : A is t-approximable}.

We show M is a monotone class. Suppose An ∈ M , An ↑ A. Then π(An) ↑ π(A). By Proposition
2.3, π(An) ∈ Ft for all n, and therefore π(A) ∈ Ft and P(π(A)) = limn P(π(An)). Choose n large
so that P(π(A)) < P(π(An)) + ε/2. Then choose Kn ∈ Kδ(t) such that Kn ⊂ An and P(π(An)) <
P(π(Kn)) + ε/2. This shows A is t-approximable.
Now suppose An ∈M and An ↓ A. Choose Kn ∈ Kδ(t) such that Kn ⊂ An and P(π(An) \π(Kn)) <
ε/2n+1. Let Ln = K1 ∩ · · · ∩ Kn, L = ∩nKn. Since each Kn ∈ Kδ(t), so is each Ln, and hence
L ∈ Kδ(t). Also Ln ↓ L and L ⊂ A. By Lemma 2.2, π(Ln) ↓ π(L), hence P(π(Ln)) → P(π(L)).
Therefore P(π(Ln))< P(π(L)) + ε/2 if n is large enough. We write

P(π(A))≤ P(π(An))≤ P(π(An) \π(Ln)) + P(π(Ln))
≤ P(∪n

i=1(π(Ai) \π(Ki))) + P(π(Ln))

≤
n
∑

i=1

P(π(Ai) \π(Ki)) + P(π(Ln))

< ε+ P(π(L))

if n is large enough. Therefore A is t-approximable.
If I 0(t) is the collection of sets of the form [a, b)× C , where a < b ≤ t and C ∈ Ft , and I (t)
is the collection of finite unions of sets in I 0(t), then I (t) is an algebra of sets. We note that
I (t) generates the σ-fieldB[0, t]×Ft . A set in I 0(t) of the form [a, b)× C is the union of sets
in K 0(t) of the form [a, b − (1/m)]× C , and it follows that every set in I (t) is the increasing
union of sets in K (t). SinceM is a monotone class containing K (t), thenM contains I (t). By
the monotone class theorem, M = B[0, t]×Ft . By Proposition 2.3, if A ∈ B[0, t]×Ft , then
π(A) ∈ Ft .
Now let E be a progressively measurable and let A= E ∩ ([0, t]×Ω). We have (DE ≤ t) = π(A) ∈
Ft . Because t was arbitrary, DE is a stopping time.

If B is a Borel subset of a topological space S , let

UB = inf{t ≥ 0 : X t ∈ B}

and
TB = inf{t > 0 : X t ∈ B},

the first entry time and first hitting time of B, resp.
Here is the measurability theorem.
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Theorem 2.4. If X is a progressively measurable process taking values in S and B is a Borel subset
of S , then UB and TB are stopping times.

Proof. Since B is a Borel subset of S and X is progressively measurable, then 1B(X t) is also
progressively measurable. UB is then the debut of the set E = {(s,ω) : 1B(Xs(ω)) = 1}, and
therefore is a stopping time.
If we let Y δt = X t+δ and UδB = inf{t ≥ 0 : Y δt ∈ B}, then by the above, UδB is a stopping time with
respect to the filtration {F δ

t }, where F δ
t = Ft+δ. It follows that δ+ UδB is a stopping time with

respect to the filtration {Ft}. Since (1/m) + U1/m
B ↓ TB, then TB is a stopping time with respect to

{Ft} as well.

We remark that in the theory of Markov processes, the notion of completion of a σ-field is a bit
different. In that case, we suppose that Ft contains all sets N such that Pµ(N) = 0 for every
starting measure µ. The proof in Proposition 2.3 shows that

(Pµ)∗(π(A) \π(B)) = 0

for every starting measure µ, so π(A)\π(B) is a Pµ-null set for every starting measure µ. Therefore
π(A) = π(B) ∪ (π(A) \ π(B)) ∈ Ft . With this modification, the rest of the proof of Theorem 2.1
goes through in the Markov process context.

3 The section theorems

Let (Ω,F ,P) be a probability space and let {Ft} be a filtration satisfying the usual conditions.
The optional σ-field O is the σ-field of subsets of [0,∞)× Ω generated by the set of maps X :
[0,∞) × Ω → R where X is bounded, adapted to the filtration {Ft}, and has right continuous
paths. The predictable σ-field P is the σ-field of subsets of [0,∞) × Ω generated by the set
of maps X : [0,∞) × Ω → R where X is bounded, adapted to the filtration {Ft}, and has left
continuous paths.
Given a stopping time T , we define [T, T] = {(t,ω) : t = T (ω) < ∞}. A stopping time is
predictable if there exist stopping times T1, T2, . . . with T1 ≤ T2 ≤ · · · , Tn ↑ T , and on the event
(T > 0), Tn < T for all n. We say the stopping times Tn predict T . If T is a predictable stopping
time and S = T a.s., we also call S a predictable stopping time.
The optional section theorem is the following.

Theorem 3.1. If E is an optional set and ε > 0, there exists a stopping time T such that [T, T] ⊂ E
and P(π(E))≤ P(T <∞) + ε.

The statement of the predictable section theorem is very similar.

Theorem 3.2. If E is a predictable set and ε > 0, there exists a predictable stopping time T such that
[T, T]⊂ E and P(π(E))≤ P(T <∞) + ε.

First we prove the following lemma.

Lemma 3.3. (1) O is generated by the collection of processes 1C(ω)1[a,b)(t) where C ∈ Fa.
(2) P is generated by the collection of processes 1C(ω)1[b,c)(t) where C ∈ Fa and a < b < c.
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Proof. (1) First of all, 1C(ω)1[a,b)(t) is a bounded right continuous adapted process, so it is
optional.
Let O ′ be the σ-field on [0,∞)×Ω generated by the collection of processes 1C(ω)1[a,b)(t), where
C ∈ Fa. Letting b→∞, O ′ includes sets of the form [a,∞)× C with C ∈ Fa.
Let X t be a right continuous, bounded, and adapted process and let ε > 0. Let U0 = 0 and define
Ui+1 = inf{t > Ui : |X t − XUi

| > ε}. Since (U1 < t) = ∪(|Xq − X0| > ε), where the union is over all
rational q less than t, U1 is a stopping time, and an analogous argument shows that each Ui is also
a stopping time. If S and T are stopping times, let 1[S,T ) = {(t,ω) ∈ [0,∞)×Ω : S(ω≤ t < T (ω)}.
If we set

X εt (ω) =
∞
∑

i=0

XUi
(ω)1[Ui ,Ui+1)(t),

then supt≥0 |X t − X εt | ≤ ε. Therefore we can approximate X by processes of the form

∞
∑

i=0

XUi
1[Ui ,∞) −

∞
∑

i=0

XUi
1[Ui+1,∞).

It therefore suffices to show that if V is a stopping time and A ∈ FV , then 1A(ω)1[V,∞)(t) is O ′
measurable.
Letting Vn = (k+ 1)/2n when k/2n ≤ V < (k+ 1)/2n,

1A(ω)1[V (ω),∞)(t) = lim
n→∞

1A(ω)1[Vn(ω),∞)(t)

= lim
n→∞

∞
∑

k=0

1A∩(Vn=(k+1)/2n)1[(k+1)/2n,∞)(t),

which is O ′ measruable.
(2) As long as a+(1/n)< b, the processes 1C(ω)1(b−(1/n),c−(1/n)](t) are left continuous, bounded,
and adapted, hence predictable. The process 1C(ω)1[b,c)(t) is the limit of these processes as
n→∞, so is predictable. On the other hand, if X t is a bounded adapted left continuous process,
it can be approximated by

∞
∑

k=1

X(k−1)/2n(ω)1(k/2n,(k+1)/2n](t).

Each summand can be approximated by linear combinations of processes of the form 1C(ω)1(b,c](t),
where C ∈ Fa and a < b < c. Finally, 1C1(b,c] is the limit of 1C(ω)1[b+(1/n),c+(1/n))(t) as n→∞.

A consequence of this lemma is that P ⊂ O . Since O is generated by the class of right continuous
processes and right continuous processes are progressively measurable, we have from Theorem
2.1 that the debut of a predictable or optional set is a stopping time.
Fix t and define

O (t) = {A∩ ([0, t]×Ω) : A∈ O }.

Let K 0
(t) be the collection of subsets of O (t) of the form K × C , where K is a compact subset of

[0, t] and C ∈ Fa with a ≤ inf{s : s ∈ K}. Let K (t) be the collection of finite unions of sets in
K 0
(t) and K δ(t) the collection of countable intersections of sets in K (t). Define I 0

(t) to be
the collection of sets of the form [a, b)× C , where a < b ≤ t and C ∈ Fa, and let I (t) be the
collection of finite unions of sets in I 0

(t).
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The proof of the following proposition is almost identical to the proof of Theorem 2.1. Because
the debut of optional sets is now known to be a stopping time, it is not nececessary to work with
P∗.

Proposition 3.4. Suppose A ∈ O (t). Then given ε > 0, there exists B ∈ K δ(t) such that P(π(A) \
π(B))< ε.

We now prove Theorem 3.1.

Proof of Theorem 3.1. If E is an optional set, choose t large enough so that if At = E∩([0, t]×Ω),
then P(π(At)) > P(π(E))− ε/2. This is possible because At ↑ E and so π(At) ↑ π(E). With this
value of t, choose B ∈ K δ(t) such that B ⊂ At and P(π(B)) > P(π(At)) − ε/2. We will show
[DB, DB]⊂ B. Since (DB <∞) = π([DB, DB]) = π(B), we have [DB, DB]⊂ E and

P(π(E))< P(π(At)) + ε/2< P(π(B)) + ε = P(π([DB, DB])) + ε.

By the argument of the proof of Lemma 2.2, S(B)(ω) is a compact set if B ∈ K δ(t). Therefore
DB(ω) = inf{s : s ∈ S(B)(ω)} is in S(B)(ω), which implies [DB, DB]⊂ B.

To prove Theorem 3.2 we follow along the same lines. Define

P (t) = {A∩ ([0, t]×Ω) : A∈ P }

and define fK 0(t) to be the collection of subsets of P (t) of the form K × C , where K is a compact
subset of [0, t] and C ∈ Fa with a < inf{s : s ∈ K}, let fK (t) be the collection of finite unions of
sets in fK 0(t), and fKδ(t) the collection of countable intersections of sets in fK (t). Define eI 0(t)
to be the collection of sets of the form [b, c)× C , where C ∈ Fa and a < b < c ≤ t, and let eI (t)
be the collection of finite unions of sets in eI 0(t). Following the proof of Theorem 3.1, we will be
done once we show DB is a predictable stopping time when B ∈ fKδ(t).

Proof of Theorem 3.2. Fix t. Suppose B ∈ fK 0(t) is of the form B = K × C with C ∈ Fa and
a < b = inf{s : s ∈ K}. Note that this implies b > 0. Then DB equals b if ω ∈ C and equals infinity
otherwise. As long as a+ (1/m)< b, we see that DA is predicted by the stopping times Vm, where
Vm equals b− (1/m) if ω ∈ C and equals m otherwise. Note also that [DB, DB] ⊂ B. If B = ∪m

i=1Bi

with Bi ∈ fK 0(t), then DB = DB1
∧ · · · ∧ DBm

, and it is easy to see that DB is predictable because
each DBi

is, and also that [DB, DB]⊂ B.
Now let B ∈ fKδ(t) with Bn ↓ B and Bn ∈ fK (t). We have DBn

↑, and the limit, which we call T , will
be a stopping time. Since B ⊂ Bn, then DBn

≤ DB, and therefore T ≤ DB. Each DBn
is a predictable

stopping time. Let Rnm be stopping times predicting DBn
and choose mn large so that

P(Rnmn
+ 2−n < DBn

<∞)< 2−n, P(Rnmn
< n, DBn

=∞)< 2−n.

By the Borel-Cantelli lemma,

P(sup
n

Rnmn
< T <∞) = 0 and P(sup

n
Rnmn

< T =∞) = 0,

so if we set Qn = n∧(R1m1
∨· · ·∨Rnmn

), we see that {Qn} is a sequence of stopping times predicting
T , except for a set of probability zero. Hence T is a predictable stopping time.
If n > m, then [DBn

, DBn
] ⊂ Bn ⊂ Bm. Since S(Bm)(ω) is a closed subset of t, the facts that

DBn
(ω) ∈ S(Bm)(ω) for n > m and DBn

(ω)→ T (ω) for each ω shows that T (ω) ∈ S(Bm)(ω) for
each ω. Thus [T, T] ⊂ Bm. This is true for all m, so [T, T] ⊂ B. In particular, T ≥ DB, so T = DB.
Therefore π(B) = (DB <∞) = π([T, T]).
This and the argument of the first paragraph of the proof of Theorem 3.1 proves Theorem 3.2.
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