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Abstract
We explore the principle of smooth fit in the case of the discounted optimal stopping problem

V (x) = sup
τ

Ex[e
−βτG(Xτ)].

We show that there exists a regular diffusion X and differentiable gain function G such that the
value function V above fails to satisfy the smooth fit condition V ′(b) = G′(b) at the optimal
stopping point b. However, if the fundamental solutionsψ and φ of the ‘killed’ generator equation
ILX u(x) − βu(x) = 0 are differentiable at b then the smooth fit condition V ′(b) = G′(b) holds
(whenever X is regular and G is differentiable at b). We give an example showing that this can
happen even when ‘smooth fit through scale’ (in the sense of the discounted problem) fails.

1 Introduction

The principle of smooth fit states that the optimal stopping point b which separates the continuation
set C from the stopping set D in the (undiscounted) optimal stopping problem

V (x) = sup
τ

Ex G(Xτ) (1.1)

is characterized by the fact that V ′(b) exists and is equal to G′(b). The pivotal role of the scale
function in the smooth fit is explored in detail in [6]. Indeed, necessary (and sufficient) conditions
for the smooth fit to hold are found to be regularity of the diffusion process X , differentiability of
the gain function at the optimal stopping point b and, most notably, differentiability of the scale
function at b.
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We study the discounted optimal stopping problem

V (x) = sup
τ

Ex[e
−βτG(Xτ)] (1.2)

with β > 0 the rate of discounting. It is well known that in this case too the smooth fit principle is
preserved in the above intuitive form V ′(b) = G′(b). We derive this relationship together with the
corresponding necessary (and sufficient) conditions, following the method of [6]. In this way we
expose most transparently the role of the fundamental solutions ψ and φ of the ‘killed’ generator
equation ILX u−βu= 0 in the smooth fit, and its analogy with the role of the scale function in the
undiscounted case.
Our main findings can be summarized as follows. Firstly, we show that there exists a regu-
lar diffusion process X and a differentiable gain function G such that the smooth fit condition
V ′(b) = G′(b) fails to hold at the optimal stopping point b of the discounted optimal stopping
problem (1.2) (Example 2.5). Secondly, we show that if X is regular and each of G, ψ and φ are
differentiable at b, then V is differentiable at b and V ′(b) = G′(b) (Theorem 2.3). Thirdly, we
give an example showing that the latter can happen even when ‘smooth fit through scale’ in the
sense of the discounted problem (cf. Theorem 2.1) fails at b (Example 2.2).
We remark finally that a more complete study of the smooth fit principle for killed diffusions
could aim to address both finite horizon optimal stopping problems as well as higher-dimensional
diffusion processes. Whilst the present paper does not look to address these problems directly, we
hope the results herein can provide some useful insight in these directions.

2 The smooth fit principle

1. Let X = (X t)t≥0 be a diffusion process with values in an interval J of IR. We assume that X can
be killed only at the end-points of J which do not belong to J . Thus, if ζ denotes the death time of
X , then X is a strong Markov process such that t 7→ X t is continuous on [0,ζ), and the end-points
of J at which X can be killed act as absorbing boundaries (once such a point is reached X stays
there forever). We will denote by I = (l, r) the interior of J .
Given c ∈ J we will let

τc = inf { t > 0 | X t = c } (2.1)

denote the hitting time of X to c. We will assume that X is regular in the sense that Pb(τc<∞)> 0
for every b ∈ I and all c ∈ J . It means that I cannot be decomposed into smaller intervals from
which X could not exit.
The infinitesimal generator of X on I is given by the second order differential operator

ILX = µ(x)
d

d x
+

1

2
σ2(x)

d2

d x2 . (2.2)

Recall that a characteristic of the scale function S of X is that ILX S ≡ 0 everywhere on I .
2. We study the discounted optimal stopping problem

V (x) = sup
τ

Ex[e
−βτG(Xτ)] (2.3)

for x ∈ J where the supremum is taken over all stopping times τ of X (i.e. with respect to the
natural filtration F X

t = σ(Xs | 0 ≤ s ≤ t) generated by X for t ≥ 0). Let the gain function
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G : J → IR be a measurable function satisfying

E sup
0≤t<ζ

|G(X t)|<∞. (2.4)

It is well known that discounting the gain as in problem (2.3) is equivalent to ‘killing’ the paths
of the process X after exponential time T with parameter β . The infinitesimal generator for this
killed process, X̃ say, is given by (see e.g. [7] or [10])

ILX̃ = ILX − β I (2.5)

where I is the identity operator.
The ordinary differential equation

ILX u(x)− βu(x) = 0 (2.6)

has two linearly independent positive solutions which are uniquely determined up to multiplica-
tion if we require one of them to be strictly increasing and the other to be strictly decreasing. We
shall denote the increasing solution by ψ and the decreasing solution by φ. The general solution
of (2.6) is then obtained as a linear combination of ψ and φ. Note that one can take ψ ≡ S and
φ ≡ 1 if β = 0. For further characterisation of ψ and φ, see e.g [1, Chapter 2] or [5, Section 4.6].

3. Following a similar argument to Dynkin and Yushkevich [4, p. 115], take c < x < d in J and
choose stopping times σ1 and σ2 such that Ece

−βσ1 G(Xσ1
) ≥ V (c) − ε and Ed e−βσ2 G(Xσ2

) ≥
V (d) − ε where ε is given and fixed. Consider the stopping time σ = (τc + σ1 ◦ θτc

) I(τc <
τd) + (τd +σ2 ◦ θτd

) I(τd <τc) obtained by applying σ1 after hitting c (before d) and σ2 after
hitting d (before c). By the strong Markov property of X it follows that

V (x)≥ Ex e−βτεG(Xσ) (2.7)

= Ex e−β(τc+σ1◦θτc )G(Xτc+σ1◦θτc
) I(τc<τd) +Ex e−β(τd+σ2◦θτd

)G(Xτd+σ2◦θτd
) I(τd<τc)

= Ex e−βτc[e−βσ1 G(Xσ1
) ◦ θτc

] I(τc<τd) +Ex e−βτd [e−βσ2 G(Xσ2
) ◦ θτd

] I(τd<τc)

= Ex e−βτc EXτc
(e−βσ1 G(Xσ1

)) I(τc<τd) +Ex e−βτd EXτd
(e−βσ2 G(Xσ2

)) I(τd<τc)

≥ (V (c)− ε)Ex[e
−βτc Iτc≤τd

] + (V (d)− ε)Ex[e
−βτd Iτc≥τd

]

where the first inequality follows by definition of V and the second inequality follows by the choice
of σ1 and σ2, and the shift operator θt : Ω→ Ω is defined by θt(ω)(s) = ω(t + s) for ω ∈ Ω and
t, s ≥ 0. Letting ε ↓ 0 in (2.7) one concludes that

V (x)≥ V (c) Ex[e
−βτc Iτc≤τd

] + V (d) Ex[e
−βτd Iτc≥τd

]. (2.8)

The function u1(x) ≡ Ex[e−βτc Iτc≤τd
] ( respectively u2(x) ≡ Ex[e−βτd Iτc≥τd

]) is the unique solu-
tion of (2.6) in (c, d) with boundary conditions u1(c) = 1 & u1(d) = 0 ( respectively u2(c) = 0 &
u2(d) = 1). In terms of the functions ψ and φ, using the appropriate boundary conditions, one
can calculate

u1(x) =
ψ(x)φ(d)−ψ(d)φ(x)
ψ(c)φ(d)−ψ(d)φ(c)

& u2(x) =
ψ(c)φ(x)−ψ(x)φ(c)
ψ(c)φ(d)−ψ(d)φ(c)

(2.9)
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for x ∈ [c, d]. Substituting these into inequality (2.8), then dividing both sides of the inequality
by φ(x) (respectively, by ψ(x)), one obtains

V (x)
φ(x)

≥
V (c)
φ(c)

F(d)− F(x)
F(d)− F(c)

+
V (d)
φ(d)

F(x)− F(c)
F(d)− F(c)

(2.10)

V (x)
ψ(x)

≥
V (c)
φ(c)

G(d)− G(x)
G(d)− G(c)

+
V (d)
φ(d)

G(x)− G(c)
G(d)− G(c)

(2.11)

for x ∈ [c, d] respectively, where the functions

F(x)≡
ψ(x)
φ(x)

& G(x)≡−
1

F(x)
=−

φ(x)
ψ(x)

(2.12)

for x ∈ [l, r] are both well defined and strictly increasing. Observe that inequalities (2.10) and
(2.11) imply that V/φ is F -concave and V/ψ is G-concave on [l, r] (this result is established in
the more general setting of superharmonic functions in [3, Theorem 16.4]). It is easily seen that
V/φ is F -concave if and only if V/ψ is G-concave. The two are therefore equivalent statements,
and henceforth we shall work with the former.
Inequality (2.10) implies that

y 7→
V
φ
(y)− V

φ
(x)

F(y)− F(x)
is decreasing (2.13)

on J \{x} for every x ∈ I . It follows that

−∞<
d+ V

φ

dF
(x)≤

d− V
φ

dF
(x)<+∞ (2.14)

for every x ∈ I . It also follows that V/φ is continuous on I , and hence V is continuous on I , since
F is continuous.

4. Let us now assume that b ∈ I is an optimal stopping point in the problem (2.3). Then V (b) =
G(b), and hence by (2.13) we get

G
φ
(b+ε)− G

φ
(b)

F(b+ε)−F(b)
≤

V
φ
(b+ε)− V

φ
(b)

F(b+ε)−F(b)
≤

V
φ
(b−δ)− V

φ
(b)

F(b−δ)−F(b)
≤

G
φ
(b−δ)− G

φ
(b)

F(b−δ)−F(b)
(2.15)

for ε > 0 and δ > 0 where the first inequality follows since G(b+ε) ≤ V (b+ε) and the third
inequality follows since −V (b−δ)≤−G(b−δ) (recalling also that F is strictly increasing and that
φ is strictly positive on [l, r]). Passing to the limit for ε ↓ 0 and δ ↓ 0 this immediately leads to

d+ G
φ

dF
(b)≤

d+ V
φ

dF
(b)≤

d− V
φ

dF
(b)≤

d− G
φ

dF
(b) (2.16)

whenever d+(G/φ)/dF and d−(G/φ)/dF exist at b. In this way we reach the following result (cf.
[9, Theorem 4.7] and [2, Corollary 7.1]):
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Theorem 2.1 (‘Smooth fit through scale’)
If d(G/φ)/dF exists at b then d(V/φ)/dF exists at b and

d V
φ

dF
(b) =

d G
φ

dF
(b) (2.17)

whenever V (b) = G(b) for b ∈ I .

5. At an intuitive level, smooth fit means that the graph of the value function leaves that of the
gain function smoothly as we move from the stopping region D into the continuation region C .
That is, at every point b ∈ I on the boundary of CandD we have

dV

d x
(b) =

dG

d x
(b). (2.18)

The example below shows that smooth fit as in (2.17) may fail even though (2.18) holds. We
follow the idea of [6, e.g. 2.2] where we saw that smooth fit through scale

dV

dS
(b) =

dG

dS
(b) (2.19)

could fail to hold even though (2.18) holds. This was seen to be caused by the fact that the
derivative of the scale function at the optimal stopping point was zero. The following example
asks a similar question of Theorem 2.1 above. If the derivative of F at the optimal stopping point
b is zero, could this lead to failure of (2.17) even though (2.18) holds? With this in mind, we
construct our diffusion by defining first the functions ψ and φ in such a way that F ′(0) = 0 (we
shall see later that zero is indeed the unique optimal stopping point in this problem). Using these
functions we shall then identify the generator of our diffusion process.

Example 2.2
Let X be a diffusion process on [−1, 1] such that

ψ(x) =

¨

1+ x p if x ∈ [0, 1]
1− |x |q if x ∈ [−1, 0]

(2.20)

φ(x) =

¨

1− xq if x ∈ [0,1]
1+ |x |p if x ∈ [−1,0]

(2.21)

solve the ordinary differential equation (2.6). It is easy to check that for p > 1 and q > 1 we have
F ′(0) = 0. Since ψ and φ are solutions to (2.6), we have

µψ′ + Dψ′′ = βψ (2.22)

µφ′ + Dφ′′ = βφ (2.23)

with D = 1
2
σ2. For x ∈ [0,1] we find that

µ(x) =
β

p− q

�

1− q

p
(1+ x p) x1−p +

1− p

q
(1− xq) x1−q

�

(2.24)

D(x) =
β

p− q

�

1

q
(1− xq) x2−q +

1

p
(1+ x p) x2−p

�

(2.25)
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and for x ∈ [−1, 0] we find

µ(x) =
β

p− q

�

q− 1

p
(1+ |x |p) |x |1−p +

p− 1

q
(1− |x |q) |x |1−q

�

(2.26)

D(x) =
β

p− q

�

1

q
(1− |x |q) |x |2−q +

1

p
(1+ |x |p) |x |2−p

�

. (2.27)

From (2.25) and (2.27) we see that we must have p > q to ensure that D is positive. In fact, it is
important in the following arguments for us to take p = 2 and q ∈ (1,2).
Notice that the above expressions (2.24) and (2.26) exhibit terms which are singular at zero. This
is also true for a Bessel process Z which has coefficients µZ(x) = (α−1)/2x and σ2

Z(x) = 1.
We make use of this comparison to justify the existence of our process X , and in particular the
regularity of the boundary zero. To this end it is useful for us to examine the squared process X 2.
The existence of the latter process is readily justified by comparison with the existence argument
for the squared Bessel process (see e.g. [8, Ch.XI, §1]). Setting p = 2 and using Ito’s formula we
find that the process X 2 has coefficients

µX 2(x) = β(1+ x) & σX 2(x) =

r

8β

2− q

�

1

2
x +

1

q
x2− q

2 −
�

q− 2

2q

�

x2

�

(2.28)

for x ∈ [0, 1]. It is easy to check that a process with these coefficients is regular away from zero.
To deal with zero boundary behaviour, let us compare X 2 with the squared Bessel process Z2 which
has coefficients

µZ2(x) = α & σZ2(x) = 2
p

x (2.29)

for x > 0. Observe that close to zero the coefficients of our squared process X 2 behave similarly to
those of Z2. Note here that we may take out a factor of

p
x in the expression for σX 2(x) of (2.28),

which becomes the dominant term close to zero. Furthermore, we know that the squared Bessel
process has a regular boundary at zero which is reached almost surely for 0 < α < 2. Comparing
(2.28) and (2.29), removing terms which are negligible close to zero, we can conclude that our
squared process X 2 also has a regular boundary at zero which is reached almost surely, for suitable
β > 0.
We now recover our process X from X 2 in the same way as the Bessel process is obtained from
the squared Bessel process (see e.g. [8, Ch.XI, §1]). We note that the function x →

p
x is a

homeomorphism of IR+, therefore if X is a Markov process on IR+, then
p

X is also a Markov
process. Thus, taking the square root of X 2, we obtain X . Since

p
x is a continuous, increasing

function on [0,1], X will inherit the regularity of X 2 away from zero. Moreover, in the same way as
the Bessel process inherits the zero boundary characteristics of the squared Bessel process, so does
X inherit those of X 2, and we conclude that our process X has a regular boundary at zero which is
reached almost surely, for suitable β . To extend X from [0, 1] to [−1,1], notice from (2.24)-(2.27)
that X is symmetrical about zero. Following a similar argument to [8, p. 307], for x ∈ [0, 1] let X
have transition density Pt(x , A) for A⊆ [0, 1]. For x ∈ [−1, 0] we set P̃t(x , A) = Pt(−x , Ã) where
Ã=−A, and the extension is complete.
Consider now the discounted optimal stopping problem (2.3) with gain function

G(x) = 1− x
q+1

2 (2.30)

for x ∈ (−1,1). Using the fact that in the continuation region C our value function is a solution
of ordinary differential equation (2.6), and therefore a linear combination of ψ and φ, we obtain
value function
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V (x) =

¨

φ(x) = 1− xq if x ∈ [0,1]
ψ(x) = 1− |x |q if x ∈ [−1,0).

(2.31)

Comparing (2.30) with (2.31) we see that b = 0 is an optimal stopping point. This seems to be
supported by the fact that our process drifts towards zero from both intervals (0,1] and [−1,0)
(using (2.24) and (2.26)). Moreover, it is evident that smooth fit (2.18) holds at b = 0, both
derivatives being zero. However, it is easily verified that

d+ G
φ

dF
=−∞<

d+ V
φ

dF
= 0<

d− V
φ

dF
= 1<

d− G
φ

dF
=+∞ (2.32)

at the optimal stopping point b = 0. Therefore the smooth fit of Theorem 2.1 fails. This motivates
the following extension of Theorem 2.1:

Theorem 2.3 (Smooth fit)
If dG/d x, dψ/d x and dφ/d x exist at b, then dV/d x exists at b and

dV

d x
(b) =

dG

d x
(b) (2.33)

whenever V (b) = G(b) for b ∈ I .

Proof. We proceed similarly to the proof of Theorem 2.3 of [6]. Assume first that F ′(b) 6= 0.
Multiplying by (F(b+ε)−F(b))/ε in (2.15) we get

G
φ
(b+ε)− G

φ
(b)

ε
≤

V
φ
(b+ε)− V

φ
(b)

ε
≤

F(b+ε)−F(b)
ε

( G
φ
(b−δ)− G

φ
(b))/(−δ)

(F(b−δ)−F(b))/(−δ)
. (2.34)

Passing to the limit for ε ↓ 0 and δ ↓ 0, and using that F ′(b) 6= 0, it follows that d+(V/φ)/d x =
d(G/φ)/d x at b. (Note that one could take ε = δ in this argument.) It follows from this, by a
simple application the quotient rule for derivatives, thatd+V/d x = dG/d x at b.
Similarly, multiplying by (F(b−δ)−F(b))/(−δ) in (2.15) we get

( G
φ
(b+ε)− G

φ
(b))/ε

(F(b+ε)−F(b))/ε
F(b−δ)−F(b)

−δ
≤

V
φ
(b−δ)− V

φ
(b)

−δ
≤

G
φ
(b−δ)− G

φ
(b)

−δ
. (2.35)

Passing to the limit for ε ↓ 0 and δ ↓ 0, and using that F ′(b) 6= 0, it follows that d−(V/φ)/d x =
d(G/φ)/d x at b. (Note that one could take ε = δ in this argument.) As above it follows that
d−V/d x = dG/d x at b.
Combining the two conclusions we see that dV/d x exists at b and (2.33) holds as claimed.

To treat the case F ′(b) = 0 we need the following facts of real analysis (see [6] for a proof):

Lemma 2.5
Let f : IR+→ IR and g : IR+→ IR be two continuous functions satisfying:

f (0) = 0 and f (ε)> 0 for ε > 0 ; (2.36)

g(0) = 0 and g(δ)> 0 for δ > 0 . (2.37)
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Then for every εn ↓ 0 as n→∞ there are εnk
↓ 0 and δk ↓ 0 as k→∞ such that f (εnk

) = g(δk) for
all k ≥ 1. In particular, it follows that

lim
k→∞

f (εnk
)

g(δk)
= 1 . (2.38)

Let us continue the proof of Theorem 2.3 in the case when F ′(b) = 0. Take εn ↓ 0 and by
Lemma 2.5 choose δk ↓ 0 such that (2.38) holds with f (ε) = (F(b+ε)− F(b))/ε and g(δ) =
(F(b)−F(b−δ))/δ. Then (2.34) reads

G
φ
(b+εnk

)− G
φ
(b)

εnk

≤
V
φ
(b+εnk

)− V
φ
(b)

εnk

≤
f (εnk

)

g(δk)

G
φ
(b−δk)−

G
φ
(b)

−δk
(2.39)

for all k ≥ 1. Letting k→∞ and using (2.38) we see that ( V
φ
(b+ εnk

)− V
φ
(b))/εnk

→ G
φ

′
(b). Since

this is true for any εn ↓ 0 it follows that d+(V/φ)/d x exists and is equal to d(V/φ)/d x at b, and
hence d+V/d x = dG/d x at b
Similarly, take εn ↓ 0 and by Lemma 2.5 choose δk ↓ 0 such that (2.38) holds with f (ε) = (F(b)−
F(b−ε))/ε and g(δ) = (F(b+δ)−F(b))/δ. Then (2.35) (with ε and δ swapped) reads

G
φ
(b+δk)−

G
φ
(b)

δk

f (εnk
)

g(δk)
≤

V
φ
(b−εnk

)− V
φ
(b)

−εnk

≤
G
φ
(b−εnk

)− G
φ
(b)

−εnk

(2.40)

for all k ≥ 1. Letting k →∞ and using (2.38) we see that ( V
φ
(b− εnk

)− V
φ
(b))/(−εnk

)→ G
φ

′
(b).

Since this is true for any εn ↓ 0 it follows that d−V/d x exists and is equal to dG/d x at b, and hence
d−V/d x = dG/d x at b. Taken together with the previous conclusion on d+V/d x this establishes
(2.33) and the proof of Theorem 2.3 is complete. �

Remark 2.4
The above proof shows that in fact minimal conditions for the smooth fit to hold are differentiabil-
ity at the optimal stopping point b of the gain function G, of (G/φ), and of F = (ψ/φ). Of course,
the conditions of Theorem 2.3 imply those of this remark.

The following example shows that smooth fit as in (2.33) can fail if ψ and φ are not differentiable
at the optimal stopping point b, even though we have differentiability of the gain function at b
and a regular diffusion.

Example 2.5
Let X be a diffusion process on [−1,1] such that

ψ(x) =

¨

1+ x2 if x ∈ [0, 1]
1− |x | if x ∈ [−1, 0]

(2.41)

φ(x) =

¨

1− x if x ∈ [0, 1]
1+ |x |2 if x ∈ [−1, 0]

(2.42)

solve the ordinary differential equation (2.6). Proceeding similarly to Example 2.2, for x ∈ [0, 1],
we find that

µ(x) =−β(1− x) & D(x) = β
�

(1− x)x +
1

2
(1+ x2)

�

(2.43)
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and for x ∈ [−1,0] we find

µ(x) = β(1− |x |) & D(x) = β
�

(1− |x |)|x |+
1

2
(1+ x2)

�

. (2.44)

Consider X on [0,1]. One can check that the process is regular away from zero. To deal with
boundary behaviour at zero, notice that our process X is exactly that of Example 2.2 if we set
p = 2 and q = 1. Therefore the same arguments for boundary behaviour hold, in particular zero
is a regular boundary which is reached almost surely for suitable β . In the same way as Example
2.2 we may define our diffusion on the interval [−1, 1].
Consider now the discounted optimal stopping problem (2.3) with gain function

G(x) =

¨

(x − 1)2 if x ∈ [0, 1]
−(|x | − 1)2 + 2 if x ∈ [−1, 0].

(2.45)

Notice in particular that the gain function thus defined is differentiable at zero. Using the fact
that in the continuation region C our value function is a solution of ordinary differential equation
(2.6), and therefore a linear combination of ψ and φ, we obtain value function

V (x) =

¨

φ(x) = 1− x if x ∈ [0, 1]
G(x) =−(|x | − 1)2 + 2 if x ∈ [−1, 0].

(2.46)

Comparing (2.45) with (2.46) we see that b = 0 is an optimal stopping point. This seems to be
supported by the fact that our process drifts towards zero from both intervals (0, 1] and [−1,0).
However, it is evident that V is not differentiable at b = 0 and the smooth fit V ′(b) = G′(b) fails.
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