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Abstract

We consider a class of continuous-time stochastic growth models on d-dimensional lattice with
non-negative real numbers as possible values per site. We remark that the diffusive scaling
limit proven in our previous work [NY09a] can be extended to wider class of models so that it
covers the cases of potlatch/smoothing processes.

1 Introduction

We write N* = {1,2,..}, N= {0} UN*, and Z = {4z ; = € N}. For 2 = (x1,..,24) € R?,
|| stands for the £'-norm: |z| = 0, |zi]. For n = (x)peze € RZ, [n] = X e Ine|- Let
(Q, F, P) be a probability space. We write P[X : A] = [, X dP and P[X]| = P[X : Q] for a
random variable X and an event A.

1.1 The model

We go directly into the formal definition of the model, referring the reader to [NY09a, NY09b]
for relevant backgrounds. The class of growth models considered here is a reasonably ample
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subclass of the one considered in [Lig85, Chapter IX] as “linear systems”. We introduce a
random vector K = (K,),cz¢ such that

0 < Ky <bglfg<r,y a.s. for some constants by, rx € [0,00), (1.1)
the set {z € Z¢; P[K,] # 0} contains a linear basis of R%. (1.2)

The first condition amounts to the standard boundedness and the finite range assumptions
for the transition rate of interacting particle systems. The second condition makes the
model “truly d-dimensional”.

Let 7%, (2 € Z% i € N*) be ii.d. mean-one exponential random variables and 7%’ =
71 4 4+ 758 Let also K*' = (K2%),cpq (2 € Z%, i € N*) be i.i.d. random vectors with
the same distributions as K, independent of {Tz’i}zezd,ieN*. We suppose that the process
(m¢) starts from a deterministic configuration 79 = (10,2)zez¢ € NZ* with || < co. At time
t = T%*% n,_ is replaced by 7;, where

M = { Kotz fw=2z (1.3)

z

M—w + K e, i # 2.

We also consider the dual process (; € [O,oo)Zd, t > 0 which evolves in the same way as
1 )e>0 except that ((1.3]) is replaced by its transpose:
(1) > p p y p

Speza Kooy itz =2z,
= zHEY 14
‘. { Ci— if v # 2. (14)

Here are some typical examples which fall into the above set-up:

e The binary contact path process (BCPP): The binary contact path process (BCPP),
originally introduced by D. Griffeath [Gri83] is a special case the model, where

K— { (05,0 + 5%6)7062" with probability ﬁﬂ, for each 2d neighbor e of 0 (1.5)

0 with probability m .

The process is interpreted as the spread of an infection, with 7, , infected individuals at time
t at the site . The first line of 1' says that, with probability ﬁ for each |e] = 1, all
the infected individuals at site x — e are duplicated and added to those on the site . On the
other hand, the second line of (1.5) says that, all the infected individuals at a site become
healthy with probability ﬁ. A motivation to study the BCPP comes from the fact that

the projected process (12 A1), cza, t >0 is the basic contact process [Gri83].

e The potlatch/smoothing processes: The potlatch process discussed in e.g. [HLS1] and
[Lig85, Chapter IX] is also a special case of the above set-up, in which

K, =Wk,, x€Z% (1.6)

Here, k = (kz)peze € [0, oo)Zd is a non-random vector and W is a non-negative, bounded,
mean-one random variable such that P(WW = 1) < 1 (so that the notation k here is consistent
with the definition below). The smoothing process is the dual process of the potlatch
process. The potlatch/smoothing processes were first introduced in [Spi81] for the case W =1
and discussed further in [LS8I]. Tt was in [HL8I] where case with W # 1 was introduced and
discussed. Note that we do not assume that k, is a transition probability of an irreducible
random walk, unlike in the literatures mentioned above.
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We now recall the following facts from [Lig85] page 433, Theorems 2.2 and 2.3]. Let F; be the
o-field generated by 1, s < t. Let (n7);>0 be the process (1;);>0 starting from one particle at
the site x: 7§ = ;. Similarly, let (¢f);>0 be the dual process starting from one particle at the
site z: (§ = 0.

Lemma 1.1.1. We set:

ko= (ko)oeze = (P[Kq])reza (L.7)
meo= (M) e, 8)
Then,
a) (|7, Fi)e>o is a martingale, and therefore, the following limit exists a.s.
el = Jim 7] (19)
b) FEither
Pl7%]l =1 or 0. (1.10)

Moreover, P[|7°|] = 1 if and only if the limit is convergent in L' (P).

c) The above a)-b), with n; replaced by (; are true for the dual process.

1.2 Results

We are now in position to state our main result in this article (Theorem [L.2.1)). It extends our
previous result [NY09al Theorem 1.2.1] to wider class of models so that it covers the cases of
potlatch/smoothing processes, cf. Remarks 1)-2) after Theorem m

We first introduce some more notation. For n,( € ]RZd, the inner product and the discrete
convolution are defined respectively by

Z N:Ce  and "7*< Z Nz—yCy (1'11)
z€LY y€eZ?
provided the summations converge. We define for z,y € Z,
Bay = PI(K = 60)2(K = 60)y] and o= > Boiyy (1.12)
yeZa

If we simply write § in the sequel, it stands for the function = — (,. Note then that

(B,1)= 3 Buy=PlIK|-1). (1.13)
x,y€Zd
We also introduce: -
:/ PS(S; = x)dt, (1.14)
0

where ((S;)i>0, P%) is the continuous-time random walk on Z¢ starting from z € Z%, with the
generator

k/’wfy + kjyfw

Lsf(x Z Ls(x,y) (f(y) — f(x)), with Lg(z,y) = 5

A

cf. (1.7). The set of bounded continuous functions on R? is denoted by C,(R%).

forx #y, (1.15)
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Theorem 1.2.1. Suppose d > 3. Then, the following conditions are equivalent:

a) <6v GS > <2.
b) There exists a bounded function h : Z% — [1,00) such that:

(Lsh)(z) + 260, (B,h) <0, x€Z (1.16)

¢) sup P[[7,*] < .
t>0

t—o0

d) lim Y f ((x - mt)/\/%) Mo = |ﬁoo\/ Fdv in LA(P) for all f € Cp(RY),
x€eZd Ra

where m =3 ;4 Tk, € R? and v is the Gaussian measure with

/ x;dv(z) =0, / rixjdy(z) = Z Tixiky, 4,75 =1,..,d. (1.17)
R4 R4

€72

b’) There exists a bounded function h : Z¢ — [1,00) such that:

(Lsh)(z) + 2h(0)3, <0, z€Z% (1.18)

¢’) sup P[|(,|*] < oo.
>0

d’) lim Z f ((x - mt)/ﬁ) Crw = |Zoo|/ fdv in L2(P) for all f € Cy(RY).
z€Z? Re

t—o0

The main point of Theorem is that a) implies d) and d’), while the equivalences between
the other conditions are byproducts.

Remarks: 1) Theorem extends [NY09a, Theorem 1.2.1], where the following extra
technical condition was imposed:
Bz =0 for z #0. (1.19)

For example, BCPP satisfies (1.19)), while the potlatch/smoothing processes do not.
2) Let 74 be the return probability for the simple random walk on Z?. We then have that

G 9 A > m for BCPP,
(B,Gs)<2 = P[W?] < % for the potlatch/smoothing processes.

(1.20)
cf. |Lig85| page 460, (6.5) and page 464, Theorem 6.16 (a)]. For BCPP, (1.20)) can be seen
from that (cf. [NY09al page 965])

~ Haz =0} + M{]z| =1}
B 2d)\ + 1

S 2A+1 1

By dz,y, and Gg(0) = 2N 1o

To see |) for the potlatch/smoothing processes, we note that %(k +E)+xGg = |k|Gs — b,
with f% = k_, and that

Bey = PIW?|kyky — kiy o — kyduo + 62.00,.0-
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Thus,

(8,Gs) = PW*(Gsxkk)—(Gs k+k)+Gs(0)
PW?|(Gs * k. k) +2 — (2|k] = 1)Gs(0),
from which (1.20]) for the potlatch/smoothing processes follows.

3) It will be seen from the proof that the inequalities in (1.16)) and ((1.18]) can be replaced by
the equality, keeping the other statement of Theorem [1.2.1

As an immediate consequence of Theorem [1.2.1] we have the following

Corollary 1.2.2. Suppose either of a)-d) in Theorem[1.2.1 Then, P[[,.|] = |no| and for all
f € Cb(Rd)f

lim 3 f (@ —mt)/ Vi) X () = / fdv

t—oo
zeZd

in probability with respect to P( - |n Z 0, Vt).
where m = ) ;4 7k, € R? and v is the Gaussian measure defined by . Similarly,

either of a),b’),c’),d’) in Theorem implies the above statement, with n; replaced by the
dual process (;.

Proof: The case of (7.) follows from Theorem [1.2.1d). Note also that if P([7j,| > 0) > 0, then,
up to a null set,

{ Mool >0} ={n #0, Vt },
which follows from [NY09bl Lemma 2.1.2]. The proof for the case of ({.) is the same. O

2 The proof of Theorem [1.2.1

2.1 The equivalence of a)—c)

We first show the Feynman-Kac formula for two-point function, which is the basis of the proof
of Theorem To state it, we introduce Markov chains (X, X) and (Y,Y") which are also
exploited in [NY09a]. Let (X,X) = ((Xt,Xt)tZO,P;’}) and (Y,Y) = ((Yt,Yt)tsz;’;) be

the continuous-time Markov chains on Z¢ x Z? starting from (x,Z), with the generators

Lygf@®) =Y Lysg@%y9) (fy0) - flx7),
ygez ~ B (2.1)
and Lyyf(x z) Z LYY z,7,y,9) (f(y,9) — f(z,7)),
y,yEL?

respectively, where

Ly 5(@,2,y,9) = (k= 00)a—yz,5 + (k — 00)7—50z,y + Bo—y,z—y0y5

and Ly ¢(2,%,y,9) = Ly 5(y, 0,2, %) (2.2)
It is useful to note that
oLy @ym) = 20k —1)+ faz, (2.3)
)
Yo Lys@. @y = 20k 1)+ (5,105 (2.4)

Y,y
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Recall also the notation (1f)¢>o and (¢f)¢>o introduced before Lemma [L.1.1]
Lemma 2.1.1. Fort >0 and x,%,y,y € Z%,
= emkl_l)tP;’f}( [ex,)?,t C(Xe, Xy) = (2,7) }

= U o o (V) = () ]

where ey  , = exp (f(f ﬁxsf)?sd‘S) and ey 5 , = exp (( B,1) f(f 5Y5,f’sds)‘

Proof: By the time-reversal argument as in [Lig85, Theorem 1.25], we see that (7, nfg) and

(e Ctgi) have the same law. This implies the first equality. In [NY09a, Lemma 2.1.1], we
showed the second equality, using (2.4). Finally, we see from (2.2) — (2.4) that the operators:

f(l’,f) = LX’)}f(l'75) + Bz—'if(x’,wv)v
f(l“,%) = LY7}~,f(Z‘,5) + <ﬁv 1 >61,Ef(x7§5)

are transpose to each other, and hence are the semi-groups generated by the above operators.
This proves the last equality of the lemma. O

Lemma 2.1.2. ((X; — )?t)tZOvP;g}) and ((Y; — fft)tZO,P;’%) are Markov chains with the
generators:
Ly_zf(x) =2Lsf(x) + B2(f(0) - f(2))
and Ly,f/f(x) = QLSf(x) + (< ﬂa f> - </87 1 >f(x))5m,07

respectively (cf. ) Moreover, these Markov chains are transient for d > 3.

(2.5)

Proof: Let (Z,Z) = (X, X) or (Y,Y). Since (Z, Z) is shift-invariant, in the sense that L, (x+
v, T+v,y+v,y+v) =L, 5(x,T,y,y) forall v e 72, (Z; — Zt)tZO; P;;) is a Markov chain.

Moreover, the jump rates L, 5(x,y), x # y are computed as follows:

ko—y+kyo+0,00. if (Z,2)=(X,X),
L, > =Y L, (z,0, ,2) = vy v : <
z2-7(@,y) gz:d 2.7(1,0,2+y,2) { Kooy + ky_o + 0508, if (Z,7) = (Y,Y).

These prove l) By 1) the random walk S. is transient for d > 3. Thus, Z — 7 is transient
d >3, since L, z(x,) =2Lg(x,-) except for finitely many z. |

Proof of a) < b) < ¢): a) = b): Under the assumption a), the function h given below satisfies
conditions in b):

(B,1)

h=1+cGg with ¢c= ——"F—-——.
° 2-(B.Gs)

In particular it solves (|1.16|) with equality.
b) = ¢): By Lemma we have that

1) PIT I = PLE eyg,]» &€ Zd,

(2.6)
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where ey = exp (( G8,1) fg 5}@,375‘15)' By Lemma [2.1.2} (1.16]) reads:

Ly _gh(x)+ (B,1)0,0h(z) <0, z€Z

and thus,
P2 [ey5 h(Yi = V)| < h(z), wezt.

Since h takes its values in [1,sup h] with sup h < co, we have
sup P2 {e - } <suph < oo.
mp v,y | .Yt — p
By this and 1), we obtain that

sup P[[77¢ |[7;1] < sup h < oo.
x

(2.7)

c) = a) : Let Gy _(x,y) be the Green function of the Markov chain ¥ — Y (cf. Lemma

. Then, it follows from that
GY-?(x7y) = %Gs(y - l‘) + % (<ﬁ7GS > - <ﬁ7 1 >GS(O)) GY-?(l'vO)'

On the other hand, we have by 1) that for any x,7 € Z4,

ez ey, = PIm ) < PUA P,

(2.8)

where the last inequality comes from Schwarz inequality and the shift-invariance. Thus,

Py (e o] < sup PIARP) < oo
Therefore, we can define h : Z¢ — [1,00) by:

h(z) = P;’g/ |:€Y,?,OO:| ,
which solves:
h(z) =14 Gy _g(2,0)(3,1)h(0).

For z = 0, it implies that
Gy _5(0,0)(8,1) < 1.

Plugging this into (2.8)), we have a).

(2.9)

(2.10)

O

Remark: The function & defined by (2.10) solves (2.7)) with equality, as can be seen by the
way it is defined. This proves ¢) = b) directly. It is also easy to see from (2.8)) that the

function h defined by (2.10)) and by (2.6)) coincide.
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2.2 The equivalence of ¢) and d)
To proceed from c) to the diffusive scaling limit d), we will use the following variant of [NY(09al,

Lemma 2.2.2]:

Lemma 2.2.1. Let ((Z;)i>0, P%) be a continuous-time random walk on Z* starting from x,
with the generator:

LZf ZLny f( ))7

A

Z |z|?Lz(0,2) < 0o

z€Z

On the other hand, let Z = ((Zt)t207 P7) be the continuous-time Markov chain on Z% starting
from x, with the generator:

where we assume that:

2)= > Lyzzy)(f(y) - f(x)).

A
We assume that z € Z¢, D C Z% and a function v : Z¢ — R satisfy
Lz(z,y) = Lz(z,y) ifv ¢ DU{y},
D is transient for both Z and Z,
v is bounded and v = 0 outside D,

e e exp (fo du) t > 0 are uniformly integrable with respect to pP?.
Then, for f € Cp(RY),
tim P* [e,f((Z —mt) V)] = P [ex] / fdv,
t—o00 Rd

where m =% ;4 xL7(0,2) and v is the Gaussian measure with:

/ x;dv(x) =0, / zixjdy(x Z z;x;Lz(0,2), 4,5=1,.,d
R4 R4

Py/A

Proof: We refer the reader to the proof of [NY(09a), Lemma 2.2.2], which works almost verbatim
here. The uniform integrability of e; is used to make sure that lim, . sup;>g |€s,¢| = 0, where
€5, I8 an error term introduced in the proof of [NY09al, Lemma 2.2.2]. |

Proof of ¢) & d): ¢) = d): Once (2.9) is obtained, we can conclude d) exactly in the same way
as in the corresponding part of [NY(09a, Theorem 1.2.1]. Since ¢) implies that lim; . [7,] =
M| in L2(P), it is enough to prove that

U, def. Z Mool ((x - mt)/\/Z) — 0 inL2%(P)ast /oo
x€Z?
for f € Cp(R?) such that [p, fdv = 0. We set fy(x,7) = f((x —m)/Vt)f((T —m)/Vt). By
Lemmam

Z Pntzntx]ft(x x Z 770907701PY; eyyf/ft(Y%aY—t)}~

z,2€Z4 z,7€Z%

Note that by (2.9)) and c),
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T, T
1) PY,? |:eY,§7,oo:| < 0.
Since |no| < oo, it is enough to prove that for each x,7 € Z?

lim P2T ey 5 (Y2, V)| = 0.

t—oo Y,Y

To prove this, we apply Lemmato the Markov chain Zt = (Yt, Y,}) and the random walk
(Z;) on Z% x Z% with the generator:

Lof@d) = Y Lo, #.0) (Fy.5) - F@.5),

y,y€LL

where

kj_z fz=yandz #y,
Lz(x,2,y,9) =4 ky—z ifzx#yandz=y,

0 if otherwise.

Let D = {(x,7) € Z% x Z¢ ; x = T}. Then,

2) Lz(z,2,y,y) = Ly 3 (2,2,y,9) if (z,2) € DU{(y,y)}-

Moreover, by Lemma [2.1.2]

3) D is transient both for (Z;) and for (Z;).

Finally, the Gaussian measure v ®v is the limit law in the central limit theorem for the random
walk (Z;). Therefore, by 1)-3) and Lemma [2.2.1]

lim P* [6Y7177tft(}/,5,)~/t)} = P;’;f; [BY,?,OJ </Rd de)Q —0.

t—oo Y,

d) = ¢):This can be seen by taking f = 1. a

2.3 The equivalence of a),b’),c’)

a) = b’): Let h =2 —(3,Gs )+ 3+ Gg. Then, it is easy to see that h solves (1.18) with
equality. Moreover, using Lemma below, we see that h(x) > 0 for z # 0 by as follows:

(6% Gs)(@) = (5xGs)(0) = (gzig))q) (ﬁ*Gs)(O)—2g‘:E§))
s(x) Gs(z) .
(GS(O)1>22G5(0) >

Since h(0) = 2 and lim;| o h(z) = 2 — (B * G5)(0) € (0,00), h is bounded away from both 0
and oo. Therefore, a constant multiple of the above h satisfies the conditions in b’).

b’) < ¢’): This can be seen similarly as b) < ¢) (cf. the remark at the end of section [2.)).
¢’) = a) : We first note that

1) lim (8 Gg)(z) =0,
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since Gg vanishes at infinity and ( is of finite support. We then set:
ho(@) = PL%lex el ha(@) = ho() — 5ho(0)(8 * Cis) ().

Then, there exists positive constant M such that % < hg <M and

(Lsho)(x) = —%ho(omx, for all z € Z<.

By 1), hs is also bounded and

(Lsha)(w) = (Lsho)(z) — 3ho(0)Ls(5 = Gis)(2) = ~3ho(0)s + 3ho(0)3s = 0.

This implies that there exists a constant ¢ such that hy = ¢ on the subgroup H of Z¢ generated
by the set {z € Z¢; k, +k_, > 0}, i.e,

2) ho(x)—%hg(O)(ﬂ*GS)(x):c for z € H.

By setting = 0 in 2), we have

e = ho(0)(1 — 255

On the other hand, we see from 1)-2) that

1 ,
0< i < \}\linm ho(z) = c.

x€H

These imply (8,Gg) < 2. o
Lemma 2.3.1. Ford > 3,

Gs(r)

Gs(0) (8% Gs)(0) —2) + 250, =e€Z.

(8 Gs)(x) =

Proof: The function 3, can be either positive or negative. To control this inconvenience, we
introduce: 3, = 3° 74 P[KyKyyy]. Since 8, > 0 and Gs(x +y)Gs(0) > Gs(z)Gs(y) for all
x,y € Z%, we have

1) G5(0)(Gs * B)(x) > Gs(x)(Gs = B)(0).
On the other hand, it is easy to see that

B=PB—k—Fk+d, with ky=Fk_,.
Therefore, using % (k + k) x Gs = |k|Gs — do,

2) BxGg=(B—k—k+08)*Gs=pBxGs— (2|k| —1)Gg + 25.
Now, by 1)-2) for z =0,
(G B)(a) 2 G0 (G % B)0) = G20 % Gs(0) = D) + (20H] - DG,

Plugging this in 2), we get the desired inequality. O
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2.4 The equivalence of ¢’) and d’)

d’) = ¢’): This can be seen by taking f = 1.
¢’) = d’):By Lemma [2.1.1} Schwarz inequality and the shift-invariance, we have that

z,% =T |=Z =0 ~
P2 [ex 5,] = PIGIG N < PICI, for 2,3 € 22,
where e XX = €Xp ( fot 1) XX, ds). Thus, under ¢’), the following function is well-defined:

def z,0
ho(x) = PX7)~([6X,)~(,00]'

Moreover, there exists M € (0, 00) such that ﬁ < ho < M and

1
(Lsho)(z) = _ih()(o)/@z7 for all z € 2.

We set .
Then, we have 0 < ﬁ < hog <M and
1 1 . ho(0
Lghi(x) = Lsho(z) = —=ho(0)B: = —=h1(0)pB., with p= 0(0) > 1.
2 2 h1(0)

This implies, as in the proof of b) = c¢) that

sup P {ep - } <2M? < oo for z,7 € 74,
>0 XX XXt

which guarantees the uniform integrability of ey ¢ ,, ¢ > 0 required to apply Lemma m
The rest of the proof is the same as in ¢) = d). a
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