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Abstract
Schramm-Loewner Evolution describes the scaling limits of interfaces in certain statistical me-
chanical systems. These interfaces are geometric objects that are not equipped with a canonical
parametrization. The standard parametrization of SLE is via half-plane capacity, which is a confor-
mal measure of the size of a set in the reference upper half-plane. This has useful harmonic and
complex analytic properties and makes SLE a time-homogeneous Markov process on conformal
maps. In this note, we show that the half-plane capacity of a hull A is comparable up to multiplica-
tive constants to more geometric quantities, namely the area of the union of all balls centered in
A tangent to R, and the (Euclidean) area of a 1-neighborhood of A with respect to the hyperbolic
metric.

1 Introduction

Suppose A is a bounded, relatively closed subset of the upper half plane H. We call A a compact H-
hull if A is bounded and H\A is simply connected. The half-plane capacity of A, hcap(A), is defined
in a number of equivalent ways (see [1], especially Chapter 3). If gA denotes the unique conformal
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transformation of H \ A onto H with gA(z) = z+ o(1) as z→∞, then gA has the expansion

gA(z) = z+
hcap(A)

z
+O(|z|−2), z→∞.

Equivalently, if Bt is a standard complex Brownian motion and τA = inf{t ≥ 0 : Bt 6∈H \ A},

hcap(A) = lim
y→∞

y Ei y
�

Im(BτA
)
�

.

Let Im[A] = sup{Im(z) : z ∈ A}. Then if y ≥ Im[A], we can also write

hcap(A) =
1

π

∫ ∞

−∞
Ex+i y

�

Im(BτA
)
�

d x .

These last two definitions do not require H \ A to be simply connected, and the latter definition
does not require A to be bounded but only that Im[A]<∞.
For H-hulls (that is, for relatively closed A for which H \ A is simply connected), the half-plane
capacity is comparable to a more geometric quantity that we define. This is not new (the second
author learned it from Oded Schramm in oral communication), but we do not know of a proof in
the literature3. In this note, we prove the fact giving (nonoptimal) bounds on the constant. We
start with the definition of the geometric quantity.

Definition 1. For an H-hull A, let hsiz(A) be the 2-dimensional Lebesgue measure of the union of all
balls centered at points in A that are tangent to the real line. In other words

hsiz(A) = area







⋃

x+i y∈A

B(x + i y, y)






,

whereB(z,ε) denotes the disk of radius ε about z.

In this paper, we prove the following.

Theorem 1. For every H-hull A,

1

66
hsiz(A)< hcap(A)<

7

2π
hsiz(A).

2 Proof of Theorem 1

It suffices to prove this for weakly bounded H-hulls, by which we mean H-hulls A with Im(A)<∞
and such that for each ε > 0, the set {x + i y : y > ε} is bounded. Indeed, for H-hulls that are not
weakly bounded, it is easy to verify that hsiz(A) = hcap(A) =∞.
We start with a simple inequality that is implied but not explicitly stated in [1]. Equality is achieved
when A is a vertical line segment.

Lemma 1. If A is an H-hull, then

hcap(A)≥
Im[A]2

2
. (1)

3After submitting this article, we learned that a similar result was recently proved by Carto Wong as part of his Ph.D.
research.
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Proof. Due to the continuity of hcap with respect to the Hausdorff metric on H-hulls, it suffices to
prove the result for H-hulls that are path-connected. For two H-hulls A1 ⊆ A2, it can be seen using
the Optional stopping theorem that hcap(A1) ≤ hcap(A2). Therefore without loss of generality, A
can be assumed to be of the form η(0, T]where η is a simple curve with η(0+) ∈ R, parameterized
so that hcap[η(0, t]) = 2t. In particular, T = hcap(A)/2. If gt = gη(0,t], then gt satisfies the
Loewner equation

∂t gt(z) =
2

gt(z)− Ut
, g0(z) = z, (2)

where U : [0, T] → R is continuous. Suppose Im(z)2 > 2hcap(A) and let Yt = Im[gt(z)]. Then
(2) gives

−∂t Y
2
t ≤

4Yt

|gt(z)− Ut |2
≤ 4,

which implies
Y 2

T ≥ Y 2
0 − 4T > 0.

This implies that z 6∈ A, and hence Im[A]2 ≤ 2hcap(A).

The next lemma is a variant of the Vitali covering lemma. If c > 0 and z = x + i y ∈H, let

I (z, c) = (x − c y, x + c y),

R(z, c) = I (z, c)× (0, y] = {x ′ + i y ′ : |x ′ − x |< c y, 0< y ′ ≤ y}.

Lemma 2. Suppose A is a weakly bounded H-hull and c > 0. Then there exists a finite or countably
infinite sequence of points {z1 = x i + i y1, z2 = x2 + i y2, , . . .} ⊂ A such that:

• y1 ≥ y2 ≥ y3 ≥ · · · ;

• the intervals I (x1, c),I (x2, c), . . . are disjoint;

•

A⊂
∞
⋃

j=1

R(z j , 2c). (3)

Proof. We define the points recursively. Let A0 = A and given {z1, . . . , z j}, let

A j = A\





j
⋃

k=1

R(z j , 2c)



 .

If A j = ; we stop, and if A j 6= ;,we choose z j+1 = x j+1+ i y j+1 ∈ A with y j+1 = Im[A j]. Note that if
k ≤ j, then |x j+1− xk| ≥ 2 c yk ≥ c (yk+ y j+1) and hence I (z j+1, c)∩I (zk, c) = ;. Using the weak
boundedness of A, we can see that y j → 0 and hence (3) holds.

Lemma 3. For every c > 0, let

ρc :=
2
p

2

π
arctan

�

e−θ
�

, θ = θc =
π

4c
.

Then, for any c > 0, if A is a weakly bounded H-hull and x0 + i y0 ∈ A with y0 = Im(A), then

hcap(A)≥ ρ2
c y2

0 + hcap [A\R(z, 2c)] .
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Proof. By scaling and invariance under real translation, we may assume that Im[A] = y0 = 1
and x0 = 0. Let S = Sc be defined to be the set of all points z of the form x + iuy where
x + i y ∈ A\R(i, 2c) and 0< u≤ 1.
Clearly, S ∩ A= A\R(i, 2c).
Using the capacity inequality [1, (3.10)]

hcap(A1 ∪ A2)− hcap(A2)≤ hcap(A1)− hcap(A1 ∩ A2), (4)

we see that
hcap(S ∪ A)− hcap(S)≤ hcap(A)− hcap(S ∩ A).

Hence, it suffices to show that

hcap(S ∪ A)− hcap(S)≥ ρ2
c .

Let f be the conformal map of H \ S onto H such that z − f (z) = o(1) as z→∞. Let S∗ := S ∪ A.
By properties of halfplane capacity [1, (3.8)] and (1),

hcap(S∗)− hcap(S) = hcap[ f (S∗ \ S)]≥
Im[ f (i)]2

2
.

Hence, it suffices to prove that

Im[ f (i)]≥
p

2ρ =
4

π
arctan

�

e−θ
�

. (5)

By construction, S ∩R(z, 2c) = ;. Let V = (−2c, 2c)× (0,∞) = {x + i y : |x | < 2c, y > 0} and let
τV be the first time that a Brownian motion leaves the domain. Then [1, (3.5)],

Im[ f (i)] = 1−Ei
�

Im(BτS
)
�

≥ P
¦

BτS
∈ [−2c, 2c]

©

≥ P
¦

BτV
∈ [−2c, 2c]

©

.

The map Φ(z) = sin (θz) maps V onto H sending [−2c, 2c] to [−1, 1] and Φ(i) = i sinhθ . Using
conformal invariance of Brownian motion and the Poisson kernel in H, we see that

P
¦

BτV
∈ [−2c, 2c]

©

=
2

π
arctan

�

1

sinhθ

�

=
4

π
arctan

�

e−θ
�

.

The second equality uses the double angle formula for the tangent.

Lemma 4. Suppose c > 0 and x1 + i y1, x2 + i y2, . . . are as in Lemma 2. Then

hsiz(A)≤ [π+ 8c]
∞
∑

j=1

y2
j . (6)

If c ≥ 1, then

π

∞
∑

j=1

y2
j ≤ hsiz(A). (7)

Proof. A simple geometry exercise shows that

area







⋃

x+i y∈R(z j ,2c)

B(x + i y, y)






= [π+ 8c] y2

j .
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Since

A⊂
∞
⋃

j=1

R(z j , 2c),

the upper bound in (6) follows. Since c ≥ 1, and the intervals I (z j , c) are disjoint, so are the disks
B(z j , y j). Hence,

area







⋃

x+i y∈A

B(x + i y, y)






≥ area







∞
⋃

j=1

B(z j , y j)






= π

∞
∑

j=1

y2
j .

Proof of Theorem 1. Let Vj = A∩R(z j , c). Lemma 3 tells us that

hcap







∞
⋃

k= j

Vj






≥ ρ2

c y2
j + hcap







∞
⋃

k= j+1

Vj






,

and hence

hcap(A)≥ ρ2
c

∞
∑

j=1

y2
j . (8)

Combining this with the upper bound in (6) with any c > 0 gives

hcap(A)
hsiz(A)

≥
ρ2

c

π+ 8c
.

Choosing c = 8
5

gives us
hcap(A)
hsiz(A)

>
1

66
.

For the upper bound, choose a covering as in Lemma 2. Subadditivity and scaling give

hcap(A)≤
∞
∑

j=1

hcap
�

R(z j , 2c y j)
�

= hcap[R(i, 2c)]
∞
∑

j=1

y2
j . (9)

Combining this with the lower bound in (6) with c = 1 gives

hcap(A)
hsiz(A)

≤
hcap[R(i, 2)]

π
.

Note that R(i, 2) is the union of two real translates of R(i, 1), hcap[R(i, 2)] ≤ 2 hcap[R(i, 1)]
whose intersection is the interval (0, i]. Using (4), we see that

hcap(R(i, 2))≤ 2 hcap(R(i, 1))− hcap((0, i]) = 2hcap(R(i, 1))−
1

2
.

But R(i, 1) is strictly contained in A′ := {z ∈H : |z| ≤
p

2}, and hence

hcap[R(i, 1)]< hcap(A′) = 2.
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The last equality can be seen by considering h(z) = z+2z−1 which maps H\A′ onto H. Therefore,

hcap[R(i, 2)]<
7

2
,

and hence
hcap(A)
hsiz(A)

<
7

2π
.

An equivalent form of this result can be stated4 in terms of the area of the 1-neighborhood of A
(denoted hyp(A)) in the hyperbolic metric. The unit hyperbolic ball centered at a point x + ι y
is the Euclidean ball with respect to which x + ι y/e) and x = ι ye are diametrically opposite
boundary points. For any c, choosing a covering as in Lemma 2,

hyp(A)<
�

� e

2

�2

π+ 4ec
� ∞
∑

j=1

y2
j .

So by (8),
hcap(A)
hyp(A)

> ρ2
c

�

� e

2

�2

π+ 4ec
�−1

.

Setting c to 8
5
,

hcap(A)
hyp(A)

>
1

100
.

For any c > e−e−1

2
,

hyp(A)≥ π
�

e− e−1

2

�2 ∞
∑

j=1

y2
j .

So by (9),
hcap(A)
hyp(A)

<
hcap[R(i, 3)]

π
�

e−e−1

2

�2 .

hcap(R(i, 3))≤ hcap(R(i, 1)) + hcap(R(i, 2))− hcap((0, i])≤ 5.

Therefore,
1

100
<

hcap(A)
hyp(A)

<
20

π(e− e−1)2
.
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