ELECTRONIC
 COMMUNICATIONS
 in PROBABILITY

GEOMETRIC INTERPRETATION OF HALF-PLANE CAPACITY

STEVEN LALLEY ${ }^{1}$
Department of Statistics
University of Chicago
email: lalley@galton.uchicago.edu
GREGORY LAWLER ${ }^{2}$
Department of Mathematics
University of Chicago
email: lawler@math.uchicago.edu
HARIHARAN NARAYANAN
Laboratory for Information and Decision Systems
MIT
email: har@mit.edu

Submitted August 30, 2009, accepted in final form October 8, 2009
AMS 2000 Subject classification: 60J67, 97180
Keywords: Brownian motion, Conformal Invariance, Schramm-Loewner Evolution

Abstract

Schramm-Loewner Evolution describes the scaling limits of interfaces in certain statistical mechanical systems. These interfaces are geometric objects that are not equipped with a canonical parametrization. The standard parametrization of SLE is via half-plane capacity, which is a conformal measure of the size of a set in the reference upper half-plane. This has useful harmonic and complex analytic properties and makes SLE a time-homogeneous Markov process on conformal maps. In this note, we show that the half-plane capacity of a hull A is comparable up to multiplicative constants to more geometric quantities, namely the area of the union of all balls centered in A tangent to \mathbb{R}, and the (Euclidean) area of a 1-neighborhood of A with respect to the hyperbolic metric.

1 Introduction

Suppose A is a bounded, relatively closed subset of the upper half plane \mathbb{H}. We call A a compact $\mathbb{H}-$ hull if A is bounded and $\mathbb{H} \backslash A$ is simply connected. The half-plane capacity of A, hcap (A), is defined in a number of equivalent ways (see [1], especially Chapter 3). If g_{A} denotes the unique conformal

[^0]transformation of $\mathbb{H} \backslash A$ onto \mathbb{H} with $g_{A}(z)=z+o(1)$ as $z \rightarrow \infty$, then g_{A} has the expansion
$$
g_{A}(z)=z+\frac{\operatorname{hcap}(A)}{z}+O\left(|z|^{-2}\right), \quad z \rightarrow \infty
$$

Equivalently, if B_{t} is a standard complex Brownian motion and $\tau_{A}=\inf \left\{t \geq 0: B_{t} \notin \mathbb{H} \backslash A\right\}$,

$$
\operatorname{hcap}(A)=\lim _{y \rightarrow \infty} y \mathbb{E}^{i y}\left[\operatorname{Im}\left(B_{\tau_{A}}\right)\right]
$$

Let $\operatorname{Im}[A]=\sup \{\operatorname{Im}(z): z \in A\}$. Then if $y \geq \operatorname{Im}[A]$, we can also write

$$
\operatorname{hcap}(A)=\frac{1}{\pi} \int_{-\infty}^{\infty} \mathbb{E}^{x+i y}\left[\operatorname{Im}\left(B_{\tau_{A}}\right)\right] d x
$$

These last two definitions do not require $\mathbb{H} \backslash A$ to be simply connected, and the latter definition does not require A to be bounded but only that $\operatorname{Im}[A]<\infty$.
For \mathbb{H}-hulls (that is, for relatively closed A for which $\mathbb{H} \backslash A$ is simply connected), the half-plane capacity is comparable to a more geometric quantity that we define. This is not new (the second author learned it from Oded Schramm in oral communication), but we do not know of a proof in the literature ${ }^{3}$. In this note, we prove the fact giving (nonoptimal) bounds on the constant. We start with the definition of the geometric quantity.

Definition 1. For an \mathbb{H}-hull A, let hsiz (A) be the 2-dimensional Lebesgue measure of the union of all balls centered at points in A that are tangent to the real line. In other words

$$
\operatorname{hsiz}(A)=\operatorname{area}\left[\bigcup_{x+i y \in A} \mathscr{B}(x+i y, y)\right]
$$

where $\mathscr{B}(z, \epsilon)$ denotes the disk of radius ϵ about z.
In this paper, we prove the following.
Theorem 1. For every \mathbb{H}-hull A,

$$
\frac{1}{66} \operatorname{hsiz}(A)<\operatorname{hcap}(A)<\frac{7}{2 \pi} \operatorname{hsiz}(A)
$$

2 Proof of Theorem 1

It suffices to prove this for weakly bounded \mathbb{H}-hulls, by which we mean \mathbb{H}-hulls A with $\operatorname{Im}(A)<\infty$ and such that for each $\epsilon>0$, the set $\{x+i y: y>\epsilon\}$ is bounded. Indeed, for \mathbb{H}-hulls that are not weakly bounded, it is easy to verify that $\operatorname{hsiz}(A)=\operatorname{hcap}(A)=\infty$.
We start with a simple inequality that is implied but not explicitly stated in [1]. Equality is achieved when A is a vertical line segment.

Lemma 1. If A is an \mathbb{H}-hull, then

$$
\begin{equation*}
\operatorname{hcap}(A) \geq \frac{\operatorname{Im}[A]^{2}}{2} \tag{1}
\end{equation*}
$$

[^1]Proof. Due to the continuity of hcap with respect to the Hausdorff metric on \mathbb{H}-hulls, it suffices to prove the result for \mathbb{H}-hulls that are path-connected. For two \mathbb{H}-hulls $A_{1} \subseteq A_{2}$, it can be seen using the Optional stopping theorem that hcap $\left(A_{1}\right) \leq \operatorname{hcap}\left(A_{2}\right)$. Therefore without loss of generality, A can be assumed to be of the form $\eta(0, T]$ where η is a simple curve with $\eta(0+) \in \mathbb{R}$, parameterized so that hcap $[\eta(0, t])=2 t$. In particular, $T=\operatorname{hcap}(A) / 2$. If $g_{t}=g_{\eta(0, t]}$, then g_{t} satisfies the Loewner equation

$$
\begin{equation*}
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z \tag{2}
\end{equation*}
$$

where $U:[0, T] \rightarrow \mathbb{R}$ is continuous. Suppose $\operatorname{Im}(z)^{2}>2 \operatorname{hcap}(A)$ and let $Y_{t}=\operatorname{Im}\left[g_{t}(z)\right]$. Then (2) gives

$$
-\partial_{t} Y_{t}^{2} \leq \frac{4 Y_{t}}{\left|g_{t}(z)-U_{t}\right|^{2}} \leq 4
$$

which implies

$$
Y_{T}^{2} \geq Y_{0}^{2}-4 T>0
$$

This implies that $z \notin A$, and hence $\operatorname{Im}[A]^{2} \leq 2$ hcap (A).
The next lemma is a variant of the Vitali covering lemma. If $c>0$ and $z=x+i y \in \mathbb{H}$, let

$$
\begin{aligned}
\mathscr{I}(z, c) & =(x-c y, x+c y), \\
\mathscr{R}(z, c)=\mathscr{I}(z, c) \times(0, y] & =\left\{x^{\prime}+i y^{\prime}:\left|x^{\prime}-x\right|<c y, 0<y^{\prime} \leq y\right\} .
\end{aligned}
$$

Lemma 2. Suppose A is a weakly bounded \mathbb{H}-hull and $c>0$. Then there exists a finite or countably infinite sequence of points $\left\{z_{1}=x_{i}+i y_{1}, z_{2}=x_{2}+i y_{2},, \ldots\right\} \subset A$ such that:

- $y_{1} \geq y_{2} \geq y_{3} \geq \cdots$;
- the intervals $\mathscr{I}\left(x_{1}, c\right), \mathscr{I}\left(x_{2}, c\right), \ldots$ are disjoint;
-

$$
\begin{equation*}
A \subset \bigcup_{j=1}^{\infty} \mathscr{R}\left(z_{j}, 2 c\right) \tag{3}
\end{equation*}
$$

Proof. We define the points recursively. Let $A_{0}=A$ and given $\left\{z_{1}, \ldots, z_{j}\right\}$, let

$$
A_{j}=A \backslash\left[\bigcup_{k=1}^{j} \mathscr{R}\left(z_{j}, 2 c\right)\right]
$$

If $A_{j}=\emptyset$ we stop, and if $A_{j} \neq \emptyset$,we choose $z_{j+1}=x_{j+1}+i y_{j+1} \in A$ with $y_{j+1}=\operatorname{Im}\left[A_{j}\right]$. Note that if $k \leq j$, then $\left|x_{j+1}-x_{k}\right| \geq 2 c y_{k} \geq c\left(y_{k}+y_{j+1}\right)$ and hence $\mathscr{I}\left(z_{j+1}, c\right) \cap \mathscr{I}\left(z_{k}, c\right)=\emptyset$. Using the weak boundedness of A, we can see that $y_{j} \rightarrow 0$ and hence (3) holds.

Lemma 3. For every $c>0$, let

$$
\rho_{c}:=\frac{2 \sqrt{2}}{\pi} \arctan \left(e^{-\theta}\right), \quad \theta=\theta_{c}=\frac{\pi}{4 c}
$$

Then, for any $c>0$, if A is a weakly bounded \mathbb{H}-hull and $x_{0}+i y_{0} \in A$ with $y_{0}=\operatorname{Im}(A)$, then

$$
\operatorname{hcap}(A) \geq \rho_{c}^{2} y_{0}^{2}+\operatorname{hcap}[A \backslash \mathscr{R}(z, 2 c)] .
$$

Proof. By scaling and invariance under real translation, we may assume that $\operatorname{Im}[A]=y_{0}=1$ and $x_{0}=0$. Let $S=S_{c}$ be defined to be the set of all points z of the form $x+i u y$ where $x+i y \in A \backslash \mathscr{R}(i, 2 c)$ and $0<u \leq 1$.
Clearly, $S \cap A=A \backslash \mathscr{R}(i, 2 c)$.
Using the capacity inequality [1, (3.10)]

$$
\begin{equation*}
\operatorname{hcap}\left(A_{1} \cup A_{2}\right)-\operatorname{hcap}\left(A_{2}\right) \leq \operatorname{hcap}\left(A_{1}\right)-\operatorname{hcap}\left(A_{1} \cap A_{2}\right) \tag{4}
\end{equation*}
$$

we see that

$$
\operatorname{hcap}(S \cup A)-\operatorname{hcap}(S) \leq \operatorname{hcap}(A)-\operatorname{hcap}(S \cap A)
$$

Hence, it suffices to show that

$$
\operatorname{hcap}(S \cup A)-\operatorname{hcap}(S) \geq \rho_{c}^{2}
$$

Let f be the conformal map of $\mathbb{H} \backslash S$ onto \mathbb{H} such that $z-f(z)=o(1)$ as $z \rightarrow \infty$. Let $S^{*}:=S \cup A$. By properties of halfplane capacity [1, (3.8)] and (1),

$$
\operatorname{hcap}\left(S^{*}\right)-\operatorname{hcap}(S)=\operatorname{hcap}\left[f\left(S^{*} \backslash S\right)\right] \geq \frac{\operatorname{Im}[f(i)]^{2}}{2}
$$

Hence, it suffices to prove that

$$
\begin{equation*}
\operatorname{Im}[f(i)] \geq \sqrt{2} \rho=\frac{4}{\pi} \arctan \left(e^{-\theta}\right) \tag{5}
\end{equation*}
$$

By construction, $S \cap \mathscr{R}(z, 2 c)=\emptyset$. Let $V=(-2 c, 2 c) \times(0, \infty)=\{x+i y:|x|<2 c, y>0\}$ and let τ_{V} be the first time that a Brownian motion leaves the domain. Then [1] (3.5)],

$$
\operatorname{Im}[f(i)]=1-\mathbb{E}^{i}\left[\operatorname{Im}\left(B_{\tau_{s}}\right)\right] \geq \mathbb{P}\left\{B_{\tau_{s}} \in[-2 c, 2 c]\right\} \geq \mathbb{P}\left\{B_{\tau_{V}} \in[-2 c, 2 c]\right\}
$$

The map $\Phi(z)=\sin (\theta z)$ maps V onto \mathbb{H} sending $[-2 c, 2 c]$ to $[-1,1]$ and $\Phi(i)=i \sinh \theta$. Using conformal invariance of Brownian motion and the Poisson kernel in \mathbb{H}, we see that

$$
\mathbb{P}\left\{B_{\tau_{V}} \in[-2 c, 2 c]\right\}=\frac{2}{\pi} \arctan \left(\frac{1}{\sinh \theta}\right)=\frac{4}{\pi} \arctan \left(e^{-\theta}\right)
$$

The second equality uses the double angle formula for the tangent.
Lemma 4. Suppose $c>0$ and $x_{1}+i y_{1}, x_{2}+i y_{2}, \ldots$ are as in Lemma 2. Then

$$
\begin{equation*}
\operatorname{hsiz}(A) \leq[\pi+8 c] \sum_{j=1}^{\infty} y_{j}^{2} \tag{6}
\end{equation*}
$$

If $c \geq 1$, then

$$
\begin{equation*}
\pi \sum_{j=1}^{\infty} y_{j}^{2} \leq \operatorname{hsiz}(A) \tag{7}
\end{equation*}
$$

Proof. A simple geometry exercise shows that

$$
\text { area }\left[\bigcup_{x+i y \in \mathscr{R}\left(z_{j}, 2 c\right)} \mathscr{B}(x+i y, y)\right]=[\pi+8 c] y_{j}^{2}
$$

Since

$$
A \subset \bigcup_{j=1}^{\infty} \mathscr{R}\left(z_{j}, 2 c\right)
$$

the upper bound in (6) follows. Since $c \geq 1$, and the intervals $\mathscr{I}\left(z_{j}, c\right)$ are disjoint, so are the disks $\mathscr{B}\left(z_{j}, y_{j}\right)$. Hence,

$$
\operatorname{area}\left[\bigcup_{x+i y \in A} \mathscr{B}(x+i y, y)\right] \geq \operatorname{area}\left[\bigcup_{j=1}^{\infty} \mathscr{B}\left(z_{j}, y_{j}\right)\right]=\pi \sum_{j=1}^{\infty} y_{j}^{2}
$$

Proof of Theorem 1. Let $V_{j}=A \cap \mathscr{R}\left(z_{j}, c\right)$. Lemma 3 tells us that

$$
\text { hcap }\left[\bigcup_{k=j}^{\infty} V_{j}\right] \geq \rho_{c}^{2} y_{j}^{2}+\text { hcap }\left[\bigcup_{k=j+1}^{\infty} V_{j}\right]
$$

and hence

$$
\begin{equation*}
\operatorname{hcap}(A) \geq \rho_{c}^{2} \sum_{j=1}^{\infty} y_{j}^{2} \tag{8}
\end{equation*}
$$

Combining this with the upper bound in (6) with any $c>0$ gives

$$
\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)} \geq \frac{\rho_{c}^{2}}{\pi+8 c}
$$

Choosing $c=\frac{8}{5}$ gives us

$$
\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)}>\frac{1}{66}
$$

For the upper bound, choose a covering as in Lemma 2 . Subadditivity and scaling give

$$
\begin{equation*}
\operatorname{hcap}(A) \leq \sum_{j=1}^{\infty} \operatorname{hcap}\left[\mathscr{R}\left(z_{j}, 2 c y_{j}\right)\right]=\operatorname{hcap}[\mathscr{R}(i, 2 c)] \sum_{j=1}^{\infty} y_{j}^{2} \tag{9}
\end{equation*}
$$

Combining this with the lower bound in (6) with $c=1$ gives

$$
\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)} \leq \frac{\operatorname{hcap}[\mathscr{R}(i, 2)]}{\pi}
$$

Note that $\mathscr{R}(i, 2)$ is the union of two real translates of $\mathscr{R}(i, 1)$, hcap $[\mathscr{R}(i, 2)] \leq 2$ hcap $[\mathscr{R}(i, 1)]$ whose intersection is the interval ($0, i]$. Using (4), we see that

$$
\operatorname{hcap}(\mathscr{R}(i, 2)) \leq 2 \operatorname{hcap}(\mathscr{R}(i, 1))-\operatorname{hcap}((0, i])=2 \operatorname{hcap}(\mathscr{R}(i, 1))-\frac{1}{2}
$$

But $\mathscr{R}(i, 1)$ is strictly contained in $A^{\prime}:=\{z \in \mathbb{H}:|z| \leq \sqrt{2}\}$, and hence

$$
\operatorname{hcap}[\mathscr{R}(i, 1)]<\operatorname{hcap}\left(A^{\prime}\right)=2
$$

The last equality can be seen by considering $h(z)=z+2 z^{-1}$ which maps $\mathbb{H} \backslash A^{\prime}$ onto \mathbb{H}. Therefore,

$$
\operatorname{hcap}[\mathscr{R}(i, 2)]<\frac{7}{2}
$$

and hence

$$
\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)}<\frac{7}{2 \pi}
$$

An equivalent form of this result can be stated ${ }^{4}$ in terms of the area of the 1-neighborhood of A (denoted $\operatorname{hyp}(A))$ in the hyperbolic metric. The unit hyperbolic ball centered at a point $x+\iota y$ is the Euclidean ball with respect to which $x+\iota y / e$) and $x=\iota y e$ are diametrically opposite boundary points. For any c, choosing a covering as in Lemma 2 ,

$$
\operatorname{hyp}(A)<\left(\left(\frac{e}{2}\right)^{2} \pi+4 e c\right) \sum_{j=1}^{\infty} y_{j}^{2}
$$

So by (8),

$$
\frac{\operatorname{hcap}(A)}{\operatorname{hyp}(A)}>\rho_{c}^{2}\left(\left(\frac{e}{2}\right)^{2} \pi+4 e c\right)^{-1}
$$

Setting c to $\frac{8}{5}$,

$$
\frac{\operatorname{hcap}(A)}{\operatorname{hyp}(A)}>\frac{1}{100}
$$

For any $c>\frac{e-e^{-1}}{2}$,

$$
\operatorname{hyp}(A) \geq \pi\left(\frac{e-e^{-1}}{2}\right)^{2} \sum_{j=1}^{\infty} y_{j}^{2}
$$

So by (9),

$$
\frac{\operatorname{hcap}(A)}{\operatorname{hyp}(A)}<\frac{\operatorname{hcap}[\mathscr{R}(i, 3)]}{\pi\left(\frac{e-e^{-1}}{2}\right)^{2}}
$$

$$
\operatorname{hcap}(\mathscr{R}(i, 3)) \leq \operatorname{hcap}(\mathscr{R}(i, 1))+\operatorname{hcap}(\mathscr{R}(i, 2))-\operatorname{hcap}((0, i]) \leq 5
$$

Therefore,

$$
\frac{1}{100}<\frac{\operatorname{hcap}(A)}{\operatorname{hyp}(A)}<\frac{20}{\pi\left(e-e^{-1}\right)^{2}}
$$

References

[1] G. Lawler, Conformally Invariant Processes in the Plane, American Mathematical Society, 2005. MR2129588

[^2]
[^0]: ${ }^{1}$ RESEARCH SUPPORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0805755.
 ${ }^{2}$ RESEARCH SUPPORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0734151.

[^1]: ${ }^{3}$ After submitting this article, we learned that a similar result was recently proved by Carto Wong as part of his Ph.D. research.

[^2]: ${ }^{4}$ This formulation was suggested to us by Scott Sheffield and the anonymous referee.

