Elect. Comm. in Probab. 14 (2009), 566-571

ELECTRONIC COMMUNICATIONS in PROBABILITY

GEOMETRIC INTERPRETATION OF HALF-PLANE CAPACITY

STEVEN LALLEY¹ Department of Statistics University of Chicago email: lalley@galton.uchicago.edu

GREGORY LAWLER² Department of Mathematics University of Chicago email: lawler@math.uchicago.edu

HARIHARAN NARAYANAN Laboratory for Information and Decision Systems MIT email: har@mit.edu

Submitted August 30, 2009, accepted in final form October 8, 2009

AMS 2000 Subject classification: 60J67, 97I80 Keywords: Brownian motion, Conformal Invariance, Schramm-Loewner Evolution

Abstract

Schramm-Loewner Evolution describes the scaling limits of interfaces in certain statistical mechanical systems. These interfaces are geometric objects that are not equipped with a canonical parametrization. The standard parametrization of SLE is via half-plane capacity, which is a conformal measure of the size of a set in the reference upper half-plane. This has useful harmonic and complex analytic properties and makes SLE a time-homogeneous Markov process on conformal maps. In this note, we show that the half-plane capacity of a hull *A* is comparable up to multiplicative constants to more geometric quantities, namely the area of the union of all balls centered in *A* tangent to \mathbb{R} , and the (Euclidean) area of a 1-neighborhood of *A* with respect to the hyperbolic metric.

1 Introduction

Suppose *A* is a bounded, relatively closed subset of the upper half plane \mathbb{H} . We call *A* a compact \mathbb{H} -hull if *A* is bounded and $\mathbb{H} \setminus A$ is simply connected. The *half-plane capacity* of *A*, hcap(*A*), is defined in a number of equivalent ways (see [1], especially Chapter 3). If g_A denotes the unique conformal

¹RESEARCH SUPPORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0805755.

²RESEARCH SUPPORTED BY NATIONAL SCIENCE FOUNDATION GRANT DMS-0734151.

transformation of $\mathbb{H} \setminus A$ onto \mathbb{H} with $g_A(z) = z + o(1)$ as $z \to \infty$, then g_A has the expansion

$$g_A(z) = z + \frac{\operatorname{hcap}(A)}{z} + O(|z|^{-2}), \quad z \to \infty.$$

Equivalently, if B_t is a standard complex Brownian motion and $\tau_A = \inf\{t \ge 0 : B_t \notin \mathbb{H} \setminus A\}$,

$$\operatorname{hcap}(A) = \lim_{y \to \infty} y \mathbb{E}^{iy} \left[\operatorname{Im}(B_{\tau_A}) \right].$$

Let $\text{Im}[A] = \sup\{\text{Im}(z) : z \in A\}$. Then if $y \ge \text{Im}[A]$, we can also write

$$\operatorname{hcap}(A) = \frac{1}{\pi} \int_{-\infty}^{\infty} \mathbb{E}^{x+iy} \left[\operatorname{Im}(B_{\tau_A}) \right] dx.$$

These last two definitions do not require $\mathbb{H} \setminus A$ to be simply connected, and the latter definition does not require *A* to be bounded but only that $\text{Im}[A] < \infty$.

For \mathbb{H} -hulls (that is, for relatively closed *A* for which $\mathbb{H} \setminus A$ is simply connected), the half-plane capacity is comparable to a more geometric quantity that we define. This is not new (the second author learned it from Oded Schramm in oral communication), but we do not know of a proof in the literature³. In this note, we prove the fact giving (nonoptimal) bounds on the constant. We start with the definition of the geometric quantity.

Definition 1. For an \mathbb{H} -hull A, let hsiz(A) be the 2-dimensional Lebesgue measure of the union of all balls centered at points in A that are tangent to the real line. In other words

hsiz(A) = area
$$\left[\bigcup_{x+iy \in A} \mathscr{B}(x+iy,y) \right],$$

where $\mathscr{B}(z,\epsilon)$ denotes the disk of radius ϵ about z.

In this paper, we prove the following.

Theorem 1. For every \mathbb{H} -hull A,

$$\frac{1}{66}\operatorname{hsiz}(A) < \operatorname{hcap}(A) < \frac{7}{2\pi}\operatorname{hsiz}(A).$$

2 Proof of Theorem 1

It suffices to prove this for weakly bounded \mathbb{H} -hulls, by which we mean \mathbb{H} -hulls A with $\text{Im}(A) < \infty$ and such that for each $\epsilon > 0$, the set $\{x + iy : y > \epsilon\}$ is bounded. Indeed, for \mathbb{H} -hulls that are not weakly bounded, it is easy to verify that $\text{hsiz}(A) = \text{hcap}(A) = \infty$.

We start with a simple inequality that is implied but not explicitly stated in [1]. Equality is achieved when *A* is a vertical line segment.

Lemma 1. If A is an \mathbb{H} -hull, then

$$\operatorname{hcap}(A) \ge \frac{\operatorname{Im}[A]^2}{2}.$$
(1)

 $^{^{3}}$ After submitting this article, we learned that a similar result was recently proved by Carto Wong as part of his Ph.D. research.

Proof. Due to the continuity of hcap with respect to the Hausdorff metric on \mathbb{H} -hulls, it suffices to prove the result for \mathbb{H} -hulls that are path-connected. For two \mathbb{H} -hulls $A_1 \subseteq A_2$, it can be seen using the Optional stopping theorem that hcap $(A_1) \leq \text{hcap}(A_2)$. Therefore without loss of generality, A can be assumed to be of the form $\eta(0, T]$ where η is a simple curve with $\eta(0+) \in \mathbb{R}$, parameterized so that hcap $[\eta(0, t]) = 2t$. In particular, T = hcap(A)/2. If $g_t = g_{\eta(0,t]}$, then g_t satisfies the Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \quad g_0(z) = z,$$
 (2)

where $U : [0, T] \to \mathbb{R}$ is continuous. Suppose $\text{Im}(z)^2 > 2 \text{hcap}(A)$ and let $Y_t = \text{Im}[g_t(z)]$. Then (2) gives

$$-\partial_t Y_t^2 \le \frac{4Y_t}{|g_t(z) - U_t|^2} \le 4,$$

which implies

$$Y_T^2 \ge Y_0^2 - 4T > 0$$

This implies that $z \notin A$, and hence $\text{Im}[A]^2 \leq 2 \text{hcap}(A)$.

The next lemma is a variant of the Vitali covering lemma. If c > 0 and $z = x + iy \in \mathbb{H}$, let

$$\mathscr{I}(z,c) = (x - cy, x + cy),$$
$$\mathscr{R}(z,c) = \mathscr{I}(z,c) \times (0, y] = \{x' + iy' : |x' - x| < cy, 0 < y' \le y\}$$

Lemma 2. Suppose *A* is a weakly bounded \mathbb{H} -hull and c > 0. Then there exists a finite or countably infinite sequence of points $\{z_1 = x_i + iy_1, z_2 = x_2 + iy_2, ...\} \subset A$ such that:

- $y_1 \ge y_2 \ge y_3 \ge \cdots;$
- the intervals $\mathscr{I}(x_1, c), \mathscr{I}(x_2, c), \ldots$ are disjoint;
 - $A \subset \bigcup_{j=1}^{\infty} \mathscr{R}(z_j, 2c).$ (3)

Proof. We define the points recursively. Let $A_0 = A$ and given $\{z_1, \ldots, z_i\}$, let

$$A_j = A \setminus \left[\bigcup_{k=1}^j \mathscr{R}(z_j, 2c) \right].$$

If $A_j = \emptyset$ we stop, and if $A_j \neq \emptyset$, we choose $z_{j+1} = x_{j+1} + iy_{j+1} \in A$ with $y_{j+1} = \text{Im}[A_j]$. Note that if $k \leq j$, then $|x_{j+1} - x_k| \geq 2c y_k \geq c (y_k + y_{j+1})$ and hence $\mathscr{I}(z_{j+1}, c) \cap \mathscr{I}(z_k, c) = \emptyset$. Using the weak boundedness of A, we can see that $y_j \to 0$ and hence (3) holds.

Lemma 3. For every c > 0, let

$$\rho_c := rac{2\sqrt{2}}{\pi} \arctan\left(e^{- heta}\right), \quad \theta = \theta_c = rac{\pi}{4c}$$

Then, for any c > 0, if A is a weakly bounded \mathbb{H} -hull and $x_0 + iy_0 \in A$ with $y_0 = \text{Im}(A)$, then

$$\operatorname{hcap}(A) \ge \rho_c^2 y_0^2 + \operatorname{hcap}\left[A \setminus \mathscr{R}(z, 2c)\right].$$

Proof. By scaling and invariance under real translation, we may assume that $\text{Im}[A] = y_0 = 1$ and $x_0 = 0$. Let $S = S_c$ be defined to be the set of all points z of the form x + iuy where $x + iy \in A \setminus \mathscr{R}(i, 2c)$ and $0 < u \le 1$. Clearly, $S \cap A = A \setminus \mathscr{R}(i, 2c)$. Using the capacity inequality [1, (3.10)]

$$\operatorname{hcap}(A_1 \cup A_2) - \operatorname{hcap}(A_2) \le \operatorname{hcap}(A_1) - \operatorname{hcap}(A_1 \cap A_2), \tag{4}$$

we see that

$$hcap(S \cup A) - hcap(S) \le hcap(A) - hcap(S \cap A).$$

Hence, it suffices to show that

$$\operatorname{hcap}(S \cup A) - \operatorname{hcap}(S) \ge \rho_c^2.$$

Let *f* be the conformal map of $\mathbb{H} \setminus S$ onto \mathbb{H} such that z - f(z) = o(1) as $z \to \infty$. Let $S^* := S \cup A$. By properties of halfplane capacity [1, (3.8)] and (1),

$$\operatorname{hcap}(S^*) - \operatorname{hcap}(S) = \operatorname{hcap}[f(S^* \setminus S)] \ge \frac{\operatorname{Im}[f(i)]^2}{2}.$$

Hence, it suffices to prove that

$$\operatorname{Im}[f(i)] \ge \sqrt{2}\rho = \frac{4}{\pi} \arctan\left(e^{-\theta}\right).$$
(5)

By construction, $S \cap \mathscr{R}(z, 2c) = \emptyset$. Let $V = (-2c, 2c) \times (0, \infty) = \{x + iy : |x| < 2c, y > 0\}$ and let τ_V be the first time that a Brownian motion leaves the domain. Then [1, (3.5)],

$$\operatorname{Im}[f(i)] = 1 - \mathbb{E}^{i} \left[\operatorname{Im}(B_{\tau_{s}}) \right] \geq \mathbb{P} \left\{ B_{\tau_{s}} \in [-2c, 2c] \right\} \geq \mathbb{P} \left\{ B_{\tau_{v}} \in [-2c, 2c] \right\}.$$

The map $\Phi(z) = \sin(\theta z)$ maps *V* onto \mathbb{H} sending [-2c, 2c] to [-1, 1] and $\Phi(i) = i \sinh \theta$. Using conformal invariance of Brownian motion and the Poisson kernel in \mathbb{H} , we see that

$$\mathbb{P}\left\{B_{\tau_{V}} \in \left[-2c, 2c\right]\right\} = \frac{2}{\pi} \arctan\left(\frac{1}{\sinh\theta}\right) = \frac{4}{\pi} \arctan\left(e^{-\theta}\right).$$

The second equality uses the double angle formula for the tangent.

Lemma 4. Suppose c > 0 and $x_1 + iy_1, x_2 + iy_2, \dots$ are as in Lemma 2. Then

hsiz(A)
$$\leq [\pi + 8c] \sum_{j=1}^{\infty} y_j^2$$
. (6)

If $c \geq 1$, then

$$\pi \sum_{j=1}^{\infty} y_j^2 \le \operatorname{hsiz}(A).$$
(7)

Proof. A simple geometry exercise shows that

area
$$\left[\bigcup_{x+iy\in\mathscr{R}(z_j,2c)}\mathscr{B}(x+iy,y)\right] = [\pi+8c]y_j^2.$$

Since

$$A \subset \bigcup_{j=1}^{\infty} \mathscr{R}(z_j, 2c),$$

the upper bound in (6) follows. Since $c \ge 1$, and the intervals $\mathscr{I}(z_j, c)$ are disjoint, so are the disks $\mathscr{B}(z_j, y_j)$. Hence,

$$\operatorname{area}\left[\bigcup_{x+iy\in A}\mathscr{B}(x+iy,y)\right] \ge \operatorname{area}\left[\bigcup_{j=1}^{\infty}\mathscr{B}(z_j,y_j)\right] = \pi \sum_{j=1}^{\infty} y_j^2.$$

Proof of Theorem 1. Let $V_j = A \cap \mathscr{R}(z_j, c)$. Lemma 3 tells us that

hcap
$$\left[\bigcup_{k=j}^{\infty} V_{j}\right] \ge \rho_{c}^{2} y_{j}^{2} + hcap \left[\bigcup_{k=j+1}^{\infty} V_{j}\right],$$

and hence

$$\operatorname{hcap}(A) \ge \rho_c^2 \sum_{j=1}^{\infty} y_j^2.$$
(8)

Combining this with the upper bound in (6) with any c > 0 gives

$$\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)} \ge \frac{\rho_c^2}{\pi + 8c}.$$

Choosing $c = \frac{8}{5}$ gives us

$$\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)} > \frac{1}{66}.$$

For the upper bound, choose a covering as in Lemma 2. Subadditivity and scaling give

$$\operatorname{hcap}(A) \leq \sum_{j=1}^{\infty} \operatorname{hcap}\left[\mathscr{R}(z_j, 2cy_j)\right] = \operatorname{hcap}[\mathscr{R}(i, 2c)] \sum_{j=1}^{\infty} y_j^2.$$
(9)

Combining this with the lower bound in (6) with c = 1 gives

$$\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)} \le \frac{\operatorname{hcap}[\mathscr{R}(i,2)]}{\pi}.$$

Note that $\Re(i,2)$ is the union of two real translates of $\Re(i,1)$, $hcap[\Re(i,2)] \le 2hcap[\Re(i,1)]$ whose intersection is the interval (0,i]. Using (4), we see that

$$\operatorname{hcap}(\mathscr{R}(i,2)) \leq 2\operatorname{hcap}(\mathscr{R}(i,1)) - \operatorname{hcap}((0,i]) = 2\operatorname{hcap}(\mathscr{R}(i,1)) - \frac{1}{2}.$$

But $\mathscr{R}(i, 1)$ is strictly contained in $A' := \{z \in \mathbb{H} : |z| \le \sqrt{2}\}$, and hence

$$\operatorname{hcap}[\mathscr{R}(i,1)] < \operatorname{hcap}(A') = 2.$$

Interpretation of Capacity

The last equality can be seen by considering $h(z) = z + 2z^{-1}$ which maps $\mathbb{H} \setminus A'$ onto \mathbb{H} . Therefore,

$$\operatorname{hcap}[\mathscr{R}(i,2)] < \frac{7}{2},$$
$$\frac{\operatorname{hcap}(A)}{\operatorname{hsiz}(A)} < \frac{7}{2\pi}.$$

and hence

An equivalent form of this result can be stated⁴ in terms of the area of the 1-neighborhood of A (denoted hyp(A)) in the hyperbolic metric. The unit hyperbolic ball centered at a point $x + \iota y$ is the Euclidean ball with respect to which $x + \iota y/e$) and $x = \iota ye$ are diametrically opposite boundary points. For any *c*, choosing a covering as in Lemma 2,

$$\operatorname{hyp}(A) < \left(\left(\frac{e}{2}\right)^2 \pi + 4ec \right) \sum_{j=1}^{\infty} y_j^2.$$

So by (8),

$$\frac{\operatorname{hcap}(A)}{\operatorname{hyp}(A)} > \rho_c^2 \left(\left(\frac{e}{2}\right)^2 \pi + 4ec \right)^{-1}.$$

Setting *c* to $\frac{8}{5}$,

$$\frac{\mathrm{hcap}(A)}{\mathrm{hyp}(A)} > \frac{1}{100}.$$

For any $c > \frac{e-e^{-1}}{2}$,

hyp(A)
$$\ge \pi \left(\frac{e - e^{-1}}{2}\right)^2 \sum_{j=1}^{\infty} y_j^2.$$

So by (9),

$$\frac{\operatorname{hcap}(A)}{\operatorname{hyp}(A)} < \frac{\operatorname{hcap}[\mathscr{R}(i,3)]}{\pi \left(\frac{e-e^{-1}}{2}\right)^2}.$$

 $\operatorname{hcap}(\mathscr{R}(i,3)) \leq \operatorname{hcap}(\mathscr{R}(i,1)) + \operatorname{hcap}(\mathscr{R}(i,2)) - \operatorname{hcap}((0,i]) \leq 5.$

Therefore,

$$\frac{1}{100} < \frac{\text{hcap}(A)}{\text{hyp}(A)} < \frac{20}{\pi (e - e^{-1})^2}.$$

References

[1] G. Lawler, *Conformally Invariant Processes in the Plane*, American Mathematical Society, 2005. MR2129588

⁴This formulation was suggested to us by Scott Sheffield and the anonymous referee.