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Abstract

We use a coupling method for functional stochastic differential equations with bounded memory
to establish an analogue of Wang’s dimension-free Harnack inequality [13]. The strong Feller
property for the corresponding segment process is also obtained.

1 Introduction and Statement of Results

Harnack inequalities are known to hold for a wide range of Markov processes such as diffusions
or symmetric jump processes on manifolds, graphs, fractals or even more general metric mea-
sure spaces, where they are a fundamental tool for the analysis of the corresponding transition
semigroups, cf. [6]. In most cases, a Harnack inequality is established under appropriate ellip-
ticity conditions by harmonic analysis arguments. Such arguments are typically not applicable
in non-Markovian or infinite dimensional set-ups. However, as shown in [1] for finite dimen-
sional diffusions, the dimension-free Harnack inequality of Wang [13] may be proved by a purely
probabilistic coupling technique which was recently adapted to the infinite dimensional case of
monotone SPDEs [14, 9, 2].

In this note we show that the coupling method works well also in the non-Markovian case of
stochastic functional equations with additive noise and Lipschitz drift with bounded delay. More-
over, the strong Feller property is obtained for the corresponding infinite dimensional segment
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process. The main additional difficulty compared to the diffusive case [[1]] is the necessity to cou-
ple together two solutions including their pasts at a given time. It turns out that this can be done
simply by driving the second process with the drift induced from the segment process of the first.

For a precise statement of our results, fix r > 0 and let ¢ denote the space of continuous R?-
valued functions on [—r, 0] endowed with the sup-norm || -||. For a function or a process X defined
on [t —r,t] we write X,(s) :=X(t +5), s € [—r,0]. Consider the stochastic functional differential
equation

{ dx(t) =V(X,) dt + dw(t), i

XOZQPJ

where W is an R¢-valued Brownian motion defined on a complete probability space (2, Z,P)
endowed with the augmented Brownian filtration ﬂ'tw =oc(W),0<ust)VAN CZ,where &
denotes the null-sets in &, ¢ is an (ﬁtw )-independent %-valued random variable and V : ¢ — R?
is a measurable map.

Below we assume that V admits a decomposition
V(x) =v(x(0)) + Z(x), (1.2)
where v € C(R%; R?) is a dissipative vector field on R, i.e.
(v(a)—v(b),a—b) <0 Va,beR? (1.3)
and Z is globally Lipschitz on 4, i.e. for some L > 0,

1Zx)=ZWI<Lllx=yll Vx,y €. 1.4)

Global existence and uniqueness for (1.I)) hold under much weaker conditions, c.f. [10]. In partic-
ular, the corresponding segment process {X;/ € €|t >0, € €,t — X?(t) solves (T.1)} induces
a Markov semigroup (P,) on €6 via ¢ — P,f(¢) = E(f (X)), for bounded measurable f : € — R.
Now our main result is the following version of Wang’s dimension free Harnack inequality for the
semigroup (P,).

Theorem 1.1. Assume that V =v + Z as in (1.2)) with dissipative v and Lip,(Z) < L, then for any
p > 1,T > r and any bounded measurable f : € — R,

(Pef Y <P ep( 503 y)) Yy e, .5)

where

p2(x,y) = inf

s€lr,T] S —

_ 2
{|x(0) yr(O)' +o2lx —y||2}.

Remark 1.2. Elementary computation yields

[x(0)—y(0)* 2y — vI[|2 < 1x(0)~y(0)]
p2 (x’y) — T—r + TL ||X J/H for T sSr + LO“X*y‘(‘)
d 2L1x(0) = y(O) - llx = yll +r L2l|x = y|* for T > r + KO0,

Moreover, (X,) exhibits the following strong Feller property on the infinite dimensional state space
% . Since the driving noise for (X,) is only d - dimensional, this is a noticeable result.
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Corollary 1.3. Under (1.2)-(1.4) the segment process (X[) is eventually strong Feller, i.e. let f :
% — R be bounded measurable, then for t > r the map x — P,f(x) € R is continuous on 6.

Remark 1.4. Our proofs below can easily be modified to include the case of random V and
random, strictly elliptic diffusion coefficient o = o(t) € R¢*¢ in front of dW(t) in (I.I). However,
(X,) can generally not be expected to be strong Feller in case o depends on the segment X,, i.e.
o = o(X,). If, for example, d = 1 and the diffusion part in is of the form g(X(t — 1)) or
g(ftt_rX (s) ds) with smooth, strictly increasing and positive g, then the transition probabilities
P.(x, dy) and P.(z, dy) are mutually singular for all t > 0 whenever x # z, since the initial
condition can perfectly recovered from X,, using the law of the iterated logarithm c.f. [[T1]].

Another straightforward consequence of Theorem|[1.1]is the following smoothing property of (P,).
For more on this we refer to [[14] [2]].

Corollary 1.5. Assume that (X,) admits an invariant measure y € 4 (€ ) such that
f e)\”XHZ,u( dx) < oo for some A > 4(2L +rL?), (1.6)
%

then for t > r + L™, P, is u-hyperbounded i.e. P, is a bounded operator from L*(6,u) to L*(6, u).

In the following we give an example when holds. For z € R? we set v(z) = —Ayz for some
Ao > 4(2L + rL?). Furthermore, assume that sup ||Z(x)|| < M for some M > 0. Clearly in this
x€R?

case the solution (X (t)),>o of (1.1) solves the following integral equation

t

X(t)=e X, + J e MUz (x.) ds +J% (1), (1.7)
0

where J?o(t) := fot e~ *(t=) dW. is the Ornstein-Uhlenbeck process solving

du(t) =v(u(t))dt+ dw,, t=>0
{ u(0) =0.

Let 6 > 0. By using (1.7) there exists a positive constant c5 > 1 such that for t > 0,

M2
IX (O < cse X 1> + ¢G5z T 1+ &)%) (1.8)
0
On the other hand we know that supE (e‘g”%(f)'z) < 400 whenever ¢ < A;,. Now Theorem 12.1 in
20

(8] implies that
A
supE(eeHJfo”z) <+o0o fore <A,

t=0

Therefore, from (1.8) and by assuming that the initial condition X, is deterministic we have

supE(es”Xf”z) <+o0o fore(1+8) < A,.

t=0

From the arbitrariness of & we obtain

supE(eg”Xf”z) <400 fore <2, (1.9)

t=0
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This implies in particular tightness of the family {X, : t > 0} and hence by using a similar argu-
ment as in [[4] we deduce the existence of an invariant measure u for the segment process (X,);>o
on the space ¥. Moreover by [[12] Theorem 3] we have ¥ (X,) converges to y in total variation
as t — +o00. Hence inequality yields

J e£||X||2 p(dx) <+oo fore < A,
€

Thus, choosing A such that 4(2L + rL?) < A < A, yields the integrability condition (I.6). It is
classical that the Harnack inequality implies that the semigroup (P,),>¢ is strong Feller and
irreducible, hence uniqueness of u follows from the classical Doob’s Theorem [3} Theorem 4.2.1].
Alternatively, uniqueness follows from [[5] and [[12, Theorem 3].

2 Proofs

Proof of Theorem As in [[1]] we shall employ a coupling argument. Let x,y € € be given and
let X denote the solution of (1.1 starting from initial condition x € ¥. Fix 1 > € > 0 and define
H:RY—>RY,

X |x|¢, ifx#0
= ||
Hx) { 0 if x = 0.

H is continuous and the gradient of the convex function ﬁlxl”f on RY, hence it is also mono-
tone, i.e.
(Hx)—H(y),x—y)>0 Vx,yeR?

where (-,-) denotes the standard inner product on R?. Thus, for fixed y > 0, by the general
existence and uniqueness result for monotone SDEs, c.f. e.g [[7], there exists a unique process
(Y (1)) solving

{ dY () =v(Y(t))dt + Z(X,) dt —y-H(Y (t) — X(t)) dt + dW(¢t), @1)
Y(0) = y(0), '
and which we extend by Y (t) = y(t) for t € [—r,0[.
In particular, in view of (I.3), for R(t) = X(t) — ¥ (t) and t > 0,
dIR]*(£) < =2y - |RI"(0) dt,
ie.
RO < (RO = (1= e)- )77, 2.2)

such that R(t) = 0 for t > |[R(0)|'"¢/(y(1 — €)). Hence, for s €]r,T], choosing y = y, =
[R(0)|*~¢/((s — r)(1 — €)) implies X, = ¥, in € for all t >s.

On the other hand we may rewrite equation (2.I)) with y =y, as

(2.3)

{ dy(t) = V(f/t) dt + dw (),
1?0 =Y,
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where dW(t) = dw(t) — £(¢)dt with £(¢) = 1, - H(F () = X (1)) — (Z(X,) — Z(T,)).

Now, due to (2.2)) and the Lipschitz bound on Z it holds that

T s s
| wwrass | Rt | e
0
R(0)?
(1_|eg)2l J. IR, ||2 du
RO
Sa-e6-n

where in the last step we used the a.s. monotonicity of u — |R(u)| for u > 0.

+L2s||Ry|I*> P-as., 2.4

In particular, the Novikov condition is satisfied for the exponential martingale &(& ) with &£(t) =
fot {(s)dW(s), t € [0,T], and by the Girsanov theorem (Wt)te[o,ﬂ is a Brownian motion under

the probability measure dQ = D dP with D = exp( ) ({(w), dW(w) — 1 [ S dw), i.e. (Q,7)
is weak solution to starting from y.

Finally, forp>1andq=p/(p — 1)

Prf(y) = Bg[f (7)) = Bx[D - f (F)] = By [D - £ (X7)]
< (Bp[DU]) (Bef?(X1))? = (Bx[DU])7 - (Pr(FP)(x))7,

with

]EP(Dq)—Ep(eXp(qJ C(u)dW(u)——J CW? du)) < |Iexp( )f IE@I? | ey

Hence, due to (2.4), we arrive at

0) — y(0)|?
('f(_ i)(ly ( jl) +s1?x—yI?)),

such that the claim follows by letting ¢ — 0 and optimizing over s €]r, T]. O

(Prf Y < Pr(MC)exp (2

Proof of Corollary[1.3] For T > r and x, y € ¢, proceed as in the previous proof by choosing € > 0
and s = T. Then for f : ¥ — R bounded measurable

Prf () = Prf (V)] = [Eqf (Y1) — Epf (Xp)| = [Ep((1 = D)f (X))
< Iflloo VER(I1 = DI*) = lIf lloo vV Ep(D?) — 1

0 0
< IIflloo\/ xp (2 (Ly()')

+TLlx = yl?)) — 1,

which tends to zero, even uniformly, for x — y in 6. O
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