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Abstract

We prove an equality-in-law relating the maximum of GUE Dyson’s Brownian motion and the non-
colliding systems with a wall. This generalizes the well known relation between the maximum of
a Brownian motion and a reflected Brownian motion.
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1 Introduction and Results

Dyson’s Brownian motion model of GUE (Gaussian unitary ensemble) is a stochastic process of po-
sitions of m particles, X (t) = (X1(t), . . . , Xm(t)) described by the stochastic differential equation,

dX i = dBi +
∑

1≤ j≤m
j 6=i

d t

X i − X j

, 1≤ i ≤ m, (1.1)

where Bi , 1≤ i ≤ m are independent one dimensional Brownian motions[6]. The process satisfies
X1(t) < X2(t) < · · · < Xm(t) for all t > 0. We remark that the process X can be started from the
origin, i.e., one can take X i(0) = 0,1≤ i ≤ m. See [11].
One can introduce similar non-colliding system of m particles with a wall at the origin [8, 9, 17].

The dynamics of the positions of the m particles X (C) = (X
(C)

1 , . . . , X (C)
m
) satisfying 0 < X1(t) <

X2(t)< · · ·< Xm(t) for all t > 0 are described by the stochastic differential equation,

dX
(C)

i
= dBi +

d t

X
(C)

i

+
∑

1≤ j≤m
j 6=i






1

X
(C)

i
− X

(C)

j

+
1

X
(C)

i
+ X

(C)

j




 d t, 1≤ i ≤ m. (1.2)

This process is referred to as Dyson’s Brownian motion of type C . It can be interpreted as a system
of m Brownian particles conditioned to never collide with each other or the wall.
One can also consider the case where the wall above is replaced by a reflecting wall[9]. The

dynamics of the positions of the m particles X (D) = (X
(D)

1 , . . . , X (D)
m
) satisfying 0≤ X1(t) < X2(t) <

· · ·< Xm(t) for all t > 0, is described by the stochastic differential equation,

dX
(D)

i
= dBi +

1

2
1(i=1)d L(t) +
∑

1≤ j≤m
j 6=i






1

X
(D)

i
− X

(D)

j

+
1

X
(D)

i
+ X

(D)

j




 d t, 1≤ i ≤ m, (1.3)

where L(t) denotes the local time of X
(D)

1 at the origin. This process will be referred to as
Dyson’s Brownian motion of type D. Some authors consider a process defined by the s.d.e.s
(1.3) without the local time term. In this case the first component of the process is not con-
strained to remain non-negative, and the process takes values in the Weyl chamber of type D,
{|x1| < x2 < x3 . . . < xm}. The process we consider with a reflecting wall is obtained from this
by replacing the first component with its absolute value, with the local time term appearing as a
consequence of Tanaka’s formula.
It is known the processes X (C) and X (D) can be obtained using the Doob h-transform, see [8, 9].

Let (P0,(C)
t ; t ≥ 0), resp. (P0,(D)

t ; t ≥ 0), be the transition semigroup for m independent Brownian
motions killed on exiting {0< x1 < x2 . . .< xm}, resp. the transition semigroup for m independent
Brownian motions reflected at the origin killed on exiting {0≤ x1 < x2 . . .< xm}. From the Karlin-
McGregor formula, the corresponding densities can be written as

det{φt(x i − x ′
j
)−φt(x i + x ′

j
)}1≤i, j≤m, (1.4)

resp.,

det{φt(x i − x ′
j
) +φt(x i + x ′

j
)}1≤i, j≤m, (1.5)
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where φt(z) =
1p
2πt

e−z2/(2t). Let

h(C)(x) =

m∏

i=1

x i

∏

1≤i< j≤m

(x2
j
− x2

i
),

h(D)(x) =
∏

1≤i< j≤m

(x2
j
− x2

i
).

(1.6)

For notational simplicity we suppress the index C , D for the semigroups and in h in the following.
Then one can show that h(x) is invariant for the P0

t
semigroup and we may define a Markov

semigroup by
Pt(x , d x ′) = h(x ′)P0

t
(x , d x ′)/h(x). (1.7)

This is the semigroup of the Dyson non-colliding system of Brownian motions of type C and D.
Similarly to the X process, the processes X (C) and X (D) can also be started from the origin (see [4]
or use Lemma 4 in [9] and apply the same arguments as in [11]).
In GUE Dyson’s Brownian motion of n particles, let us take the initial conditions to be X i(0) =
0,1 ≤ i ≤ n. The quantity we are interested in is the maximum of the position of the top particle
for a finite duration of time, max0≤s≤t Xn(s). In the sequel we write sup instead of max to conform
with common usage in the literature. Let m be the integer such that n = 2m when n is even and
n = 2m− 1 when n is odd. Consider the non-colliding systems of X (C), resp. X (D), of m particles

starting from the origin, X
(C)

i
(0) = 0,1≤ i ≤ m, resp. X

(D)

i
(0) = 0,1≤ i ≤ m.

Our main result of this note is

Theorem 1. Let X and X (C), X (D) start from the origin. Then for each fixed t ≥ 0, one has

sup
0≤s≤t

Xn(s)
d
=

¨

X (C)
m
(t), for n= 2m,

X (D)
m
(t), for n= 2m− 1.

(1.8)

To prove the theorem we introduce two more processes Z j and Yj . In the Z process, Z1 ≤ Z2 ≤
. . . ≤ Zn, Z1 is a Brownian motion and Z j+1 is reflected by Z j , 1 ≤ j ≤ n− 1. Here the reflection
means the Skorokhod construction to push Z j+1 up from Z j . More precisely,

Z1(t) = B1(t),

Z j(t) = sup
0≤s≤t

(Z j−1(s) + B j(t)− B j(s)), 2≤ j ≤ n, (1.9)

where Bi , 1 ≤ i ≤ n are independent Brownian motions, each starting from 0. The process is the
same as the process (X 1

1(t), X 2
2(t), . . . , X n

n
(t); t ≥ 0) studied in section 4 of [18]. The represen-

tation (1.9) was given earlier in [2]. In the Y process, 0 ≤ Y1 ≤ Y2 ≤ . . . ≤ Yn, the interactions
among Yi ’s are the same as in the Z process, i.e., Yj+1 is reflected by Yj , 1 ≤ j ≤ n− 1, but Y1 is
now a Brownian motion reflected at the origin (again by Skorokhod construction). Similarly to
(1.9),

Y1(t) = B1(t)− inf
0≤s≤t

B1(s) = sup
0≤s≤t

(B1(t)− B1(s)),

Yj(t) = sup
0≤s≤t

(Yj−1(s) + B j(t)− B j(s)), 2≤ j ≤ n.
(1.10)

From the results in [11, 5, 18], we know

(Xn(t); t ≥ 0)
d
= (Zn(t); t ≥ 0) (1.11)
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and hence

sup
0≤s≤t

Xn(s)
d
= sup

0≤s≤t

Zn(s). (1.12)

In this note we show

Proposition 2. The following equalities in law hold between processes:

(Y2m(t); t ≥ 0)
d
= (X (C)

m
(t); t ≥ 0),

(Y2m−1(t); t ≥ 0)
d
= (X (D)

m
(t); t ≥ 0),

(1.13)

m ∈ N.

The proof of this proposition is given in Section 2. The idea behind it is that the processes (Yi)i≥1,

(X
(C)

j
) j≥1 and (X (D)

j
) j≥1 could be realized on a common probability space consisting of Brownian

motions satisfying certain interlacing conditions with a boundary [18, 19]. Such a system is
expected to appear as a scaling limit of the discrete processes considered in [3, 19]. In this
enlarged process, the processes Yn(t) and X (C)

m
(t) or X (D)

m
(t) just represent two different ways

of looking at the evolution of a specific particle and so the statement of Proposition 2 follows
immediately. Justification of such an approach is however quite involved, and we prefer to give
a simple independent proof. See also [5] for another representation of X (C)

m
and X (D)

m
in terms of

independent Brownian motions.
Then to prove (1.8) it is enough to show

Proposition 3. For each fixed t we have

sup
0≤s≤t

Zn(s)
d
= Yn(t). (1.14)

This is shown in Section 3. For n= 1 case, this is well known from the Skorokhod construction of
reflected Brownian motion [12]. The n > 1 case can also be understood graphically by reversing
time direction and the order of particles. This relation could also be established as a limiting case
of the last passage percolation. In fact the identities in our theorem was first anticipated from the
consideration of a diffusion scaling limit of the totally asymmetric exclusion process with 2 speeds
[1] (in particular the last part of sections 1,2 and section 7).
Before closing the section, we remark that similar maximization properties of Dyson’s Brownian
motion have been considered for other boundary conditions in [15, 10, 7].

Acknowledgments.

TS thanks S. Grosskinsky and O. Zaboronski for inviting him to a workshop at University of War-
wick, and N. O’Connell and H. Spohn for useful discussions and suggestions.

2 Proof of Proposition 2

In this section we prove the relation between X (C) or X (D) and Y , (1.13). The following lemma
is a generalization of the Rogers-Pitman criterion [13] for a function of a Markov process to be
Markovian. Note that it gives us a method to deduce an equality in law between two processes
that need not themselves be Markov- as indeed is the case in Propostion 2
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Lemma 4. Suppose that {X (t) : t ≥ 0} is a Markov process with state space E, evolving according to

a transition semigroup (Pt ; t ≥ 0) and with initial distribution µ. Suppose that {Y (t) : t ≥ 0} is a

Markov process with state space F, evolving according to a transition semigroup (Q t ; t ≥ 0) and with

initial distribution ν . Suppose further that L is a Markov transition kernel from E to F, such that

µL = ν and the intertwining Pt L = LQ t holds. Now let f : E → G and g : F → G be maps into a

third state space G, and suppose that

L(x , ·) is carried by {y ∈ F : g(y) = f (x)} for each x ∈ E.

Then we have

{ f (X (t)) : t ≥ 0} d
= {g(Y (t)) : t ≥ 0},

in the sense of finite dimensional distributions.

Proof of Lemma 4. For any bounded function α on G let Γ1α be the function α ◦ f defined on E

and let Γ2α be the function α ◦ g defined on F . Then it follows from the condition that L(x , ·) is
carried by {y ∈ F : g(y) = f (x)} that whenever h is a bounded function defined on F then

L(Γ2α× h) = Γ1α× Lh, (2.1)

which is shorthand for
∫

L(x , d y)Γ2α(y)h(y) = Γ1α × Lh. For any bounded test functions
α0,α1, · · · ,αn defined on G, and times 0 < t1 < · · · < tn, we have, using the previous equation
and the intertwining relation repeatedly,

E[α0(g(Y (0)))α1(g(Y (t1))) . . .αn(g(Y (tn)))]

= ν(Γ2α0 ×Q t1
(Γ2α1 ×Q t2−t1

(· · · (Γ2αn−1 ×Q tn−tn−1
Γ2αn) · · · )))

= µL(Γ2α0 ×Q t1
(Γ2α1 ×Q t2−t1

(· · · (Γ2αn−1 ×Q tn−tn−1
Γ2αn) · · · )))

= µ(Γ1α0 × Pt1
(Γ1α1 × Pt2−t1

(· · · (Γ1αn−1 × Ptn−tn−1
Γ1αn) · · · )))

= E[α0( f (X (0)))α1( f (X (t1))) . . .αn( f (X (tn)))] (2.2)

which proves the equality in law.

We let (Y (t) : t ≥ 0) be the process Y of n reflected Brownian motions with a wall introduced
in the previous section. It is clear from the construction (1.10) that the process Y is a time
homogeneous Markov process. We denote its transition semigroup by

�
Q t ; t ≥ 0). It turns out

that there is an explicit formula for the corresponding densities. Recall φt(z) =
1p
2πt

e−z2/(2t). Let

us define φ(k)t (y) =
dk

d ykφt(y) for k ≥ 0 and φ(−k)
t (y) = (−1)k

∫∞
y

(z−y)k−1

(k−1)!
φt(z)dz for k ≥ 1.

Proposition 5. The transition densities qt(y, y ′) from y = (y1, . . . , yn) at t = 0 to y ′ = (y ′1, . . . , y ′
n
)

at t of the Y process can be written as

qt(y, y ′) = det{ai, j(yi , y ′
j
)}1≤i, j≤n (2.3)

where ai, j is given by

ai, j(y, y ′) = (−1)i−1φ
( j−i)
t (y + y ′) + (−1)i+ jφ

( j−i)
t (y − y ′). (2.4)

The same type of formula was first obtained for the totally asymmetric simple exclusion process
by Schütz [16]. The formula for the Z process was given as a Proposition 8 in [18], see also [14].
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Figure 1: The set K. The triangle represents the intertwining relations of the variables z and the
vertical line on the left indicates z2k+1

1 ≥ 0, see (2.5),(2.6). The set of variables on the bottom line
is denoted by b(z) and the one on the upper right line by e(z).

Proof of Proposition 5. For a fixed y ′, define G(y, t) to be (2.3) as a function of y and t. We check
that G satisfies (i) the heat equation, (ii) the boundary conditions ∂ G

∂ y1
|y1=0 = 0, ∂ G

∂ yi

|yi=yi−1
= 0, i =

2,3, . . . , n and (iii) the initial conditions G(y, t = 0) =
∏n

i=1 δ(yi − y ′
i
).

(i) holds since φ(k)t (y) for each k satisfies the heat equation. (ii) follows from the relations,
∂

∂ y
a1 j(y, y ′)|y=0 = φ

( j)
t (y

′)+ (−1) j+1φ
( j)
t (−y ′) = 0 and ∂

∂ y
ai j(y, y ′) =−ai−1, j(y, y ′). For (iii) we

notice that the first term in (2.4) goes to zero as t → 0 for y, y ′ > 0 and the statement for the
remaining part is shown in Lemma 7 in [18].

For n= 2m, resp. n= 2m− 1 we take (X (t), t ≥ 0) to be Dyson Brownian motion of type C , resp.
of type D. The transition semigroup

�
Pt ; t ≥ 0
�

of this process is given by (1.7).
Let K denote the set with n layers z = (z1, z2, . . . , zn) where z2k = (z2k

1 , z2k
2 , . . . , z2k

k
) ∈ Rk

+
, z2k−1 =

(z2k−1
1 , z2k−1

2 , . . . , z2k−1
k
) ∈ Rk

+
and the intertwining relations,

z2k−1
1 ≤ z2k

1 ≤ z2k−1
2 ≤ z2k

2 ≤ . . .≤ z2k−1
k
≤ z2k

k
(2.5)

and
0≤ z2k+1

1 ≤ z2k
1 ≤ z2k+1

2 ≤ z2k
2 ≤ . . .≤ z2k

k
≤ z2k+1

k+1 (2.6)

hold (Fig. 1). Let n = 2m or n = 2m− 1 for some integer m. We define a kernel L0 from E =

{0 ≤ x1 ≤ . . . ≤ xm} to F = {0 ≤ y1 ≤ . . . ≤ yn}. For z ∈ K, define b(z) = zn = (zn
1 , . . . , zn

m
) ∈ E,

e(z) = (z1
1 , z2

1 , z3
2 , z4

2 , . . . , zn
m
) ∈ F and K(x) = {z ∈ K; b(z) = x ∈ E},K[y] = {z ∈ K; e(z) = y ∈ F}.

The kernel L0 is defined by

L0 g(x) =

∫

F

L0(x , d y)g(y) =

∫

K(x)

g(e(z))dz. (2.7)

where the integrals are taken with respect to Lebesgue measure but integrations with respect to z

on the RHS is for b(z) = x fixed.
The function h defined at (1.6) is equal to the Euclidean volume of K(x). Consequently we may
define L to be the Markov kernel L(x , d y) = L0(x , d y)/h(x). In the remaining part of this section
we show

Proposition 6.

LQ t = Pt L. (2.8)
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Now if we apply Lemma 4 with f (x) = xm, g(y) = yn and the initial conditions starting from the
origin we obtain (1.13).

Proof of Proposition 6. The kernels Pt(x , ·) and L(x , ·) are continuous in x . Thus we may consider
x in the interior of E, and it is enough to prove

(L0Q t)(x , d y) = (P0
t

L0)(x , d y). (2.9)

From the definition of the kernel L0, this is equivalent to showing

∫

K(x)

qt(e(z), y)dz =

∫

K[y]

p0
t
(x , b(z))dz (2.10)

where qt and p0 are densities corresponding to Q t and P0
t
. Integrations with respect to z are on

the LHS with b(z) = x fixed and on the RHS with e(z) = y fixed.
Let us consider the case where n = 2m. Using the determinantal expressions for qt and p0

t
we

show that both sides of (2.10) are equal to the determinant of size 2m whose (i, j) matrix element
is a2i, j(0, y j) for 1≤ i ≤ m, 1≤ j ≤ 2m and a2m, j(x i−m, y j) for m+ 1≤ i ≤ 2m, 1≤ j ≤ 2m.
The integrand of the LHS of (2.10) is

qt(e(z), y) = det{ai, j(e(z)i , y j)}1≤i, j≤2m (2.11)

with b(z) = x . We perform the integral with respect to z1, . . . , z2m−1 in this order. After the integral
up to z2l−1, 1≤ l ≤ m, we get the determinant of size 2m whose (i, j) matrix element is a2i, j(0, y j)

for 1 ≤ i ≤ l, a2l, j(z
2l
i−l

, y j) for l + 1 ≤ i ≤ 2l and ai, j(e(z)i , y j) for 2l + 1 ≤ i ≤ 2m. Here we use a
property of ai, j ,

ai, j(y, y ′) =

∫ ∞

y

ai−1, j(u, y ′)du, (2.12)

and do some row operations in the determinant. The case for l = m gives the desired expression.
The integrand of the RHS of (2.10) is

p0
t
(x , z2m) = det(a2m,2m(x i , z

2m
j
))1≤i, j≤m (2.13)

with the condition e(z) = y . We perform the integrals with respect to (z2m
1 , . . . , z2m

m−1),
(z2m−1

1 , . . . , z2m−1
m−1 ), . . . , z4

1 , z3
1 in this order. We use properties of ai, j ,

ai, j(y, y ′) =−
∫ ∞

y ′
ai, j+1(y,u)du, (2.14)

a2i,2 j(x , 0) = 0, a2i,2i−1(0, y) = 1, a2i, j(0, y) = 0, 2i ≤ j. (2.15)

After each integration corresponding to a layer of K we simplify the determinant using column
operations. We also expand the size of the determinant after an integration corresponding to
(z2l

1 , . . . , z2l
l−1) for 1≤ l ≤ m, by adding a new first row

�
1,1, . . . , 1
︸ ︷︷ ︸

l

, 0, 0, . . . , 0
︸ ︷︷ ︸

2m−2l+1

�
=

�
a2l,2l−1(0, z2l−1

1 ), . . . , a2l,2l−1(0, z2l−1
l
), a2l,2l(0, e(z)2l), . . . , a2l,2m(0, e(z)2m))

�
(2.16)
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together with a new column. After the integrals up to (z2l−1
1 , . . . , z2l−1

l−1 ) have been performed, we
obtain the determinant of size 2m− l + 1,

�
�
�
�
�

a2(l+i−1),2(l−1)(0, z2(l−1)
j

) a2(l+i−1), j+l−1(0, e(z) j+l−1)

a2m,2(l−1)(x i−m+l−1, z2(l−1)
j

) a2m, j+l−1(x i−m+l−1, e(z) j+l−1)

�
�
�
�
�
. (2.17)

Here 1≤ i ≤ m− l+1 (resp. m− l+2≤ i ≤ 2m− l+1) for the upper expression (resp. the lower
expression) and 1 ≤ j ≤ l − 1 (resp. l ≤ j ≤ 2m− l + 1) for the left (resp. right) expression. For
l = 1 this reduces to the same determinant as for the LHS.
The case n= 2m−1 is almost identical. Similar arguments show that both sides of (2.9) are equal
to a determinant of size 2m− 1 whose (i, j) matrix element is a2i, j(0, y j) for 1 ≤ i ≤ m− 1,1 ≤
j ≤ 2m− 1 and a2m−1, j(x i−m+1, y j) for m+ 1≤ i ≤ 2m− 1,1≤ j ≤ 2m− 1.

3 Proof of Proposition 3

Using (1.10) repeatedly, one has

Yn(t) = sup
0≤t1≤...≤tn≤t

n∑

i=1

(Bi(t i+1)− Bi(t i)) (3.1)

with tn+1 = t. By renaming t − tn−i+1 by t i and changing the order of the summation, we have

Yn(t) = sup
0≤t1≤...≤tn≤t

n∑

i=1

(Bn−i+1(t − t i+1)− Bn−i+1(t − t i)). (3.2)

Since B̃i(s) := Bn−i+1(t)− Bn−i+1(t − s)
d
= Bi(s),

Yn(t)
d
= sup

0≤t1≤...≤tn≤t

n∑

i=1

(Bi(t i)− Bi(t − t i−1)) = sup
0≤s≤t

Zn(t). (3.3)

Graphically the above proof corresponds to reversing the time direction and the order of particles.
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