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Abstract

In this note we discuss the extension of the elementary stochastic Itô-integral w.r.t. an optional
semimartingale. The paths of an optional semimartingale possess limits from the left and from
the right, but may have double jumps. This leads to quite interesting phenomena in integration
theory.
We find a mathematically tractable domain of general integrands. The simple integrands are
embedded into this domain. Then, we characterize the integral as the unique continuous and
linear extension of the elementary integral and show completeness of the space of integrals. Thus
our integral possesses desirable properties to model dynamic trading gains in mathematical finance
when security price processes follow optional semimartingales.

1 Introduction

In this note we discuss the extension of the elementary stochastic Itô-integral in a general frame-
work where the integrator is an optional semimartingale. The paths of an optional semimartingale
possess limits from the left and from the right, but may have double jumps. Such processes have
been studied extensively by Lenglart [9] and Galtchouk [3, 4, 5, 6].
It turns out that the extension of the elementary integral to all predictable integrands is too small.
Namely, the space of integrals for (suitably integrable) predictable integrands is still not complete
(even w.r.t. the uniform convergence). This is of course in contrast to the standard framework
with a càdlàg integrator, cf. [2].
Galtchouk [4] has introduced a stochastic integral w.r.t. an optional martingale with a larger
domain. But the integral of [4] is not the unique (continuous and linear) extension of the elemen-
tary integral. There are stochastic integrals that can in no way be approximated by elementary
integrals. This is an undesirable feature in some applications, e.g. if one wants to model trading
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gains from dynamic strategies by the integral. As real-world investment strategies are of course
piecewise constant, it would not make sense to optimize over a set of integrals including some
elements that cannot be approximated by elementary integrals.
In this note we introduce a mathematically tractable domain of integrands which is somehow
between the small set of predictable integrands and the large domain in [4]. The latter is a
two-dimensional product space of predictable and optional processes.
The simple strategies are embedded into our domain. Then, in the usual manner, we characterize
the integral defined on this domain as the unique continuous and linear extension of the elemen-
tary integral and show its completeness. In mathematical finance completeness of the space of
achievable trading gains guarantees that the supremum in a portfolio optimization problem is at-
tained and in “complete markets” derivatives can be replicated and not only be approximated by
gains from dynamic trading in the underlying securities.
In addition, this note may also provide another abstract view to the extension of the elementary
integral and the identification of 1]]τ1,τ2]]

• X t with X t∧τ2
− X t∧τ1

in the usual situation of a càdlàg
integrator X .

2 Notation

Let (Ω,F , (Ft)t∈[0,T], P) be a complete filtered probability space, where the family (Ft)t∈[0,T] is
not necessarily right-continuous. P and O denote the predictable resp. the optional σ-algebra on
Ω× [0, T], i.e. P is generated by all left-continuous adapted processes and O is generated by all
càdlàg adapted processes (considered as mappings on Ω× [0, T]). If X and Y are two optional
processes and we write X = Y , we mean equality up to indistinguishability.
The following definitions are from [6]. Adjusted to our finite time horizon setting, we repeat
them here for convenience of the reader. We add a localization procedure based on stopping
which preserves the martingale property of a process. The results of Galtchouk that we use still
hold when localization is done in the way chosen here.

Definition 2.1. A stochastic process X = (X t)t∈[0,T] is called an optional martingale (resp. square
integrable optional martingale), and we write X ∈ M (resp. X ∈ M 2), if X is an optional process

and there exists an FT -measurable random variable eX with E[|eX |] < ∞ (resp. E[eX 2] < ∞) such

that Xτ = E[eX |Fτ] a.s. for every [0, T]-valued stopping time τ.

Galtchouk has shown in [3] that for anyFT -measurable integrable random variable Z there exists
an optional martingale (X t)t∈[0,T] with terminal value XT = Z . Almost all paths of X possess limits
from the left and the right (see e.g. Theorem 4 in Appendix I of [2]). Thus if one considers
general filtrations, optional martingales emerge quite naturally. For a làglàd process X we denote
∆−X t := X t − X t− and ∆+X t := X t+ − X t .

Definition 2.2. Denote by T (resp. T+) the set of all [0, T] ∪ {+∞}-valued (Ft)t∈[0,T]-stopping

times (resp. (Ft+)t∈[0,T]-stopping times). Let C be a class of stochastic processes. A stochastic process

X with right-hand limits is in the localized class of C , and we write X ∈ Cloc if there exists an

increasing sequence (τn,σn)n∈N ⊂ T × T+ such that limn→∞ P(τn ∧σn = T ) = 1 and the stopped

processes X (τn,σn) defined by

X
(τn,σn)
t := X t1{t≤τn∧σn}

+ Xτn
1{t>τn, τn≤σn}

+ Xσn+
1{t>σn, τn>σn}

are in C for all n.
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Definition 2.3. Let V denote the set of adapted finite variation processes (that is P-a.a. paths are of

finite variation) with A0 = 0. We say that A∈ V is inA if E[
∑

0≤s<T |∆
+As|+
∫
[0,T]
|dAr

s
|]<∞.

Galtchouk has shown that it is possible to uniquely decompose a local martingale M into a càdlàg
part M r and an orthogonal part M g , i.e. M g eM is a local martingale for any càdlàg martingale eM .
M g possesses càglàd paths (see Theorem 4.10 in [4] for details). Furthermore, any A ∈ V can
obviously be decomposed uniquely into a càglàd part Ag :=

∑
0≤s<t∆

+As and a càdlàg part Ar :=
A− Ag . Note however that for processes which are both local martingales and of finite variation
the decompositions usually differ.

Definition 2.4. A stochastic process X is called strongly predictable if its trajectories have right

limits, (X t)t∈[0,T] is P -measurable, and (X t+)t∈[0,T] is O -measurable.

Definition 2.5. A stochastic process X is called an optional semimartingale if it can be written as

X = X0 +M + A, M ∈Mloc , A∈ V , M0 = 0. (2.1)

A semimartingale X is called special if there exists a representation (2.1) with a strongly predictable

process A∈Aloc .

Note that any optional semimartingale has limits from the left and the right, i.e. almost all paths
are làglàd (again by [2] this assertion holds for the local martingale component; for the finite
variation component the assertion is trivial).

3 Results

Suppose X is the (for simplicity deterministic) evolution of a stock price given by X t := t−1[t0]
(t)+

1]t0,T](t), where t0 ∈ (0, T ) is the time of a double jump. ]t0, T] denotes an interval on R whereas
for τ1,τ2 stopping times ]]τ1,τ2]] := {(ω, t) ∈ Ω× [0, T] | τ1(ω) < t ≤ τ2(ω)} is a stochastic
interval. Now consider the strategies An where we buy one unit of the stock at time t0 − 1/n and
sell it at time t0. The (negative) trading gain would be 1/n− 1, and as n → ∞ the trading loss
would go to 1 and occur exactly at time t0. Other possible strategies Bn would be to buy one unit
of the stock at time t0 and sell it at time t0 + 1/n. The trading gain would be 2 + 1/n, which
would converge to a trading gain of 2 also occuring at time t0. If we wanted the space of trading
strategies to be complete, for the two sequences of trading strategies there should be limit trading
strategies eA and eB reproducing the limit trading gain such that it occured exactly at time t0. If
we wanted to use one-dimensional processes to specify our trading strategy, we would run into
a dilemma because something like 1[t0]

would have to represent both eA and eB, but this is clearly

impossible since the trading gains from eA and eB are completely different.
Put differently, since the process has double jumps, there might be a left jump ∆−X t and a right
jump ∆+X t at the same time. Using a one-dimensional integrand, an investor cannot differentiate
between what should be invested in the left jump and what should be invested in the right jump,
because at each point in time he only has a single value of the integrand at his disposal. For
example, in the considerations above, the limit strategy eA would have to invest 1 in ∆−X t0

but 0
in ∆+X t0

.
This explains why Galtchouk [4] introduced two-dimensional integrands (H, G) where H is a P -
measurable process and G is an O -measurable process. Unfortunately, this expansion of the space
of integrands to two dimensions leads to a new problem. The integrals of these two-dimensional
integrands can in general no longer be approximated by integrals of simple predictable integrands
as the following example shows.
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Example 3.1. Consider the process M = M r + M g , where M r is a compensated Poisson process

with jump rate 1 and jump size 1 (so it is càdlàg), and M g is the left-continuous modification of a

compensated Poisson process with jump rate 1 and jump size−1, i.e. M r
t
= Nt− t and M

g
t = −eNt−+ t

where N and eN are Poisson processes. Assume that N and eN are independent of each other and let

(Ft)t∈[0,T] be the (not right-continuous) natural filtration of (M r , M g). If we consider the integrand

(H, G)t ≡ (2,1), the integral Y := (H, G) • M = H • M r + G • M g is an optional martingale linearly

decreasing with rate −1 (if no jump occurs), ∆−Y jumps of size 2 and∆+Y jumps of size −1. Clearly

Y cannot be approximated by any sequence Zn • M, where (Zn) is a sequence of simple predictable

integrands because Zn • M1 = 0 if no jump occurs up to time 1. Furthermore, it is impossible to

approximate the left jumps of Y (which are of size 2) and the right jumps of Y (with size −1) by the

same process Zn • M. This is because the jumps of M cannot be anticipated.

For two sets A, B we define A∆B := (A\ B)∪ (B \A). Let eΩ := Ω× [0, T]. Define a collectionA of
subsets of {1,2} × eΩ by

A :=
n
({1} × A)∪ ({2} × B) | (A, B) ∈ P ×O with

A∆B =
⋃

n∈N

[[τn]] for some (τn)n∈N ⊂ T
o

, (3.1)

i.e. the symmetric difference A∆B has to be a thin set. Note that τ is [0, T] ∪ {+∞}-valued, but
[[τ]] = {(ω, t) ∈ Ω× [0, T] | τ(ω) = t}. Our general integrands will be A /B(R)-measurable
functions.

Proposition 3.2. A is a σ-field.

Proof. Obvious as P and O are σ-fields and countable unions of thin sets are thin sets.

An immediate observation is that if H isA /B(R)-measurable, then H1 := H(1, ·, ·) is a predictable
process and H2 := H(2, ·, ·) is an optional process. Furthermore, H1 and H2 differ only at countably
many (Ft)t∈[0,T]-stopping times (as H can be approximated pointwise by simple functions).

Proposition 3.3. Define the set

C := {{1} × eA× {0} : eA∈ F0} ∪ {{1}×]]τ1,τ2]]∪ {2} × [[τ1,τ2[[: τ1,τ2 ∈ T ,τ1 ≤ τ2}.

Then σ(C ) =A .

Proof. σ(C ) ⊂ A holds by C ⊂ A . Since
⋂∞

i=1({1}×]]τ,τ+ 1
n
]] ∪ {2} × [[τ,τ+ 1

n
[[) ∈ σ(C ),

we have that {1} × ; ∪ {2} × [[τ]] ∈ σ(C ) for any τ ∈ T . Therefore also {1}×]]τ1,τ2]] ∪

{2}×]]τ1,τ2]] ∈ σ(C ) for all τ1,τ2 ∈ T . Because P is generated by the family of sets {eA× {0} :
eA ∈ F0} ∪ {]]τ1,τ2]] : τ1,τ2 ∈ T } and since eA× {0} is the graph of a stopping time, we have
{1}×A∪{2}×A∈ σ(C ) for any A∈ P . Now let F ∈A , i.e. F = {1}×A∪{2}× B, where A∈ P ,
B ∈ O . A\ B and B \ A are both thin sets by Theorem 3.19 in [7], thus there exist two sequences
of stopping times (τi)i∈N and (ν j) j∈N such that B = (A\

⋃
[[τi]])∪ (
⋃
[[ν j]]). Therefore F ∈ σ(C )

as required.

Consider simple integrands of the form

H = Z01{1}×eA×{0}∪{2}×eA×{0} +
n∑

i=1

Z i1{1}×]]τi ,τi+1]]∪{2}×[[τi ,τi+1[[
, (3.2)
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where τi ∈ T , τ1 ≤ τ2 . . . ≤ τn+1, Z0 is F0-measurable, and each Z i is a Fτi
-measurable random

variable. Let E denote the class of simple integrands. Note that the simple integrands are indeed
A -measurable, and that there is a one-to-one correspondence between the simple integrands
defined in (3.2) and the usual one-dimensional simple predictable integrands. By Proposition 3.3
E generates the σ-fieldA on {1,2} × eΩ. We call simple integrands simpleA -measurable.
We now define for H ∈ E the elementary stochastic integral in the usual way by

(H • X )t :=
n∑

i=1

Z i(Xτi+1∧t − Xτi∧t), t ∈ [0, T].

Remark 3.4. The second summand in (3.2) can be motivated as follows: To obtain Z i(Xτi+1
− Xτi

)

one weights the right jump of X at τi already with Z i whereas the left jumps are weighted with Z i

only immediately after τi .

The next theorem shows that the elementary integral possesses a unique continuous and linear
extension to general integrands defined asA /B(R)-measurable functions.

Theorem 3.5. Suppose X is an optional semimartingale. The mapping H 7→ H • X on E has a unique

extension (also denoted H 7→ H • X) to all locally boundedA -measurable processes H : {1,2}×eΩ→ R
such that

(i) H 7→ H • X is linear;

(ii) if an A -measurable sequence (Hn)n∈N converges pointwise to H and |Hn| ≤ K, where K is

a locally bounded A -measurable process, then sups∈[0,T] |(H
n • X )s − (H • X )s| converges in

probability to 0.

Proof. Step 1 (uniqueness). Let H • X and H ◦ X be two extensions satisfying (i) and (ii). Then (i)
and (ii) imply that G := {F ∈A : 1F

• X = 1F
◦ X } is a Dynkin system. Since C ⊂ G and C is a ∩-

stable generator ofA , by a Dynkin argument we haveA = G . A locally boundedA -measurable
process H can be approximated pointwise by the sequence (Hn)n∈N, where

Hn :=
n2∑

k=−n2

k

n
1{ k−1

n
<H≤ k

n
}.

Because of the linearity requirement (i) we know that Hn • X = Hn ◦ X for all n. In addition it is
true that |Hn| ≤ |H|+ 1. Thus from (ii) follows H • X = H ◦ X and the uniqueness of the extension
is established.
Step 2 (existence). Let X = X0 + M + A with M ∈ Mloc and A ∈ V be any decomposition of X .
Consider the integral (once again denoted by H 7→ H • X )

H • X := H1 • M r + H1 • Ar + H2 • M g + H2 • Ag , (3.3)

which is by Galtchouk defined for any locally bounded H1 ∈ P and H2 ∈ O , thus in particular
when H is locally bounded and A -measurable. Note that (3.3) generally depends on the decom-
position of the optional semimartingale into a local martingale and a process of finite variation
(Thus in Galtchouk H1 • M r + H2 • M g and H1 • Ar + H2 • Ag are seen as separate integrals.
But, later on by the uniqueness of the extension it will turn out that for A /B(R)-measurable
integrands the choice of the decomposition is not relevant).
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If H is a simple integrand this integral is equal to our definition of the simple integral, i.e.
it is an extension. From the standard theory (see e.g. [2], chapter VIII) we know that the
first half of the right-hand side of (3.3) fulfils properties (i) and (ii). For the left-continuous
parts H2 • M g and H2 • Ag the same line of argument holds true: M g can be decomposed into a
locally square integrable martingale and a local martingale of finite variation (by considering the
process
∑

0≤s≤·∆
+Ms1{|∆+Ms |>1} ∈Aloc and using the existence of strongly predictable càglàd com-

pensators, see Lemma 1.10 in [6]). Because a version of Doob’s inequality still holds for optional
square-integrable martingales (see Appendix I in [2] on how to prove such inequalities using the
optional section-theorem, which still holds under non-usual conditions), the usual arguments for
the càdlàg case can be reproduced for the locally square integrable part. The martingale part of
finite variation is treated like (H2 • Ag)t =

∫
[0,t[

H2
s
dA

g
s+ which is a Lebesgue-Stieltjes integral.

Thus it is known that it is linear and has the continuity property.

Remark 3.6. We have shown that it is possible to extend the integral in a unique way from all sim-

ple A -measurable integrands (which are in a one-to-one correspondence with the (one-dimensional)

simple predictable integrands) to all locally bounded A -measurable integrands. Note that the ele-

mentary integral does not depend on the decomposition in (3.3). In Galtchouk’s framework [6] the

integral is extended uniquely from all two-dimensional simple P ⊗O -measurable integrands to all lo-

cally bounded P ⊗O -measurable integrands. What cannot be done is to extend the integral uniquely
from one-dimensional simple predictable integrands to all locally bounded P ⊗ O -measurable inte-

grands. To see this note that besides H • X := H1 • M r + H1 • Ar + H2 • M g + H2 • Ag the mapping

H ◦ X := H • X + H1 • I − H2 • I , where It(ω) := t, is also a continuous and linear extension of the

elementary integral. But generally for P ⊗O -measurable integrands H • X and H ◦ X are different.

Confer this with Example 3.1.

Any special semimartingale Y for which the canonical decomposition Y0+N +B satisfies N ∈M 2

and B ∈A , can be considered an element of the Banach spaceM 2⊕A , where the norm is given
by E[N2

T
]1/2 + E[Var(B)T ]. Now we show a completeness property for the space of integrands for

which the integrals are inM 2⊕A . At first we define analogously to the standard theory the space
of general integrands (cf. Definition III.6.17 in [8]).

Definition 3.7. We say that a A -measurable process H = (H1, H2) is integrable w.r.t. an optional

semimartingale X if there exists a decomposition X = X0 + M + A with M ∈ M 2
loc

and A ∈ V such

that

(H1)2 • [M r , M r] ∈Aloc , (H2)2 • [M g , M g] ∈Aloc

and the Lebesgue-Stieltjes integrals |H1| • Var(Ar), |H2| • Var(Ag) are finite-valued. We denote by L(X )

the set of these processes.

Let H ∈ L(X ). By Theorem 3.5 the integral
�

H1{|H|≤n}

�
• X =
�

H11{|H|≤n}

�
• M r +
�

H11{|H|≤n}

�
•

Ar +
�

H21{|H|≤n}

�
• M g +
�

H21{|H|≤n}

�
• Ag is well-defined (i.e. it does not depend on the decom-

position X = X0 +M + A). By Theorem I.4.40 and Lemma III.6.15 in [8] and Theorem 7.3 in [4]
all four integrals converge uniformly in probability against the corresponding integrals without
truncation. Thus H • X is also well-defined.

Theorem 3.8. Let X be a special semimartingale. If (Hn)n∈N ⊂ L(X ) such that (Hn • X )n∈N is a

Cauchy sequence inM 2 ⊕A , then there exists a H ∈ L(X ) such that Hn • X → H • X inM 2 ⊕A .
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Proof. Step 1. We start by showing that for all n the canonical decomposition of Hn • X can be
written as Hn • M + Hn • A, where X = X0 + M + A is the canonical decomposition of X . The
reasoning is similar to the proof of Lemma III.3 in [10], but we present it here for the convenience
of the reader. Some facts about (strongly predictable) compensators are used; they can be found
in the appendix. Let n be fixed. There exists a decomposition X = N+B such that (Hn • N) ∈M 2

loc

and (Hn • B) ∈ V . Since Hn • X is inM 2⊕A , we have by Lemma 4.2 in [6] that Hn • B ∈Aloc . As
X is special, we have with the same argument that B ∈ Aloc . Again by Lemma 4.2 in [6], Hn • X

is special and hence it possesses a canonical decomposition L + D. By Proposition 4.3 the unique
compensators of B and Hn • B are given by A and D. But since B and Hn • B are both in Aloc ,
by Proposition 4.5 (Hn • B)p = Hn • Bp = Hn • A, i.e. the compensator of Hn • B is Hn • A. Thus
D = Hn • A, which in turn implies L = Hn • M .
Step 2. For any local martingale M , we define a non-negative measure m on ({1,2} × eΩ,A ) by

m(F) := E[1B
• [M r , M r]T + 1C

• [M g , M g]T ], ∀F = {1} × B ∪ {2} × C ∈A .

Similarly, for A∈Aloc let

n(F) := E[1B
• Var(Ar)T + 1C

• Var(Ag)T ].

By the decomposition of M (resp. A) into a right- and a left-continuous part we ensure that m

(resp. n) is a measure. Note that m and n are in general not σ-finite. Let H • M ∈ M 2; then we
have that

E[(H • M)2
T
] = E[(H1 • M r + H2 • M g)2

T
]

= E[(H1 • M r)2
T
+ (H2 • M g)2

T
+ 2(H1 • M r)T (H

2 • M g)T ]

= E[(H1 • M r)2
T
+ (H2 • M g)2

T
]

= E[(H1)2 • [M r , M r]T + (H
2)2 • [M g , M g]T ]

=

∫ T

0

(H)2dm. (3.4)

The crucial third equality follows because H1 • M r and H2 • M g are orthogonal optional martin-
gales, which is due to fact that

[H1 • M r , H2 • M g] = H2 • [(H1 • M r)g , M g] = [0, M g] = 0

(see [4], Theorem 7.11). The fourth equality is valid since there are Itô isometries for both
the standard stochastic integral and the optional stochastic integral w.r.t. to a càglàd optional
martingale (see [4], Section 7).
Let us verify an isometry property for the integrable variation part. Note that for the finite variation
part A, the process Ag is just the sum of the jumps ∆+A. The total variation can thus be split into
two parts by

Var(A)t =

∫ t

0

|dAr
s
|+
∑

s<t

|∆+As|= Var(Ar) + Var(Ag),

and the following isometry holds for any A∈A

E[Var(H • A)T ] = E[Var(H1 • Ar + H2 • Ag)T ]

= E[Var(H1 • Ar)T + Var(H2 • Ag)T ]

= E[|H1| • Var(Ar)T + |H
2| • Var(Ag)T ]

=

∫ T

0

|H|dn. (3.5)
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By (3.4) and (3.5),
�

L2({1,2} × eΩ,A , m)∩ L1({1,2} × eΩ,A , n)
�
⊂ L(X ) and H 7→ H • X is an

isometry mapping from L2({1,2}× eΩ,A , m)∩ L1({1,2}× eΩ,A , n) toM 2⊕A (surjective onto the
subspace ofM 2 ⊕A whose elements can be represented by stochastic integrals). As L2({1,2} ×
eΩ,A , m)∩ L1({1,2} × eΩ,A , n) is a complete vector space this implies the assertion.

Remark 3.9. Suppose for any (Ft)t∈[0,T]-stopping time τ we have P(∆+Xτ 6= 0,τ < T ) = 0 (we

call such a process quasi-right-continuous). Then for any locally bounded A -measurable process H

the stochastic integrals H • X = H1 • X r + H2 • X g and H1 • X r + H1 • X g are indistinguishable. To

see this, note that we only have to check that (H1 − H2) • X g = 0. Now H1 − H2 is equal to 0 on

the complement of a thin set and according to the condition above there are a.s. no jumps of X g on

this thin set. Thus if X is quasi-right-continuous, the set of locally bounded predictable integrands is

adequate, as in the usual right-continuous setting.

Remark 3.10. In mathematical finance a similar problem arises in the standard model with càdlàg-

price processes when portfolio adjustments cause transaction costs. At time t the value of a portfolio

may change due to a jump of the asset prices between t− and t. In addition, any portfolio adjustments

(which may be seen as taking place at time t−) reduce the wealth of the investor (in contrast to the

model without transaction costs). Thus, the wealth process may have double jumps. However, the

portfolio holdings in each asset can still be represented by a one-dimensional process, cf. [1].

4 Appendix

Lemma 4.1. Suppose A ∈ V . Then A is strongly predictable if and only if (Ar
t
)t∈[0,T] is predictable

and (A
g
t+)t∈[0,T] is optional.

Proof. Obvious, as At = Ar
t
+ A

g
t = Ar

t
+ A

g
t− and At+ = Ar

t+
+ A

g
t+ = Ar

t
+ A

g
t+.

Lemma 4.2. Let A ∈ V be strongly predictable and H = (H1, H2) be an A -measurable function s.t.

H1 • Ar and H2 • Ag exist. Then H • A is strongly predictable.

Proof. By Lemma 4.1 and H • A = H1 • Ar + H2 • Ag we only have to check that (H1 • Ar
t
) is

predictable and (H2 • A
g
t+) is optional. Since H1 is predictable and again by Lemma 4.1 (Ar

t
) is

also predictable, Proposition I.3.5 in [8] ensures that H1 • Ar is predictable, too. Once more by
Lemma 4.1 (Ag

t+)t∈[0,T] is optional, thus ∆+As is Ft measurable for all s ≤ t. As H21Ω×[0,t] is
Ft ⊗B([0, t])-measurable, by Fubini’s theorem for transition measures this implies that (H2 •

Ag)t+ =
∑

0≤s≤t H2
s
∆+As is Ft -measurable and therefore optional.

Proposition 4.3. Let A∈Aloc . There exists a process, called the compensator of A and denoted by Ap,

which is unique up to indistinguishability, and which is characterized by being a strongly predictable

process ofAloc such that A− Ap is a local martingale.

Proof. A∈ Aloc implies Ar ,Ag ∈ Aloc . By Theorem I.3.18 in [8], there exists a unique predictable
càdlàg process (Ar)p such that Ar − (Ar)p ∈Mloc (formally we apply the theorem to Ar under the
right-continuous filtration (Ft+)t∈[0,T] and use that the (Ft+)t∈[0,T]-predictable processes coincide
with the (Ft)t∈[0,T]-predictable processes). By Lemma 1.10 in [6], there exists a unique strongly
predictable càglàd process (Ag)p such that Ag − (Ag)p ∈ Mloc . The process Ap := (Ar)p + (Ag)p

is strongly predictable and A− Ap ∈ Mloc . If two strongly predictable processes B and C are
compensators of A, B − C is inMloc ∩Aloc , i.e. B − C = 0 (since as in the standard model, using
Theorem 3.5 in [5] it can be shown that if X ∈Mloc ∩Aloc , then X = 0.)
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Proposition 4.4. Let A ∈ A +
loc

. The compensator Ap can then be characterized as being a strongly

predictable process inA +
loc

meeting any of the two following equivalent statements

(i) E[Ap
τ
] = E[Aτ] for all τ ∈ T ;

(ii) E[(H • Ap)T ] = E[(H • A)T ] for all non-negativeA -measurable processes H.

Proof. The proof is similar to the proof of Theorem I.3.17 in [8]. Just note that (ii) implies (i)
because H := 1{1,2}×[[0,τ]] isA -measurable. (i) implies for all τ ∈ T that

E[(1{1}×[[0,τ]]∪{2}×[[0,τ[[
• Ap)T ] = E[(Ap)r

τ
+ (Ap)g

τ
]

= E[Ar
τ
+ Ag

τ
]

= E[(1{1}×[[0,τ]]∪{2}×[[0,τ[[
• A)T ].

SinceA is also generated by {{1}× eA×{0} : eA∈ F0}∪ {{1}× [[0,τ]]∪{2}× [[0,τ[[: τ ∈ T } and
because A0 = A

p

0 = 0, we have (ii) by monotone convergence and a monotone class argument.

Proposition 4.5. Let A ∈ Aloc . For each A -measurable process H such that H • A ∈ Aloc , we have

that H • Ap ∈Aloc and H • Ap = (H • A)p, and in particular H • A− H • Ap is a local martingale.

Proof. The proof of the second half of Theorem I.3.18 in [8] can be reproduced without any major
changes (using Proposition 4.4 and Lemma 4.2). Note that the associativity of the integral used in
the proof holds because

H • (G • A) = H1 • (G • A)r + H2 • (G • A)g

= H1 • (G1 • Ar + G2 • Ag)r + H2 • (G1 • Ar + G2 • Ag)g

= H1 • (G1 • Ar) + H2 • (G2 • Ag)

= (H1G1) • Ar + (H2G2) • Ag

= (HG)1 • Ar + (HG)2 • Ag = (HG) • A,

where the crucial third equality is true because for any A ∈ V we obviously have (Ar)g = (Ag)r =

0. The fourth equality follows from the associativity of the one-dimensional Lebesgue-Stieltjes
integral.
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