DOI: 10.1214/ECP.v14-1458

Elect. Comm. in Probab. 14 (2009), 186-191

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

CHARACTERIZATION OF DISTRIBUTIONS WITH
THE LENGTH-BIAS SCALING PROPERTY

MARCOS LOPEZ-GARCIA

Instituto de Matemadticas

Universidad Nacional Auténoma de México
Meéxico, D.E. C.R 04510.

email: flopez@matem.unam.mx

Submitted November 26, 2008, accepted in final form April 15, 2009

AMS 2000 Subject classification: Primary: 60E05, Secondary: 44A60.
Keywords: Length-bias scaling property, Indeterminate moment problem, theta function.

Abstract

For q € (0,1) fixed, we characterize the density functions f of absolutely continuous random
variables X > 0 with finite expectation whose respective distribution functions satisfy the so-called
(LBS) length-bias scaling property X £ gX, where X is a random variable having the distribution

function F (x) = (EX)™* f; yf (y)dy.

For an absolutely continuous random variable X > 0 with probability density function (pdf) f
and finite expectation EX, we denote by X an absolutely continuous random variable having the
probability density function (EX) ' x f (x). In this case, X is called the size- or length-biased
version of X and Z(X) is the corresponding length-biased distribution. It is well known that X is
the stationary total lifetime in a renewal process with generic lifetime X (see [2, Chapter 5]).

The length-biased distributions have been applied in various fields, such as biometry, ecology,
environmental sciences, reliability and survival analysis. A review of these distributions and their
applications are included in [5, Section 3], [6, 8, 12, 13].

In [9], Pakes and Khattree ask whether it is possible to randomly rescale the total lifetime to
recover the lifetime law. More specifically, let V > 0 be a random variable independent of X with
a fixed law satisfying P (V > 0) > 0. For which laws £ (X) does the following “equality in law”

X ZvX,

hold? For instance, when V has the uniform law on [0, 1] the last equality holds if and only if
% (X) is an exponential law (see [9]).

In this note we consider the case where V is a constant function: The law of X has the so-called
length-bias scaling property (abbreviated to LBS-property) if

x £ X, ¢))
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with q € (0,1). Several authors, including Chihara [3], Pakes and Khattree [9], Pakes [10, 11],
Vardi et al. [14], have studied the LBS-property. In [1], Bertoin et al. analyze a random variable X

that arises in the study of exponential functionals of Poisson processes; they show that gX Zx £
q X!, with EX =q L.

An easy computation shows that (1) can be written as

x 1 (“y (y\dy
d = — - - =
fof(y) Y EXL qf(q) q’x>0’

(EX)qf (gx) =xf (x), a.e. x > 0. @)

which is equivalent to

By induction we have that
(BX)"q"f (¢"x) = q"/*"*x"f (x), x>0, nez,

and therefore .
f x"f (x)dx = (EX)"q* /2, ¥V neZ. 3)
0
When X is an absolutely continuous random variable with probability density function f, we
sometimes write X ~ f.

Proposition 1. If X ~ f and f satisfies (2), then the pdf g (x) = e*f (e*) of the random variable
Y =logX satisfies the functional equation

g(x—b)=Ce"g(x), xR, @
witha=1,b=—Ing, C =(Ex)™ .

So, the main result of this note characterizes the probability density functions fulfilling the last
functional equation. First, we recall that the theta function given by

9()(', t) — (47'Ct)_1/2 Z e—(x+n)2/(4t) — Ze—4ﬂ:znzt+2nnix > O, (5)

nez nez

for all (x, t) € R?, satisfies the heat equation on R? and

1
J O(x,t)dx =1, forall t > 0. (see [15, Chapter V]) 6)
0

Theorem 1. Let a, b, C be real numbers with ab > 0, C > 0. Then the pdf g satisfies the functional
equation if and only if there exists a 1-periodic function ¢, ¢ > —1, such that the restriction of ¢
to (0, 1) belongs to L(0,1),

() = 1 _(ax—;,c)2 . ax — @
Y v P 2ab { “’( ab )}

and

1
1
0 — dx=0
[0 (525 Jocons o,
where —u =InC 4+ ab/2.
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Proof. For b > 0 the probability density function

h(x) = e—(x—u)z/(Zb)’

27th

where —u = In C+b/2, satisfies the functional equation (4) with a = 1. If the density function g so
does, then g (x — b)/h(x —b) = g(x) /h(x), x € R; therefore there exists a 1-periodic function
4 such that g (x) =h(x)y (b‘lx) . By making the change of variable y = (x — u)/b, we obtain

1=Jg(x)dx - f ey (y+ b7 ) dy
R R {/27bh1

e 2y (y+b7'p) dy

n+1 1
nZZ:J; V 2mb~1

1
= J 6(y,2 ' b)Yy + b udy.
0

By using (6), the result follows with ¢ (x) = =1+ (x + b:l,u). B
The general case follows by setting §(x) =a ‘g (a‘lx) ,b=ab,—u=InC+b/2. n

From Proposition [1] we obtain the characterization of the probability density functions with the
LBS-property.

Corollary 1. Let q € (0,1) be fixed, and let X > 0 be a random variable with pdf f and EX < co.

The law of X has the LBS property if and only if there exists a 1-periodic function ¢, ¢ > —1, with
the restriction of ¢ to (0,1) in L(0, 1), such that ¢ satisfies (8) with a=1,b = —1Inq, and

£ 1 (Inx — u)* {1+ (lnx—u)} ©)
X)=———=exp| ———— ,
x4/ —2mlng P 2Ing ’ —Ing

where y =In (ql/ZEX).

In [10, Theorem 3.1], Pakes uses a different approach to characterize the probability distribution
functions F = ¢ (X) satisfying (1) with EX = 1.

By (3), it follows that the probability density functions having the LBS-property are solutions of
an indeterminate moment problem.

Let N (4, —Inq) be the normal density with mean u and variance —Inq. If Y ~ N (u, —1nq) , we
note that exp(Y') has the log-normal density; i.e.

exp(Y) ~

1 (Inx —u)?
———exp| ———|.
x4/ —2mlng 2Ing

Remark 1. If X is a positive absolutely continuous random variable with pdf f, then

X' ~cexTEf (cx_l) , forall ¢ > 0.
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So, for v € R the distributional identity X Z ¢2"X ! is equivalent to the functional equation
Flx™H=e¥x%f(e?x), x > 0. (10)

If ¢ is a measurable function on R and f is a pdf function given as follows

00 1 ((lnx—v)z){1+ (lnx—v)}
x)= ex
x4/ —2mlng P 2Ing ’ —Ing ’

x > 0, then f satisfies the latter functional equation if and only if ¢ is an even function.

As a consequence of Corollary[1 and the last remark with v = In (ql/ 2EX) , we have that a positive
random variable X with probability density function f satisfies

X EXZqEXX
if and only if f can be written as in Corollary[1 with ¢ being an even function.

Finally, we provide some families of functions satisfying (8).

Examples

From bounded functions, the following observation allows to construct functions with values in
the non-negative axis.

Remark 2. For a,f3 € R with a < 3, it is easy to see that there exists an interval I C R such that
e[a,f] +1 c RT for dll € € I. In fact, when a < 0 < 3 we have that I = [—ﬁ_l,—a_l] . For
a>0,I=[—fB"1 00),andfor B <0, =(—o00,—a '].

Example 1. Let t > 0 be fixed and let (c,)
> c,e?™x € L2(0,1). Then y satisfies

nez

1ez, be a sequence of complex numbers such that ¢ (x) =

1
J 0(x, t)p(x)dx =0, 11
0

if and only if ¢ (x) is orthogonal to 0(x, t) in L2(0,1). By (5) this is equivalent to the orthogonality

—4m*n?t :
between (c,) ., and (e U

_Ar2n2
E cpe 471:nt:0.
nez

In [11, page 1278] Pakes says that the continuous solutions of probably are exceptions. But
for any trigonometric polynomial p (x) = Zlnl <N c,e?™* whose coefficients c, € C satisfy the last

equality with t = b~1/2, there is an interval I such that
ex > —1, for all x € [minRep,maxRep], e €1,

therefore ¢ = eRep > —1 on R and the corresponding density function given by Corollary 1lis an
infinitely differentiable function on R™.
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Example 2. Let ¢,, = —c_,, =1/2, and ¢, = 0 for all n € Z\ {—m, m}, m # 0. So, the corresponding
trigonometric polynomial ¢ (x) = —sin(2mtmx) is a function satisfying (11) for all t > 0.

Example 3. Let ¢ ; =¢; = —1/2, ¢, = e *"%, and ¢, = O for all |n| > 2. Thus, the corresponding
trigonometric polynomial ¢ (x) = e~ 4™t _ cos(2mx) > —1 is an even function satisfying (11).

Example 4. By (6) we have that

P N T
pe(x)=—1+ o 0(x+c,t) X 0(x+ec,t)

is a 1-periodic, continuous function satisfying forall c € [0,1). Since 6 (x, t) is an even function
for all t > 0, the function @, is even if and only if c = 0, 1/2. In [4) equality (2.15)] it is shown that

— —x2/(4t) ( . _1/2=x, _ql/2+x,
0(x,0)=——e (95390 (- ,q)m( 9 ,qt)m,
whereq, = et /2, (P; @)oo = T (1 —qu) . For ¢ € (0,1) we have that (see [4) equality (2.17)])
Jl 0(x,t) _ tnqi(c_l)/z (Cﬁ;%)oo (q}*;qt)oo
o 0(x+c,t) sin (7t¢) (qt;qt)io

To get more examples of functions fulfilling (8) see [4]. The results in [7] can be used to construct
positive random variables having not the LBS-property but with moment sequence (3).

Acknowledgement I thank the anonymous referees for useful suggestions to the original manuscript.
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