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Abstract

A Markov chain is considered whose states are orderings of an underlying fixed tree and whose
transitions are local “random-to-front” reorderings, driven by a probability distribution on subsets
of the leaves. The eigenvalues of the transition matrix are determined using Brown’s theory of
random walk on semigroups.

1 Introduction

The random-to-front shuffle of a linear list (known in the card-game model also as “inverse riffle
shuffle”) is a well-known and much studied finite-state Markov chain. Its states are the linear
orderings of an underlying finite set, and a step of the chain results from selecting a subset (often
a singleton) and moving it to the front of the current list in the induced order. See e.g. [2, 5, 7]
and the references given there. In this note we consider a slight generalization, namely to shuffles
on trees.
Consider a fixed rooted tree T whose leaves L are all at the same depth. The following shows a
such a tree of depth 3.

Figure 1.
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Suppose that at each inner node (i.e., node that is not a leaf) a total ordering of its children is
given. For instance, it can be the left-to-right ordering given by a planar drawing of the tree, such
as in Figure 1. Now, a subset E of the set of leaves L is chosen with some probability. Then the
ordering is rearranged locally at each inner node so that the children having some descendant in
E come first, and otherwise the induced order is preserved. The process is illustrated in Figures 3
and 4.
In this note the eigenvalues of the transition matrix of this Markov chain are determined. This is
a straight-forward application of Brown’s theory of random walks on semigroups [4].
Note that if depth(T) = 1 the Markov chain we describe amounts to the classical linear random-
to-front shuffle. For depth(T) > 1 we perform such a linear shuffle locally at each inner node, in
each case moving the set of E-related nodes to the front.
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books
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Figure 2.

If depth(T ) = 2 we obtain the "library with several shelves" model considered in [3], as indicated
in Figure 2. This case was derived in [3] via geometric considerations, ultimately relying on
Brown’s theory of random walks on semigroups. If one cares only about the library result, and not
about random walks on complex hyperplane arrangements, there is of course no need to mix in
geometric considerations. This note can be seen as a self-contained appendix to [3] whose modest
purpose is to fill in the details on how to obtain the general dynamic library model in the simplest
and most direct way, avoiding geometry.
Another “tree analogue” of the classical linear random-to-front shuffle, different from the one
considered here, has been studied in the literature. This is the random-to-root shuffle on binary
trees, see e.g. [1, 6].
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2 Shuffles on trees

We begin by establishing notation. For any finite set A, let

S(A)
def
= {linear orderings of A}

Π(A)
def
= {partitions of A}

Πord(A)
def
= {ordered partitions of A}

The sets Π(A) and Πord(A) are partially ordered by refinement, meaning that α ≤ β if and only if
every block of the partition (or ordered partition) α is a union of blocks from β . Direct products
(of sets, posets, . . . ) are denoted by

⊗
.

We consider rooted trees T that are pure, meaning that all leaves are at the same depth d. Let Vj

denote the set of nodes at depth j. So, V0 = {root}, I
def
= ∪d−1

j=0 Vj = {inner nodes}, and L
def
= Vd =

{leaves}.

Definition 2.1. Let E ⊆ L. A node x ∈ T is E-related if some descendant of x belongs to E.

For each inner node x ∈ I , let Cx denote the set of its children.

Definition 2.2. A local ordering of T is a choice of linear order for the set of children Cx at each

inner node x ∈ I . Denote by O (T) the set of all local orderings of T . Thus, O (T) ∼=
⊗

x∈I S(Cx).

The subsets of L act on O (T) in the following way.

Definition 2.3. Let π = (πx)x∈I be a local ordering, and let E ∈ 2L . Then E(π) = (Ex(πx))x∈I ,

where Ex(πx) is the linear ordering of Cx in which the E-related elements come first, in the order

induced by πx , followed by the remaining elements, also in the induced order.

The following figure shows a local ordering π of a tree T , which coincides with left-to-right order
in the planar drawing of T .
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Figure 3.
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The indicated choice E of leaves induces a move to the following local ordering E(π). The E-
related nodes are shaded.
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Figure 4.

Definition 2.4. Assume given a probability distribution (wE)E⊆L on 2L . This determines a random

walk on the set O (T ) as follows. If the walk is currently at the local ordering π, then choose a subset

E ⊆ L with probability wE and move to E(π).

Let Part(T )
def
=
⊗

x∈I Π(Cx). So, an element α ∈ Part(T ) is a choice of partition αx of the set of
children of x , for each inner node x . The following special elements of Part(T ) are induced by
subsets E ⊆ L. For each x ∈ I let αE

x
be the partition of Cx into two blocks, one block consisting of

the E-related elements and one of the remaining elements (one of these blocks may be empty, in
which case we forget it).

Definition 2.5. Let α = (αx)x∈I ∈ Part(T ). A subset E ⊆ L is α-compatible if αx is a refinement of

αE
x

for every x ∈ I .

Notice that for every nontrivial α ∈ Part(T ) there exists some α-compatible proper subset E ⊆ L.

Theorem 2.6. Let T be a pure tree with leaves L. Furthermore, let {wE}E⊆L be a probability distri-

bution on 2L and Pw the transition matrix of the induced random walk on local orderings of T :

Pw(π,π′) =
∑

E : E(π)=π′

wE

for π,π′ ∈ O (T ). Then,

(i) The matrix Pw is diagonalizable.

(ii) For each α= (αx)x∈I ∈ Part(T ) there is an eigenvalue

ǫα =
∑

E : E is α-compatible

wE .

(iii) The multiplicity of the eigenvalue ǫα is

mα =
∏

x∈I

∏

B∈αx

(|B| − 1)!
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(iv) These are all the eigenvalues of Pw .

For clarity’s sake, let us point out that ǫα = ǫβ , for α 6= β , and ǫα = 0 are possible.

Proof. As mentioned in the introduction, this is a special case of Brown’s theory for walks on
semigroups [4], with which we now assume familiarity.

Let Partord(T)
def
=
⊗

x∈I Π
ord(Cx). So, an element β ∈ Partord(T) is a choice of ordered partition βx

of the set of children of x , for each inner node x . In particular, for each subset E ⊆ L there is an
element β E ∈ Partord(T) whose component β E

x
at x ∈ I is the two-block ordered partition of Cx

whose first block consists of the E-related elements of Cx , and second block of the remainder. (If
one of these blocks is empty we forget about it and let β E

x
have only one block.)

Now, introduce the following probability distribution on Partord(T):

Prob (β) =

¨
wE , if β = β E , E ⊆ L

0, for all other ordered partitions.
(2.1)

Given this set-up, the proof consists of verifying each of the following claims for Partord(T), and
then referring to [4].

1. Partord(T) is an LRB (left regular band) semigroup with component-wise composition. The
composition in each factor Πord(A) has the following description. If X =

¬
X1, . . . , X p

¶
and

Y =
¬

Y1, . . . , Yq

¶
are ordered partitions of A, then X ◦Y =

¬
X i ∩ Yj

¶
with the blocks ordered

by the lexicographic order of the pairs of indices (i, j).

2. Its support lattice is Part(T) and support map

supp : Partord(T)→ Part(T),

whose component at each x ∈ I is the mapΠord(Cx)→ Π(Cx) that sends an ordered partition
of Cx to an unordered partition by forgetting the ordering of its blocks.

3. The maximal elements of Partord(T) are the local orderings O (T).

4. The steps of the semigroup random walk on O (T), induced as in [4] by the probability
assignment (2.1), are precisely the steps described in Definition 2.4.

5. For each E ⊆ L and α ∈ Part(T):

supp(β E)≤ α ⇔ E is α-compatible.

6. The number of maximal elements of Partord(T) above some β ∈ Partord(T) is by Zaslavsky’s
theorem the sum of Möbius function absolute values

∑

α≥supp(β)

|µ(α,b1)|

computed on the product partition lattice Part(T). From this follows, via Brown’s theory
[4], that

mα = |µ(α,b1)|,
for all α ∈ Part(T). By the product property of the Möbius function and its well-known
explicit evaluation on the partition lattice (see [8]), this quantity equals

|µ(α,b1)|=
∏

x∈I

∏

B∈αx

(|B| − 1)!
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In view of these facts the theorem is obtained by specializing Theorem 1 on page 880 of [4] to the
semigroup Partord(T).

3 Remarks

3.1. The random walk of Theorem 2.6 has a unique stationary distribution π if and only if {E ∈
2L : wE > 0} is separating, meaning that for every inner node x ∈ I and every pair of siblings
y, z ∈ Cx , y 6= z, there is a subset E ⊆ L with wE > 0 for which one of y and z is E-related and the
other is not.
This follows from Theorem 2 of Brown and Diaconis [5], using the fact that the random walk we
consider can be realized as a walk on the complement of a product of real braid arrangements.
Theorem 2 of [5] also gives additional information about the stationary distribution.

3.2. One easily checks that the subset {β E : E ⊆ L} generates the full semigroup Partord(T), and
that the set of its maximal elements O (T) is generated by
{β {e} : e ∈ L}.

3.3. Suppose that wE 6= 0 only if |E| = 1. Then Theorem 2.6 implies that the eigenvalues are
indexed by
⊗

x∈I 2Cx , and that their multiplicities are products of derangement numbers, thus
generalizing the well-known result of Donnelly, Kapoor-Reingold and Phatarfod for the Tsetlin
library (the depth(T) = 1 case); see the references for this given in [2, 4, 5].
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