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Abstract

We consider a continuous time Markov process (X , L), where X jumps between a finite number of

states and L is a piecewise linear process with state space Rd . The process L represents an “inert

drift” or “reinforcement.” We find sufficient and necessary conditions for the process (X , L) to have

a stationary distribution of the product form, such that the marginal distribution of L is Gaussian.

We present a number of conjectures for processes with a similar structure but with continuous

state spaces.

1 Introduction

This research has been inspired by several papers on processes with inert drift [5, 4, 3, 1]. The

model involves a “particle” X and an “inert drift” L, neither of which is a Markov process by

itself, but the vector process (X , L) is Markov. It turns out that for some processes (X , L), the

stationary measure has the product form; see [1]. The first goal of this note is to give an explicit

characterization of all processes (X , L) with a finite state space for X and a product form stationary

distribution—see Theorem 2.1.

The second, more philosophical, goal of this paper is to develop a simple tool that could help

generate conjectures about stationary distributions for processes with continuous state space and

inert drift. So far, the only paper containing a rigorous result about the stationary distribution for

a process with continuous state space and inert drift, [1], was inspired by computer simulations.

Examples presented in Section 3 lead to a variety of conjectures that would be hard to arrive at

using pure intuition or computer simulations.
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2 The model

Let S = {1,2, . . . , N} for some integer N > 1 and let d ≥ 1 be an integer. We define a continuous

time Markov process (X (t), L(t)) on S × Rd as follows. We associate with each state j ∈ S a

vector v j ∈ R
d , 1 ≤ j ≤ N . Define L j(t) = µ({s ∈ [0, t] : X (s) = j}), where µ is Lebesgue measure,

and let L(t) =
∑

j∈S v j L j(t). To make the “reinforcement” non-trivial, we assume that at least one

of v j ’s is not 0. Since L will always belong to the hyperplane spanned by v j ’s, we also assume that

d = dim(span{v1, . . . , vN}).

We also select non-negative functions ai j(l) which define the Poisson rates of jumps from state i

to j. The rates depend on l = L(t). We assume that ai j ’s are right-continuous with left limits.

Formally speaking, the process (X , L) is defined by its generator A as follows,

Af ( j, l) = v j · ∇l f ( j, l) +
∑

i 6= j

a ji(l)[ f (i, l)− f ( j, l)], j = 1, . . . , N , l ∈ Rd ,

for f : {1, . . . , N} ×Rd → R.

We assume that (X , L) is irreducible in the sense of Harris, i.e., for some open set U ⊂ Rd and

some j0 ∈ S , for all (x , l) ∈ S ×Rd , we have for some t > 0,

P((X (t), L(t)) ∈ { j0} × U)> 0.

We are interested only in processes satisfying (14) below. Using that condition, it is easy to check

Harris irreducibility for each of our models by a direct argument. A standard coupling argument

shows that Harris irreducibility implies uniqueness of the stationary probability distribution (as-

suming existence of such).

The (formal) adjoint of A is given by

A∗g( j, l) = −v j · ∇l g( j, l) +
∑

i 6= j

[ai j(l)g(i, l)− a ji(l)g( j, l)], j = 1, . . . , N , l ∈ Rd . (1)

We are interested in invariant measures of product form so suppose that g( j, l) = p j g(l), where∑
j∈S p j = 1 and

∫
Rd g(l)dl = 1. We may assume that p j > 0 for all j; otherwise some points in

S are never visited. Under these assumptions, (1) becomes

A∗g( j, l) =−p j v j · ∇g(l) +
∑

i 6= j

[piai j(l)g(l)− p ja ji(l)g(l)], j = 1, . . . , N , l ∈ Rd .

Theorem 2.1. Assume that for every i and j, the function l → ai j(l) is continuous. A probability

measure p j g(l)d jdl is invariant for the process (X , L) if and only if

− p j v j · ∇g(l) +
∑

i 6= j

[piai j(l)g(l)− p ja ji(l)g(l)] = 0, j = 1, . . . , N , l ∈ Rd . (2)

Proof. Recall that the state space S for X is finite. Hence v∗ := sup j∈S |v j | < ∞. Fix arbitrary

r, t∗ ∈ (0,∞). It follows that,

sup
i, j∈S ,l∈B(0,r+2t∗v∗)

ai j(l) = a∗ <∞.

Note that we always have |L(t) − L(u)| ≤ v∗|t − u|. Hence, if |L(0)| ≤ r + t∗v∗ and s, t > 0,

s+ t ≤ t∗, then |L(s+ t)| ≤ r + 2t∗v∗ and, therefore,

sup
j∈S ,u≤s+t

aX (u), j(L(u))≤ a∗ <∞.
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This implies that the probability of two or more jumps on the interval [s, s + t] is o(t). Assume

that |l| ≤ r + t∗v∗ and t ≤ t∗. Then we have the following three estimates. First,

P(X (t) = j | X (0) = i, L(0) = l) = ai j(l)t + R1
i, j,l
(t), (3)

where the remainder R1
i, j,l
(t) satisfies supi, j∈S ,l∈B(0,t∗v∗)

|R1
i, j,l
(t)| ≤ R1(t) for some R1(t) such that

limt→0 R1(t)/t = 0.

Let aii(l) =−
∑

j 6=i ai j(l). We have

P(X (t) = i, L(t) = l + t vi | X (0) = i, L(0) = l) = 1+ aii(l)t + R2
i,l
(t), (4)

where the remainder R2
i,l
(t) satisfies supi∈S ,l∈B(0,t∗v∗)

|R2
i,l
(t)| ≤ R2(t) for some R2(t) such that

limt→0 R2(t)/t = 0.

Finally,

P(X (t) = i, L(t) 6= l + t vi | X (0) = i, L(0) = l) = R3
i,l
(t), (5)

where the remainder R3
i,l
(t) satisfies supi∈S ,l∈B(0,t∗v∗)

|R3
i,l
(t)| ≤ R3(t) for some R3(t) such that

limt→0 R3(t)/t = 0.

Now consider any C1 function f ( j, l) with support in S × B(0, r). Recall that |L(t) − L(u)| ≤

v∗|t − u|. Hence, Ei,l f (X t , Lt) = 0 for t ≤ t∗ and |l| ≥ r + v∗ t∗.

Suppose that |l0| ≤ r + v∗ t∗, t1 ∈ (0, t∗) and s ∈ (0, t∗ − t1). Then

Ei,l0
f (X t1+s, Lt1+s)− Ei,l f (X t1

, Lt1
)

=
∑

j∈S

∫

Rd

∑

k∈S

∫

Rd

f (k, r)P(X (t1 + s) = k, L(t1 + s) ∈ dr | X (t1) = j, L(t1) = l)

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

−
∑

j∈S

∫

Rd

f ( j, l)P(X (t1) = j, L(t1) ∈ dr | X (0) = i, L(0) = l0).

We combine this formula with (3)-(5) to see that,

Ei,l0
f (X t1+s, Lt1+s)− Ei,l f (X t1

, Lt1
)

=
∑

j∈S

∫

Rd

∑

k∈S ,k 6= j

( f (k, l) +O(s))(a jk(l)s+ R1
j,k,l
(s))

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

+
∑

j∈S

∫

Rd

f ( j, l + sv j)(1+ a j j(l)s+ R2
j,l
(s))

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

+
∑

j∈S

∫

Rd

( f ( j, l) +O(s))R3
j,l
(s)

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

−
∑

j∈S

∫

Rd

f ( j, l)P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0),
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which can be rewritten as

∑

j∈S

∫

Rd

( f ( j, l + sv j)− f ( j, l))P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

+
∑

j∈S

∫

Rd

�
f ( j, l + sv j)a j j(l) +

∑

k∈S ,k 6= j

f (k, l)a jk(l)

�
s

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

+
∑

j∈S

∫

Rd

�� ∑

k∈S ,k 6= j

f (k, l)R1
j,k,l
(s) +O(s)(a jk(l)s+ R1

j,k,l
(s))

�

+ f ( j, l + sv j)R
2
j,l
(s) + ( f ( j, l) +O(s))R3

j,l
(s)

�

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0).

We will analyze the limit

lim
s↓0

1

s
(Ei,l0

f (X t1+s, Lt1+s)− Ei,l0
f (X t1

, Lt1
)).

Note that

lim
s↓0

1

s

∑

j∈S

∫

Rd

�� ∑

k∈S ,k 6= j

f (k, l)R1
j,k,l
(s) +O(s)(a jk(l)s+ R1

j,k,l
(s))

�

+ f ( j, l + sv j)R
2
j,l
(s) + ( f ( j, l) +O(s))R3

j,l
(s)

�

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

= 0.

We also have

lim
s↓0

1

s

∑

j∈S

∫

Rd

( f ( j, l + sv j)− f ( j, l))P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

=
∑

j∈S

∫

Rd

∇l f ( j, l) · v j P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0),

and

lim
s↓0

1

s

∑

j∈S

∫

Rd

�
f ( j, l + sv j)a j j(l) +

∑

k∈S ,k 6= j

f (k, l)a jk(l)

�
s

× P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

=
∑

j∈S

∫

Rd

∑

k∈S

f (k, l)a jk(l)P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0).
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This implies that

d

d t
Ei,l0

f (X t , Lt)

¯̄
¯
t=t1

= lim
s↓0

1

s
(Ei,l0

f (X t1+s, Lt1+s)− Ei,l0
f (X t1

, Lt1
))

=
∑

j∈S

∫

Rd

 
∇l f ( j, l) · v j +

∑

k∈S

f (k, l)a jk(l)

!
P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0) (6)

=
∑

j∈S

∫

Rd

Af ( j, l)P(X (t1) = j, L(t1) ∈ dl | X (0) = i, L(0) = l0)

= Ei,l0
Af (X t1

, Lt1
), (7)

for all i and |l0| ≤ r + v∗ t∗.

We will argue that

P((X (t1), L(t1)) ∈ · | X (0) = i, L(0) = l)→ P((X (t1), L(t1)) ∈ · | X (0) = i, L(0) = l0), (8)

weakly when l → l0. Let Tk be the time of the k-th jump of X . We have

P(T1 > t | X (0) = i, L(0) = l) = exp

�∫ t

0

aii(l + svi)ds

�
.

Since l → aii(l) is continuous, we conclude that

P(T1 > t | X (0) = i, L(0) = l)→ P(T1 > t | X (0) = i, L(0) = l0),

weakly as l → l0. This and continuity of l → ai j(l) for every j implies that

P((X (T1), L(T1)) ∈ · | X (0) = i, L(0) = l)→ P((X (T1), L(T1)) ∈ · | X (0) = i, L(0) = l0),

weakly when l → l0. By the strong Markov property applied at Tk ’s, we obtain inductively that

P((X (Tk), L(Tk)) ∈ · | X (0) = i, L(0) = l)→ P((X (Tk), L(Tk)) ∈ · | X (0) = i, L(0) = l0),

when l → l0, for every k ≥ 1. This easily implies (8), because the number of jumps is stochastically

bounded on any finite interval.

Since ( j, l) ,→∇l f ( j, l) · v j +
∑

k∈S f (k, l)a jk(l) is a continuous function, it follows from (6) and

(8) that l0 ,→
d

d t
Ei,l0

f (X t , Lt)

¯̄
¯
t=t1

is continuous on the set |l0| ≤ r + v∗ t∗.

Recall that Ei,l0
f (X t , Lt) = 0 for t ≤ t∗ and |l0| ≥ r + v∗ t∗. Hence, l0 →

d

d t
Ei,l0

f (X t , Lt)

¯̄
¯
t=t1

is

continuous for all t1 ≤ t∗ and all values of i.

Fix some t ≤ t∗ and let ut( j, l) = E j,l f (X t , Lt). We have just shown that for a fixed t ≤ t∗ and any

j, the function l → ut( j, l) is C1. Hence we can apply (7) with f ( j, l) = ut( j, l) to obtain,

d

d t
E j,l f (X t , Lt) = lim

s↓0

1

s
(E j,l f (X t+s, Lt+s)− E j,l f (X t , Lt)) (9)

= lim
s↓0

1

s
(E j,lut(Xs, Ls)− ut( j, l))

= (Aut)( j, l).



Product-form stationary distribution 619

Since sup j,l

�
∇l f ( j, l) · v j +

∑
k∈S f (k, l)a jk(l)

�
<∞, formula (6) shows that

sup
j,l,s≤t∗

�
d

d t
E j,l f (Xs, Ls)

�
<∞. (10)

Now assume that (2) is true and let π(d j, dl) = p j g(l)d jdl. In view of (10), we can change the

order of integration in the following calculation. For 0≤ t1 < t2 ≤ t∗, using (9),

Eπ f (X (t2), L(t2))− Eπ f (X (t1), L(t1)) (11)

=
∑

j∈S

∫

Rd

E j,l f (X t2
, Lt2
)p j g(l)dl −

∑

j∈S

∫

Rd

E j,l f (X t1
, Lt1
)p j g(l)dl

=
∑

j∈S

∫

Rd

∫ t2

t1

d

ds
E j,l f (Xs, Ls)dsp j g(l)dl

=

∫ t2

t1

∑

j∈S

∫

Rd

d

ds
E j,l f (Xs, Ls)p j g(l)dlds

=

∫ t2

t1

∑

j∈S

∫

Rd

(Aus)( j, l)p j g(l)dlds.

Let h( j, l) = p j g(l). For a fixed j and s ≤ t∗, the function us( j, l) = 0 outside a compact set, so we

can use integration by parts to show that

∑

j∈S

∫

Rd

(Aus)( j, l)p j g(l)dl =
∑

j∈S

∫

Rd

us( j, l)(A∗h)( j, l)dl. (12)

We combine this with the previous formula and the assumption that A∗h≡ 0 to see that

Eπ f (X (t2), L(t2))− Eπ f (X (t1), L(t1)) =

∫ t2

t1

∑

j∈S

∫

Rd

us( j, l)(A∗h)( j, l)dlds = 0.

It follows that t → Eπ f (X (t), L(t)) is constant for every C1 function f ( j, l) with compact support.

This proves that the distributions of (X (t1), L(t1)) and (X (t2), L(t2)) are identical under π, for all

0≤ t1 < t2 ≤ t∗.

Conversely, assume that π(d j, dl) = p j g(l)d jdl is invariant. Then the left hand side of (11) is

zero for all 0≤ t1 < t2 ≤ t∗. This implies that

∑

j∈S

∫

Rd

(Aus)( j, l)p j g(l)dl = 0

for a set of s that is dense on [0,∞). By (12),

∑

j∈S

∫

Rd

us( j, l)(A∗h)( j, l)dl = 0 (13)

for a set of s that is dense on [0,∞). Note that lims↓0 us( j, l) = f ( j, l). Hence, the collection of

C1 functions us( j, l), obtained by taking arbitrary C1 functions f ( j, l) with compact support and

positive reals s dense in [0,∞), is dense in the family of C1 functions with compact support. This

and (13) imply that A∗h≡ 0, that is, (2) holds.
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Corollary 2.2. If a probability measure p j g(l)d jdl is invariant for the process (X , L) then
∑

j∈S

p j v j = 0. (14)

Proof. Summing (2) over j, we obtain
∑

j∈S

−p j v j · ∇g(l) = 0, (15)

for all l. Since g is integrable over Rd , it is standard to show that there exist l1, l2, . . . , ld which

span Rd . Applying (15) to all l1, l2, . . . , we obtain (14).

It will be convenient to use the following notation,

bi j(l) = piai j(l)− p ja ji(l). (16)

Note that bi j =−b ji .

Corollary 2.3. A probability measure p j g(l)d jdl is invariant for the process (X , L) and g(l) is the

Gaussian density

g(l) = (2π)−d/2 exp(−|l|2/2), (17)

if and only if the following equivalent conditions hold,

p j v j · l +
∑

i 6= j

[piai j(l)− p ja ji(l)] = 0, j = 1, . . . , N , l ∈ Rd , (18)

p j v j · l +
∑

i 6= j

bi j(l) = 0, j = 1, . . . , N , l ∈ Rd . (19)

Proof. If g(l) is the Gaussian density then ∇g(l) = −l g(l) and (2) is equivalent to (18). Con-

versely, if (2) and (18) are satisfied then ∇g(l) =−l g(l), so g(l) must have the form (17).

In the rest of the paper we will consider only processes satisfying (18)-(19).

Example 2.4. We now present some choices for ai j ’s. Recall the notation x+ = max(x , 0), x− =

−min(x , 0), and the fact that x+ − x− = x . Given v j ’s, p j ’s and bi j ’s which satisfy (19) and the

condition bi j = −b ji , we may take

ai j(l) =
�

bi j(l)
�+
/pi . (20)

Then

a ji(l) =
�

b ji(l)
�+
/p j =

�
−bi j(l)

�+
/p j =

�
bi j(l)

�−
/p j ,

so

piai j(l)− p ja ji(l) =
�

bi j(l)
�+
−
�

bi j(l)
�−
= bi j(l),

as desired.

The above is a special case, in a sense, of the following. Suppose that p j = pi for all i and j.

Assume that v j ’s and bi j ’s satisfy (19) and the condition bi j =−b ji . Fix some c > 0 and let

ai j(l) =
bi j(l)exp(cbi j(l))

exp(cbi j(l))− exp(−cbi j(l))
. (21)

It is elementary to check that with this definition, (16) is satisfied for all i and j, because bi j(l) =

−b ji(l). The formula (21) arose naturally in [5]. Note that (20) (with all pi ’s equal) is the limit

of (21) as c→∞.
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3 Approximation of processes with continuous state

space

This section is contains examples of processes (X , L) with finite state space for X , and conjectures

concerned with processes with continuous state space. There are no proofs in this section

First we will consider processes that resemble diffusions with reflection. In these models, the

“inert drift” is accumulated only at the “boundary” of the domain.

We will now assume that elements of S are points in a Euclidean space Rn with n≤ N . We denote

them S = {x1, x2, . . . , xN}. In other words, by abuse of notation, we switch from j to x j . We also

take v j ∈ R
n, i.e. d = n. Moreover, we limit ourselves to functions bi j(l) of the form bi j · l for some

vector bi j ∈ R
n. Then (19) becomes

0+ b12 + b13 + · · ·+ b1N =−p1v1

−b12 − 0 + b23 + · · ·+ b2n =−p2v2 (22)

. . .

−b1N − b2N − b3N − · · · − 0 =−pN vN .

Consider any orthogonal transformation Λ : Rn → Rn. If {bi j , v j , p j} satisfy (22) then so do

{Λbi j ,Λv j , p j}.

Suppose that ai j(l) have the form ai j · l for some ai j ∈ R
n. If {ai j , v j , p j} satisfy (18) then so do

{Λai j ,Λv j , p j}. Moreover, the process with parameters {ai j , v j} has the same transition probabili-

ties as the one with parameters {Λai j ,Λv j}.

Example 3.1. Our first example is a reflected random walk on the interval [0,1]. Let x j =

( j − 1)/(N − 1) for j = 1, . . . , N . We will construct a process with all p j ’s equal to each other, i.e.,

p j = 1/N . We will take l ∈ R1, v1 = α and vN = −α, for some α = α(N) > 0, and all other v j = 0,

so that the “inert drift” L changes only at the endpoints of the interval. We also allow jumps only

between adjacent points, so bi j = 0 for |i − j|> 1. Then (22) yields

b12 =−α/N

−b12 + b23 = 0

· · ·

−b(N−1)N = α/N .

Solving this, we obtain bi(i+1) =−α/N for all i.

We would like to find a family of semi-discrete models indexed by N that would converge to a

continuous process with product-form stationary distribution as N → ∞. For 1 < i < N , we set

ai(i+1)(l) = AR(l, N) and a(i+1)i(l) = AL(l, N). We would like the random walk to have variance of

order 1 at time 1, for large N , so we need

AR + AL = N2. (23)

Since bi(i+1) =−α/N for all i, AR and AL have to satisfy

AL − AR = αl. (24)

When l is of order 1, we would like to have drift of order 1 at time 1, so we take α = N . Then

(24) becomes

AL − AR = Nl. (25)
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Solving (23) and (25) gives

AL =
N2 + Nl

2
, AR =

N2 − Nl

2
.

Unfortunately, AL and AR given by the above formula can take negative values—this is not allowed

because ai j ’s have to be positive. However, for every N , the stationary distribution of L is standard

normal, so l typically takes values of order 1. We are interested in large N so, intuitively speaking,

AR and AL are not likely to take negative values. To make this heuristics rigorous, we modify the

formulas for AR and AL as follows,

AL =
N2 + Nl

2
∨ 0∨ Nl, AR =

N2 − Nl

2
∨ 0∨ (−Nl). (26)

Let PN denote the distribution of (X , L) with the above parameters. We conjecture that as N →∞,

PN converge to the distribution of reflected Brownian motion in [0,1] with inert drift, as defined

in [5, 1]. The stationary distribution for this continuous time process is the product of the uniform

measure in [0,1] and the standard normal; see [1].

Example 3.2. This example is a semi-discrete approximation to reflected Brownian motion in a

bounded Euclidean subdomain of Rn, with inert drift. In this example we proceed in the reversed

order, starting with bi j ’s and ai j ’s.

Consider an open bounded connected set D ⊂ Rn. Let K be a (large) integer and let DK = Z
n/K∩D,

i.e., DK is the subset of the square lattice with mesh 1/K that is inside D. We assume that DK is

connected, i.e., any vertices in DK are connected by a path in DK consisting of edges of length

1/K . We take S = DK and l ∈ Rn.

We will consider nearest neighbor random walk, i.e., we will take ai j(l) = 0 for |x i − x j | > 1/K .

In analogy to (26), we define

ai j(l) =
K2

2
(1+ (x i − x j) · l)∨ 0∨ K2(x i − x j) · l. (27)

Then bi j(l) = (K
2/N)(x i − x j) · l. Let us call a point in S = DK an interior point if it has 2n

neighbors in DK . We now define v j ’s using (22) with p j = 1/|DK |. For all interior points x j , the

vector v j is 0, by symmetry. For all boundary (that is, non-interior) points x j , the vector v j is not

0.

Fix D ⊂ Rn and consider large K . Let PK denote the distribution of (X , L) constructed in this

example. We conjecture that as K → ∞, PK converge to the distribution of normally reflected

Brownian motion in D with inert drift, as defined in [5, 1]. If D is C2 then it is known that the

stationary distribution for this continuous time process is the product of the uniform measure in

D and the standard Gaussian distribution; see [1].

The next two examples are discrete counterparts of processes with continuous state space and

smooth inert drift. The setting is similar to that in Example 3.2. We consider an open bounded

connected set D ⊂ Rn. Let K be a (large) integer and let DK = Z
n/K ∩ D, i.e., DK is the subset

of the square lattice with mesh 1/K that is inside D. We assume that DK is connected, i.e., any

vertices in DK are connected by a path in DK consisting of edges of length 1/K . We take S = DK

and l ∈ Rn.
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Example 3.3. This example is concerned with a situation when the stationary distribution has the

form p j g(l) where p j ’s are not necessarily equal. We start with a C2 “potential” V : D → R. We

will write Vj instead of V (x j). Let p j = c exp(−Vj). We need an auxiliary function

di j =
2(pi − p j)

pi(Vj − Vi)− p j(Vi − Vj)
.

Note that di j = d ji and for a fixed i, we have di jK
→ 1 when K →∞ and |i − jK |= 1/K .

Let ai j(l) = 0 for |x i − x j |> 1/K , and for |x i − x j |= 1/K ,

eai j(l) =
K2

2
(2+ di j(Vi − Vj) + (x j − x i) · l).

We set

ai j(l) =

¨
eai j(l)∨ 0 if ea ji(l)> 0,

(K2/2pi)(pi + p j)(x j − x i) · l otherwise.
(28)

If ea ji(l)> 0 and eai j(l)> 0 then

bi j(l) = piai j(l)− p ja ji(l)

=
K2

2
(2(pi − p j) + (pi(Vi − Vj)− p j(Vj − Vi))di j + (pi(x j − x i)− p j(x i − x j)) · l)

=
K2

2
(2(pi − p j)− 2(pi − p j) + (pi + p j)(x j − x i) · l)

=
K2

2
(pi + p j)(x j − x i) · l.

It follows from (28) that the above formula holds also if ea ji(l) ≤ 0 or eai j(l) ≤ 0. Consider an

interior point x j . For (19) to be satisfied, we have to take

v j = −
1

p j

∑

|x i−x j |=1/K

K2

2
(pi + p j)(x j − x i).

For large K , series expansion shows that

v j ≈−∇V.

Fix D ⊂ Rn and consider large K . Let PK denote the distribution of (X , L) constructed in this

example. We recall the following SDE from [1],

dYt = −∇V (Yt) d t + St d t + dBt ,

dSt = −∇V (Yt) d t ,

where B is standard n-dimensional Brownian motion and V is as above. Let P∗ denote the distri-

bution of (Y,S). We conjecture that as K →∞, PK converge to P∗. Under mild assumptions on V ,

it is known that the stationary distribution for (Y,S) is the product of the measure exp(−V (x))d x

and the standard Gaussian distribution; see [1].
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Example 3.4. We again consider the situation when all p j ’s are equal, i.e., p j = 1/N . Consider a

C2 function V : D→ R. We let ai j(l) = 0 for |x i − x j |> 1/K . If |x i − x j |= 1/K , we let

eai j(l) =
K2

2
(1+ (Vj + Vi)(x j − x i) · l).

We set

ai j(l) =

¨
eai j(l)∨ 0 if ea ji(l)> 0,

K2(Vj + Vi)(x j − x i) · l otherwise.
(29)

Then bi j(l) = (1/N)K
2(Vj + Vi)(x j − x i) · l and

v j = K2
∑

|x i−x j |=1/K

(Vj + Vi)(x j − x i).

For large K , we have v j ≈−2∇V .

Fix D ⊂ Rn and consider large K . Let PK denote the distribution of (X , L) constructed in this

example. Consider the following SDE,

dYt = V (Yt)St d t + dBt ,

dSt =−2∇V (Yt) d t ,

where B is standard n-dimensional Brownian motion and V is as above. Let P∗ denote the distribu-

tion of (Y,S). We conjecture that as K →∞, PK converge to P∗, and that the stationary distribution

for (Y,S) is the product of the uniform measure on D and the standard Gaussian distribution.

The next example and conjecture are devoted to examples where the inert drift is related to the

curvature of the state space, in a suitable sense.

Example 3.5. In this example, we will identify R2 and C. The imaginary unit will be denoted by i,

as usual. Let S consist of N points on a circle with radius r > 0, x j = r exp( j2πi/N), j = 1, . . . , N .

We assume that the p j ’s are all equal to each other.

For any pair of adjacent points x j and xk, we let

ea jk(l) =
N2

2
(1+ (xk − x j) · l),

and

a jk(l) =

¨
ea jk(l)∨ 0 if eak j(l)> 0,

N2(xk − x j) · l otherwise,

with the other ak j(l) = 0. Then b j( j+1) = N(x j+1 − x j) · l, and by (19) we have

v j = N2(x j−1 − x j) + N2(x j+1 − x j) = 2N2(cos(2π/N)− 1)x j .

Note that v j →−4π2 x j when N →∞.

Let PN be the distribution of (X , L) constructed above.

Let C be the circle with radius r > 0 and center 0, and let Ty be the projection of R2 onto the

tangent line to C at y ∈ C . Consider the following SDE,

dYt = TYt
(St) d t + dBt ,

dSt = −4π2Yt d t ,
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where Y takes values in C and B is Brownian motion on this circle. Let P∗ be the distribution of

(Y,S). We conjecture that as N →∞, PN converge to P∗, and that the stationary distribution for

(Y,S) is the product of the uniform measure on the circle and the standard Gaussian distribution.

Conjecture 3.6. We propose a generalization of the conjecture stated in the previous example.

We could start with an explicit discrete approximation, just like in other examples discussed so far.

The notation would be complicated and the whole procedure would not be illuminating, so we

skip the approximation and discuss only the continuous model.

Let S ⊂ Rn be a smooth (n − 1)-dimensional surface, let Ty be the projection of Rn onto the

tangent space to S at y ∈ S , let n(y) be the inward normal to S at y ∈ S , and let ρ be the

mean curvature at y ∈ S . Consider the following SDE,

dYt = TYt
(St) d t + dBt ,

dSt = c0ρ
−1n(Yt) d t ,

where Y takes values in S and B is Brownian motion on this surface. We conjecture that for some

c0 depending only on the dimension n, the stationary distribution for (Y,S) exists, is unique and

is the product of the uniform measure on S and the standard Gaussian distribution.

We end with examples of processes that are discrete approximations of continuous-space processes

with jumps. It is not hard to construct examples of discrete-space processes that converge in

distribution to continuous-space processes with jumps. Stable processes are a popular family of

processes with jumps. These and similar examples of processes with jumps allow for jumps of

arbitrary size, and this does not mesh well with our model because we assume a finite state space

for X . Jump processes confined to a bounded domain have been defined (see, e.g., [2]) but

their structure is not very simple. For these technical reasons, we will present approximations to

processes similar to the stable process wrapped around a circle.

In both examples, we will identify R2 and C. Let S consist of N points on the unit circle D,

x j = exp( j2πi/N), j = 1, . . . , N . We assume that the p j ’s are all equal to each other, hence,

p j = 1/N . In these examples, L takes values in R, not R2.

Example 3.7. Consider a C3-function V : D→ R. We write Vj = V (x j). We define

A( j, k) =

¨
1 if x j and xk are adjacent on the unit circle,

0 otherwise.

For any pair of points x j and xk, not necessarily adjacent, we let

ea jk(l) =
N2

2
(Vk − Vj)A( j, k)l +

1

N

∑

n∈Z

|(k− j) + nN |−1−α,

where α ∈ (0,2). We define

a jk(l) =

¨
ea jk(l)∨ 0 if eak j(l)> 0,

N2(Vk − Vj)A( j, k)l otherwise.

Then

b jk(l) = N(Vk − Vj)A( j, k)l
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and by (19) we have

vk =−N2
∑

j:A(k, j)=1

Vk − Vj .

Note that vk →∆V (x) = V ′′(x) when N →∞ and xk→ x .

Let PN be the distribution of (X , L) constructed above. Let W (x) = V (ei x) and let (Z ,S) be a

Markov process with the state space R×R and the following transition probabilities. The compo-

nent Z is a jump process with the drift ∇W (Z)S =W ′(Z)S. The jump density for the process Z is∑
n∈Z |(x − y)+ n2π|−1−α. We let St =

∫ t

0
∆W (Zs)ds. Let Yt = exp(iZt) and P∗ be the distribution

of (Y,S). We conjecture that PN → P∗ as N →∞ and the process (Y,S) has the stationary distribu-

tion which is the product of the uniform measure on D and the standard normal distribution. The

process (Y,S) is a “stable process with index α, with inert drift, wrapped on the unit circle.”

Example 3.8. Consider a continuous function V : D→ R with
∫

D
V (x)d x = 0. Recall the notation

Vj = V (x j). For any pair of points x j and xk, not necessarily adjacent, we let

ea jk(l) =
1

N

 
1

2
(Vk − Vj)l +

∑

n∈Z

|(k− j) + nN |−1−α

!
,

where α ∈ (0,2). We define

a jk(l) =

¨
ea jk(l)∨ 0 if eak j(l)> 0,
1

N
(Vk − Vj)l otherwise.

Then b jk(l) = (1/N
2)(Vk − Vj)l and by (19) we have

vk =
1

N

∑

1≤ j≤N , j 6=k

Vk − Vj .

Note that if arg xk→ y when N →∞ then vk → V (ei y)−
∫

D
V (x)d x = V (ei y).

Let PN be the distribution of (X , L) constructed above. Let W (x) = V (ei x) and let (Z ,S) be a

Markov process with the state space R× R and the following transition probabilities. The com-

ponent Z is a jump process with the jump density f (x) = (W (x)−W (y))s −
∫ ∑

n∈Z((x − y) +

n2π)−1−α at time t, given {Zt = y,St = s}. We let St =
∫ t

0
W (Zs)ds. Let Yt = exp(iZt) and P∗ be

the distribution of (Y,S). We conjecture that PN → P∗ as N → ∞ and the process (Y,S) has the

stationary distribution which is the product of the uniform measure on D and the standard normal

distribution.

4 Acknowledgments

We are grateful to Zhenqing Chen and Tadeusz Kulczycki for very helpful suggestions.



Product-form stationary distribution 627

References

[1] R. Bass, K. Burdzy, Z.-Q. Chen and M. Hairer, Stationary distributions for diffusions with inert

drift Probab. Theory Rel. Fields (to appear)

[2] K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes Probab. Theory Rel. Fields

127 (2003) 89–152. MR2006232

[3] K. Burdzy, R. Hołyst and Ł. Pruski, Brownian motion with inert drift, but without flux: a

model. Physica A 384 (2007) 278–284.

[4] K. Burdzy and D. White, A Gaussian oscillator. Electron. Comm. Probab. 9 (2004) paper 10,

pp. 92–95. MR2108855

[5] D. White, Processes with inert drift. Electron. J. Probab. 12 (2007) paper 55, pp. 1509–1546.

MR2365876

http://www.ams.org/mathscinet-getitem?mr=2006232
http://www.ams.org/mathscinet-getitem?mr=2108855
http://www.ams.org/mathscinet-getitem?mr=2365876

