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Abstract

We consider the asymptotic behaviour of the second-order correlation function of the charac-
teristic polynomial of a real symmetric random matrix. Our main result is that the existing
result for a random matrix from the Gaussian Orthogonal Ensemble, obtained by BREZIN
and Hikam1 [BH2], essentially continues to hold for a general real symmetric Wigner matrix.
To obtain this result, we adapt the approach by GOTZE and KOsTERS [GK], who proved the
analogous result for the Hermitian case.

1 Introduction

In recent years, the characteristic polynomials of random matrices have found considerable
interest. This interest was sparked, at least in part, by the discovery by KEATING and SNAITH
[KS] that the moments of a random matrix from the Circular Unitary Ensemble (CUE) seem
to be related to the moments of the Riemann zeta-function along the critical line. Following
this observation, several authors have investigated the moments and correlation functions of
the characteristic polynomial also for other random matrix ensembles (see e.g. BREZIN and
Hikamr [BH1, BH2], MEHTA and NORMAND [MN], STRAHOV and Fyoporov [SF|, BAIK,
DEIFT and STRAHOV [BDS], BORODIN and STRAHOV [BS], GOTZE and KOSTERS [GK]).
One important observation is that the correlation functions of the characteristic polynomials of
Hermitian random matrices are related to the “sine kernel” sinz/x. More precisely, this holds
both for the unitary-invariant ensembles (STRAHOV and Fyoporov [SF]) and — at least as far
as the second-order correlation function is concerned — for the Hermitian Wigner ensembles
(GOTZE and KOSTERS [GK]). Thus, the emergence of the sine kernel may be regarded as
“universal” for Hermitian random matrices.

In contrast to that, the correlation functions of the characteristic polynomials of real symmetric
random matrices lead to different results. This was first observed by BREZIN and HIKAMI
[BH2|, who investigated the Gaussian Orthogonal Ensemble (GOE) (see e.g. FORRESTER [Fo]
or MEHTA [Me] for definitions) and came to the conclusion that the second-order correlation
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function of the characteristic polynomial is related to the function sinz/x® — cosx/x? in this
case (see below for a more precise statement of this result). Moreover, BORODIN and STRAHOV
[BS] obtained similar results for arbitrary products and ratios of characteristic polynomials of
the GOE.

The main purpose of this paper is to generalize the above-mentioned result by BREZIN and
HikamMmr [BH2| about the second-order correlation function of the characteristic polynomial of
the GOE to arbitrary real symmetric Wigner matrices. Throughout this paper, we consider
the following situation: let ) be a probability distribution on the real line such that

/xQ(dx):O, a::/xQQ(dm)zl, b::/m4Q(da;)<oo, (1.1)

and let (Xii/\/ﬁ)ieN and (Xjj;)i<j,i,jen be independent families of independent real random
variables with distribution @ on some probability space (2, F,P). Also, let X;; := X;; for
i < j, 4,7 € N. Then, for any N € N, the real symmetric Wigner matrix of size N x N
is given by Xn = (Xij;)1<i,j<n, and the second-order correlation function of the characteristic
polynomial is given by

F(N;p,v) :=E(det(Xy — ply) - det(Xny — vin)), (1.2)

where p, v are real numbers and Iy denotes the identity matrix of size N x N.

In the special case where @ is given by the standard Gaussian distribution, the distribution
of the random matrix X is the Gaussian Orthogonal Ensemble (GOE). (Note, however, that
our scaling is slightly different from that mostly used in the literature (see e.g. FORRESTER
[Fo] or MEHTA [Me]), since the variance of the off-diagonal matrix entries is fixed to 1, and
not to 1/2.) The result by BREZIN and HikaMmI [BH2] then corresponds to the statement that

. 21 1 7N§2/2
Jim e PN VNE+ =
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e Ve mg@))
o gy (S B

where ¢ € (=2,42), p,v € R, and o(¢) := 5-1/4 — &2.

Our main result is the following generalization of (1.3):

Theorem 1.1. Let Q be a probability distribution on the real line satisfying (1.1), let | be
defined as in (1.2), let € € (—2,+2), and let p,v € R. Then we have

im ﬁ.i.e—Nf/?
NN N <N\F§+\F()\F§ \FQ()>

— exp (152 - SO (2mp(€))° - Tl — ), (14)

where o(§) := 27'r \/4 — &2 denotes the density of the semi-circle law,

T(z) = 1 (sinx coS T

> ) for x#0, (1.5)

3 22

and T'(z) :==1/6 for x =0, by continuous extension.
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In particular, we find that the correlation function of the characteristic polynomial asymp-
totically factorizes into a universal factor involving the function T'(x), another universal factor
involving the density o(£) of the semi-circle law, and a non-universal factor which depends on
the underlying distribution @ only via its fourth moment b, or its fourth cumulant b — 3.

It is interesting to compare the above result with the corresponding result for Hermitian
Wigner matrices (Theorem 1.1 in GOTZE and KOSTERS [GK]), which states that under similar
assumptions as in (I1.1) and with similar notation as in (1.2), we have

lim 2£~i'e*N52/2 A(N\ﬁﬁJr \ﬁﬁ

. Lt)/20 sinm(p — v)
— exp (bf %> .ea +)/20) . (279(€)) - T (1.6)

(f and b denote the analogues of f and b, respectively.) Obviously, the structure of (1.6) and
(T.4) is the same. The most notable difference is given by the fact that the “sine kernel” sin z:/x
in is replaced with the function T'(z) in (1.4). It is noteworthy that both functions are
closely related to Bessel functions, as already observed by BREZIN and Hikam1 [BH2]. Indeed,
it is well-known (see e.g. p. 78 in ERDELYI [Er|) that

1 /sinx cosx

= Vad ()] (20)Y and L ( - ) T Ty ala) [ (22)77,

sinx

2\ a3 2

where J,,(z) denotes the Bessel function of order p. Thus, if one wishes, one may rewrite both
(1.6) and (1.4) in the common form

\/ﬁ.i.e—l\fg/? (N VNE+ —

\F No(¢)’ \/JVQ(S))

T - exp (b*) . ef(lt+u)/29(f) . (27-[-9(&-))21) (275—( ))1)7
with p := %, b* = b— % in the Hermitian case and p := %, b* = 5—73 in the real symmetric

case.
Furthermore, in the special case that £ = u = v = 0, Theorem [1.1 reduces to a result about
determinants of random matrices, due to ZURBENKO [Zu].

To prove Theorem|[1.1, we show that the approach for Hermitian Wigner matrices adopted by
GOTZE and KOSTERS [GK] can easily be adapted to real symmetric Wigner matrices. This
stands in contrast to the “orthogonal polynomial approach” typically used in the analysis of the
invariant ensembles, for which the transition from the unitary-invariant ensembles (such as the
GUE) to the orthogonal-invariant ensembles (such as the GOE) is usually more complicated.
Similarly as in GOTZE and KOSTERS [GK], a crucial step in our analysis consists in deriving
an explicit expression for the exponential-generating function of the second-order correlation
function of the characteristic polynomial (see Lemma [2.3). After that, our main result can be
deduced using standard techniques from asymptotic analysis.

Acknowledgement. The author thanks Friedrich Go6tze for the suggestion to study the
problem. Furthermore, the author thanks an anonymous referee for his helpful comments.
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2 Generating Functions

In this section, we determine the exponential generating function of the correlation function of
the characteristic polynomial of a real symmetric Wigner matrix. Our results generalize those
by ZURBENKO [Zu], who considered the special case of determinants.

We make the following conventions: the determinant of the “empty” (i.e., 0 x 0) matrix is taken
to be 1. If A is an nxn matrix and z is a real or complex number, we set A—z := A—zI,, where

I, denotes the n x n identity matrix. Also, if A is an n x n matrix and iy, ... %4, and ji,...,jm
are families of pairwise different indices from the set {1,...,n}, we write Al @miit,iml for
the (n — m) x (n — m)-matrix obtained from A by removing the rows indexed by i1,...,4m
and the columns indexed by ji,. .., jm. Thus, for any n x n matrix A = (ai;)1<ij<n (n > 1),
we have
n—1
det(A) = Y (=1 a5 ap j det(AI]) 4 q,,  det(A), (2.1)
i,j=1

as follows by expanding the determinant about the last row and the last column. (For n =1,
note that the big sum vanishes.)

Recall that we write Xy for the real symmetric random matrix (X;;)1<; j<n, where the X;;
are the random variables from the introduction. We will analyze the function

F(N;p,v) :=E(det(Xny — p) - det(Xny — v)) (N >0).

To this purpose, we will also need the auxiliary functions

(N p,w) 1= B(det((Xy — ) 1) - det((Xy — 1)22)) (N>2),
B(N;p,w) 1= B(det((Xy — )52)) - det((Xy — 1)12)) (N>2).
JE (N o) 1= B(det((Xy — ) 2)) - det((Xy — 1)21)) (N>2),
fro(N; p,v) == E(det(Xn_1 — p) - det(Xny — v)) (N>1),
for(N; p,v) == E(det( Xy — p) - det(Xn_1 — v)) (N>1).

Note that the functions ff§ and f§ actually coincide, but we will not need this. Since y and v
can be regarded as constants for the purposes of this section, we will only write f(NV) instead
of f(N;u,v), ete.

We have the following recursive equations:

Lemma 2.1.

f(0) =1,

f(N) = @2+ ) f(N=1) +b(N = 1) f(N - 2)
+ (N =1)(N =2) f{i(N —1)
+ (N =1)(N =2) fii(N — 1)
+ (N =1)(N =2) f{y(N - 1)
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JHN) = pv f(N = 2) + (N = 2) f(N = 3)
(

+ v(N —2) fio(N —2)

+ (N =2) for(N —2) (N >2), (2.3)
M(N) = f(N —2)+ (N —2) f(N - 3)

+ (N =2)(N =3) fB(N —-2) (N >2), (2.4)
SA(N) = f(N —2)+ (N —2)f(N —3)

+ (N =2)(N =3) f1(N - 2) (N>2), (2.5)
J1o(N) = =(N = 1) for(N = 1) —v f(N - 1) (N >1), (2.6)
for(N) = —=(N =1) fio(N =1) —p f(N — 1) (N>1). (2.7)

Proof. We give the proof for the recursive equation for f(N) only, the proofs for the remaining
recursive equations being very similar.

The result for f(0) is clear. For N > 1, we expand the determinants of the matrices (Xy — )
and (Xy —v) asin (2.1) and use the independence of the random variables X;; = Xj; (i < j),
thereby obtaining

f(N)
N—-1 N—-1
Z Z 'L+]+k+l E (Xi,NXN7ij7NXN,l) -E (det(XN,1 — /J)[i:j] . det(XN,1 — V)[k:l])
i,7=1k,l=1
N-1
+ S () E(X v Xny) E(Xyy —v)-E (det(XN,l — ) det (X — u))
i,j=1
—1
+ Z k+l+1 Xk,NXN,l) -E (XN,N - [L) -E (det(XN_1 — ,U,) . det(XN_l — I/)[k:l])
k,l=1
+ E( XN,N - ,U)(XN,N — I/)) ~E(det(XN_1 — ,u) . det(XN_1 — l/)) .

Since the random variables X;; = X; (i < j) are independent with E(X,;) =0 (¢ < j), several
of the expectations vanish, and the sum reduces to

F(N) = (EXRy + pv) - E (det(Xn—1 — p) - det(Xn—1 — )
+ > EX/!y-E (det(XN,l — ) det(Xy_1 — V)[k:l])

i=j=k=l
Z EXiQ,N ‘ EX;%,N -E (det(XN,1 — ) det(Xy_q — V)[k:l])
i=j#k=l
+ ). EX{y - EXIy E (det(szfl — )l det(Xn_y — V)[k:u)
i=k#j=l

+ Y EX?y EX7y E (det(XN,1 — ) det (X — y)[’“”)
i=l£j=k
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+ v EX?y-E (det(XN,l — ) det (X — u))
i=j

+ u> EXEy E (clet(XN,1 — ) det(Xn 1 — V)[k:l]) .

k=l
From this (2.2) follows by noting that EX?V’N =2, EXEN =1, EX;%N = b, and by exploiting
obvious symmetries. ]

It turns out that the above recursions can be combined into a single recursion involving only
the values f(N). Using the abbreviations

o(N) = % (N>0)  and  s(N)i= S e(N—k) (N>0),
k=0,....N
k even

we have the following result:
Lemma 2.2. The values ¢(N) satisfy the recursive equation
c(0)=1, (2.8)
Ne(N)=2-¢(N—-1)+(N+1)-¢(N —-2)
+ pv - (s(N = 1) + s(N — 3))
(2 +07) - s(N —2)
+ (b—3) (c(N —2) —¢(N —4)) (N>1), (2.9)
where all terms c(-) and s(-) with a negative argument are taken to be zero.
Proof. Tt follows from Lemma[2.1 that
FIN=2) = fI(N = 1) + FAIN = 1) + [N = 1) + (b= 3)(N = 3) f(N — 4)

for all N > 3. Thus, we can substitute f{i(N —1)+ fB(N — 1)+ f5 (N —1) on the right-hand
side of (2.2) to obtain

f(N) =2+ w) f(N-1)

+(0=3)- (N =1) (N =2) = (N = )(N = 2)(N = 3) (N — 4))
for all N > 3. Dividing by (N — 1)!, it follows that
Ne(N)= 2+ pv)-¢(N —1)+ (N +1)c(N —2)
+ v fio(N —1) /(N —2)!
+ e for(N = 1) /(N = 2)!
+(b—3)- (c(N—2)—c(N—4))
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for all N > 3. (For N = 3, note that the second term in the large bracket vanishes.) Since
Fio(N = 1) / (N = 2)! = —vs(N — 2) + us(N — 3),
f01(N - 1)/(N - 2)' = —,US(N - 2) + VS(N - 3)7

for all N > 3, as follows from (2.6) and (2.7) by a straightforward induction, the assertion
for N > 3 is proved.
The assertion for N < 3 follows from Lemma [2.1 by direct calculation:

c(0) = f(0) =1
le(1) = f(1) = (24 w) £(0) = (2 4 pr)e(0) = 2¢(0) + prs(0)
2¢(2) = f(2) = 2+ pw) f(1) + bf(0) + v(=vf(0) + p(—pf(0))
= (24 w)f(1) +bf(0) — (4 +v*)£(0)

)e(1) + be(0) — (u? + v2)c(0)

+ pve(l) = (1 +v2)e(0) + (b — 3)c(0)
(0) + pws(1) — (i + v2)(0) + (b — 3)e(0)

v\_,

Using Lemma 2.2, we can determine the exponential generating function of the sequence
(f (N ))N >0°

Lemma 2.3. The ezponential generating function F(z) := > x_o f(N) 2™ / NI of the sequence
(f(N))n>0 is given by

exp (- e — 3t 4 07) - 2
F(CC) = (1 _ l‘)5/2 . (1 _1_33)1/2 )

where b* := (b — 3).
Proof. Starting from Lemma [2.2] it is easy to see that for any u, v and any § > 0, there exists
a constant K (b, u,v,0) > 0 (depending only on b, y1, v, ) such that

|f(N;,u,1/)| < K(b,p,v,8) N (1 4+ 6N

for all N > 0. In particular, it follows that the exponential generating function converges for
all z € C with |z| < 1. (On the other hand, it turns out that there are singularities at = +1.)
Thus, multiplying (2.9) by #V~1, summing over N and recalling our convention concerning
negative arguments, we have

> Ne(N)aN =D "2e(N - 1)z +
N=1 N=1 2

+ pv <§: s(N —1)aN=1 4 i s(NS)xN1>

N=1 N=3

(N +1)¢(N —2)zV 1

NE

2
Il

— (1 +v%) i s(N —2)zV !
N=2

+ 2b* (i c(N —2)zVN=1 — i ¢(N — 4)17N1> ,
N=4

N=2
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whence

F'(z) = 2F(x) + (32 F(x) + 2°F'(x))
1+ 2?2
1— 22
This leads to the differential equation
24 3x 1+ 22
F/ — i
(@) (1 — T e

which has the solution

F(z) — (u* +v?) F(z) 420" (xF(z) — 2°F(2)) .

T
+ pv
1— 22

p? +v?)

— Fo z 1,2 2y 1 * .2
F(z) = (1_x)5/2,(1+x)1/gexp</lu1_x2Q(N +v )1_x2+bx .

Here, Fp is a multiplicative constant which must be chosen as exp(3(u? + v?)) in order to
satisfy (2.8). This completes the proof. O

3 The Proof of Theorem |1.1

This section is devoted to proving Theorem 1.1l In doing so, we will proceed similarly to the
proof of Theorem 1.1 in GOTZE and KOSTERS [GK]. Throughout this section, T'(x) will denote
the function defined in Theorem [1.1.

We will first establish the following slightly more general result:

Proposition 3.1. Let Q be a probability distribution on the real line satisfying (1.1), let f be
defined as in (1.2), let (Ex)nen be a sequence of real numbers such that limy _ o En/VN = €
for some £ € (—2,42), and let n € C. Then we have

lim (/2% L exp(—e2/2) - f (N;fN + L ey ”)

N—o0 N3 . ﬁ
It is easy to see that Proposition|3.1 implies Theorem|[1.1:
Proof of Theorem[1.1. Taking
(ntv) and n:=

= Ne ety v
Y 3 N Vi o
in Proposition 3.1, we have

. 2 1
lim

Jim [ e (—N£2/2 —omé(u+v)/2V/A— g?)

) 2mp 2mv
=oxp (552) - (4= €)% - T(w(p —v)),

from which Theorem follows by a simple rearrangement. O
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Proof of Proposition]3.1l From the exponential generating function obtained in Lemma [2.3,
we have the integral representation

NI 2rmi

2) dz (3.1)

fey) 1 e (e - ) 2
[y (1—2)5/2-(1+ 2)1/2 SN+1

where v = vy denotes the counterclockwise circle of radius R = Ry = 1 — 1/N around the
origin. (We will assume that N > 2 throughout the proof.)
Setting p = &x + n/\/ﬁ and v =¢&n — n/\/ﬁ and doing a simple calculation, we obtain

z
1—

2
exp (;uw 5 — i +v2)- 2 er*zZ)

2
—oxp (& - PIN) (o~ (G PN g 0

1—=2 1 "
= oxp (365 + /) - exp (‘%E?v' e N Z2> |
and therefore
1 1
— f N _
(A& +°/N) - 5 /exp (3G -0 ) g (3.2)
= o (368 4 2mi J., (1—2’)5/2~(1—|—2)1/2 N+ '
Putting
Lo (AR - /N o 4 b?)
(Z) = (1 o 2)5/2 . (1 + 2)1/2
and
o ex (—152 (1—2)—( 2/N)-L)
(o) o= 200 P (A Ul
0 : V2 (1— z)5/2 ’
we can rewrite the integral in (3.2)) as
1 dz
— | h =1+ 1
271 ¥ (Z) ZN+1 ! + 2
where

1 d» 1 dz
I .= /yhO(Z) SN+T and I = /Y(h(Z) - hO(Z)) SN+L

211 211

Note that I; and I implicitly depend on N. Clearly, to complete the proof, it suffices to show
that

I p(b*
and
lim 2 —. (3.4)
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We first prove (3.3). To begin with, since {5 € R, we have

‘exp(—if%-(l—z))‘:exp(—iff\WRe(l—z))§1 (3.5)

for any z € C with Re (2) < 1. Also, we have

jexp (=(?/N) - 122) | < exp ((nl?/V) - kg

for any z € C with Re(z) <1 — (1/N). It follows that

) < exp(lnl?) (3.6)

211

Ny exp (~4€k - (1-2) - P/N) - 1) g,

(1= 2)5/2 AN

1 R+iooexp(—iszv'(lfz)*(ﬂz/]v)'1iz> dz 37
7277-‘-7/ i (1_2)5/2 ZN+1 . ( . )

Indeed, for any R’ > 1, we can replace the contour v by the contour § consisting of the line

segment between the points R —i+/(R’)?2 — R? and R+ 1i+/(R)? — R2, and the arc of radius
R’ around the origin to the left of this line segment. Using (3.5) and (3.6), it is easy to see

then that the integral along the arc is bounded by

1 ,exp(|n[?) 1
o 2n R (R — 152 (R)NFL°

which tends to zero as R’ — oco. This proves (3.7).
Next, performing a change of variables, we obtain

] [R+icc exp (_i512V~(1—z)—(772/N)~ 112«) dz

o7 Jr i (1— 2)5/2 ZN+1
22 1 +o00 exp (—%(612\[/]\/') (1 - zu) — 172 . 1,1zu> du
— N3/2. — 572 1—iu\N+1 (3.8)
or | (1 —du) (1=

Since limpy o0 En/V N =&, an application of the dominated convergence theorem yields

] /+oo eoxp (<HE/N) (L —iw)—n?- 25) gy

o (1 —u)5/? (1— )N+t

1 preeexp (1= 3€2) - (1—iw) —n* - )
_ L d
o J o (1= iu)?/2

u. (3.9)

Another application of the dominated convergence theorem shows that the right-hand side
in (3.9) is equal to

= d
or (1 — qu)o/2 "

=0 B

SN L e (3 (1 - )
{!
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which in turn can be rewritten as

i (_1)ln2l (1- %52)l+3/2 B 00 (_1)l7721 . L 1+ 1)! .(4 _ 52)l+3/27

I T+5/2) = VT (21+3)!

=0

as follows from the Laplace inversion formula (see e.g. Chapter 24 in DOETSCH [Do|) and the
functional equation of the Gamma function. Hence, putting it all together, we obtain

b D SPO) s i D'+ (V=g n)”

Nooo N3/2 V2r P (20 + 3)!
Since
> HI+1)22 1 [sinz cosz
= — — = T
Z 21+3 2(z3 22 ) (2),

1=0
this proves (3.3).
To prove (3.4), we will show that limsupy_, ’12/N3/2| < § for any 6 > 0. Thus, fix § > 0,
and let ¢ = ¢(b*,n,d) > 0 denote a constant depending only on b*,7,d which will be chosen
later. Then we have

1 2nr—c/N ] dt 1 27r—c/N ) dt
|12‘ < 7/ |h0(R61t) — + 7/ |h(R6n) —

1N : oy dt
. h AN h it —_ .
om o | (RC ) O(Re ) RN

Denote the summands on the right-hand side by I51, I3 and I»3, respectively.
Let €2 > 0 denote a positive constant such that cost < 1 — e2t? for —m < t < +7. Then, for
any a > 0 and any —7w < t; < to < 47, we have the estimate

to 1 to 1 to 1
—— dt = dt < dt
/t1 |1 — Reit| /t1 (1+ R?2 —2Rcost)®/2 " — /tl (1 = R)% + g212)2/2

to 1 L Neto 1
= N*¢ ——— — dt = KN%~ —d 3.10
/tl (1 +N282t2>o¢/2 /Nstl (1 +u2)a/2 u, ( )

where K denotes some absolute constant. Let us convene that this constant K may change
from occurrence to occurrence in the subsequent calculations. Then, using the estimates

(3:5), (3.6),
‘exp (b*zQ)’ < exp (|b*||z|2) < exp([b*]) (3.11)

(for z € C with |z| < 1) as well as (3.10), we obtain

¥ | 1 /Zw—c/N eXp(|77|2+ ‘b*|) ﬂ
=0 N 1 — Reit|5/2 RN
4 1
<K 2400 - — dt
> eXp(‘r'ﬂ + | D /C/N Il _ R€1t|5/2

< Kepllnl + ) - N [~ a
ce

< K exp(nf* + [b°]) - N*/2 /2.
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Similarly, using the estimate

exp (~16% - 152 )| = exp (26 Re (352)) —exo (26 15 ) <1 312)

(for z € C with |z| < 1) instead of (3.5), we obtain

Lol < - /QH/N exp(nl* + b)) dt
2= o ¢/N |1 —Reit\5/2 1 +Reit|1/2 RN

) 7'['/2 1 ﬂ'/2 1
<K b1 - S . _at
< Keo(uf +71)- | g [ g

) oo o s Nerm/2 1
< Kesplln® 17 - (N2 [ o dua N2 (1 [T S an
ce

< Kexp(lnf* + (8] (N¥2e2 1)
Hence, if we pick ¢ = ¢(b*,n,d) > 0 sufficiently large, we clearly have

lim sup ‘121/]\73/2‘ <6/2 and  limsup ‘122/N3/2‘ <6/2.
N—oo

N —o00
For the remaining integral I3, note that

Ly 1 [*°
N3/2 " on |

h(Re™N) — ho(Re™/N) | du
N5/2 RN’

Now, it is easy to check that for each u € [—¢, +¢|, we have
1+ Re™/N =24 0,(1/N) and  N(1—Re™N)=1—iu+ O.(1/N),

the constants implicit in the O.-bounds depending only on ¢. Thus, since limy_, 0 {n/VIN =&,
we have

iu/NY _ iu/N
lim h(Re*™ /™) — ho(Re*™/*V)

N—oo N5/2 =0

for any u € [—¢, +¢]|. Moreover, using (3.5), (3.6), (3.11) and , we also have

B(Re™/™) — ho(Re™/™) | exp(lnf® + b))
N5/2 T V2|1 — w52

(1+ Oc(1/N))

for any u € [—¢,+c|. It therefore follows from the dominated convergence theorem that
limy oo [T23/N3/2| = 0.
This completes the proof of (3.4), and thus of Proposition[3.1l O
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