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Abstract

In this note we provide a stochastic method for approximating solutions of ordinary differential
equations. To this end, a stochastic variant of the Euler scheme is given by means of Markov
chains. For an ordinary differential equation, these approximations are shown to satisfy a
Large Number Law, and a Central Limit Theorem for the corresponding fluctuations about
the solution of the differential equation is proven.

1 Introduction

This paper deals with stochastic approximation for ordinary differential equations. A number
of numerical methods for approximating solutions of such equations have been developed,
and references to this subject can be found by Fierro & Torres in [2], Kloeden & Platen in
[4], and San Mart́ın & Torres in [6], among others. The purpose of this paper is to give
and analyze a variant of the Euler scheme. For a given ordinary differential equation we
propose a method consisting in a sequence of Markov chains to approximate its solution,
where each of these chains minus its initial condition takes values in a finite state space of
rational numbers previously defined. Two important considerations have to be done when
compared this method with the Euler scheme. In the Euler scheme its state space could
be even uncountable and digital computers are restricted to rational numbers when doing
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calculations, which may introduce round-off error.
When approximation schemes are to be applied, their inherent round-off errors are an impor-
tant subject which must be considered. Usually, the finer discretization of the approximation
method is, the bigger the round-off error becomes. We refer to Henrici in [3] for a complete
discussion on methods for solving differential equation problems, error propagation and rate of
convergence. In this paper, we are interested in reducing the round-off error when numerical
methods are used for approximating the unique solution of an ordinary differential equation.
Our main consideration is that in practice, both we and digital computers are restricted to a
finite number of decimal places. Hence, we introduce a method of approximation which consid-
ers a finite state space with states having few digitals. However, to carry out this simplification
our scheme of approximation needs to be stochastic. Some authors interested in decreasing
the round-off error have contributed in this direction. For instance, this circumstance have
been considered by Bykov in [1] for systems of linear ordinary differential equations, by Srini-
vasu & Venkatesulu in [7] for nonstandard initial value problems, and by Wollman in [8] for
the one-dimensional Vlasov-Poisson system, among others. An important difference between
the algorithms introduced in these articles and our work is that the first ones are determin-
istic while the scheme we are introducing here aims to approximate the solutions to ordinary
differential equations by means of stochastic processes taking values in finite state spaces.
On the other hand, even though the proposed approximation method does not have this
disadvantage, it introduces a stochastic error as a consequence of the random choice of states
considered in the approximation. In [4] (Section 6.2) an approximation scheme for stochastic
differential equations is given by means of Markov chains on a countable infinite state space,
however, our method is different and it can not be obtained as a particular case of the former
one.
After constructing the approximation scheme, our first aim is to prove such a scheme satisfies
a Law of Large Numbers, that is it converges in some sense to the unique solution to the
initial value problem. The second aim of this paper is to state a Central Limit Theorem for
the fluctuations of these approximations about of the mentioned solution.
The plan of this paper is as follows. In Section 2 we define the approximation scheme. Main
results are stated in Section 3 and their proofs are deferred to Section 4.

2 The approximation scheme

Let us consider the following ordinary differential equation:

Ẋ(t) = b(t,X(t)),X(0) = x0, (1)

where x0 ∈ R
d, and b : [0, 1]×R

d → R
d satisfies sufficient conditions of regularity which ensure

existence and uniqueness of the solution to (1).
The Markov chains approximating the unique solution to (1) are defined by means of their
probability transitions. Let H be the set of all functions h from R into itself such that for
each x ∈ R, [x] ≤ h(x) ≤ x, and for each x ∈ R \ Z, h is continuous at x. In what follows,
h1, . . . , hd denote d functions in H and H : R

d → R
d stands for the function defined by

H(y1, . . . , yd) = (h1(y1), . . . , hd(yd)).
For each n ∈ N, let 0 = tn0 < . . . < tnn = 1 be the partition of [0, 1] defined as tnk = k/n, i =
0, 1, . . . , n.
On a complete probability space (Ω,F , P) and for each n ∈ N, we define the random variables
ξn
1 , . . . , ξn

n and the Markov chain Xn
0 ,Xn

1 , . . . ,Xn
n starting at Xn

0 = x0, recursively as follows.
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Suppose Xn
k is defined and consider ξn

k+1, k = 0, 1, . . . , n − 1, such that

P
(

ξn
k+1 = e| Xn

k

)

(ω) = µ1
k({e1}, ω) · · · µd

k({ed}, ω), (2)

where e = (e1, . . . , ed) ∈ {0, 1}d, ω ∈ Ω and, µi
k(·, ω), i = 1, . . . , d, is the Bernoulli law of

parameter pn
i (tnk ) = bi(t

n
k ,Xn

k (ω)) − hi(bi(t
n
k ,Xn

k (ω))).
Next we define

Xn
k+1 = Xn

k +
1

n
(H(b(tk,Xn

k )) + ξn
k+1). (3)

In what follows IA stands for the indicator function of the set A and pn
i denotes the function

from [0, 1] into itself defined as

pn
i (t) =

n−1
∑

k=0

pn
i (tnk )I[tn

k
,tn

k+1
[(t) + pn

i (tnn)I{1}(t).

Note that if H is defined as H(x) = x, then ξn
k+1 = 0, P−a.s. Hence, in this case, Xn

0 , . . . ,Xn
n

is the well-known deterministic Euler scheme for the solution to (1). Another extreme case
is obtained when H is defined as H(x) = ([x1], . . . , [xd]), where for x ∈ R, [x] denotes the
integral part of x. In this situation, the Markov chain takes values in a finite state space,
however this scheme is not deterministic. Intermediate situations can be obtained for arbitrary
H = (h1, . . . , hd) ∈ Hd.
For k = 1, . . . , n, let us define

mn
k = ξn

k −
(

b(tk−1,X
n
k−1) − H(b(tk−1,X

n
k−1))

)

.

By defining Ln
r =

r
∑

k=1

mn
k , it is easy to see that for each n ∈ N, (Ln

r ; r = 1, . . . , n) is a Fn-

martingale with mean zero, where Fn = {Fn
0 , . . . ,Fn

n},Fn
0 = {∅,Ω} and Fn

k = σ{ξn
1 , . . . , ξn

k }
k = 1, . . . , n.
For approximating X, we define the process {Xn(t); 0 ≤ t ≤ 1} as

Xn(t) =

n−1
∑

k=0

[Xn
k + (t − tnk )b(tnk ,Xn

k ))]I[tn

k
,tn

k+1
[(t) + Xn

n I{1}(t). (4)

By defining Fn
t = Fn

[nt], t ∈ [0, 1], Xn turns out to be adapted to IFn = {Fn
t ; 0 ≤ t ≤ 1}, and

for each t ∈ [0, 1] we have

Xn(t) = Xn(0) +

∫ t

0

b(cn(u),Xn(cn(u))) d u + Ln
[nt]/n, (5)

where cn(u) = [nu]/n.

3 Main Results

In this section we state the main results and their proofs are deferred to the next section. We
will make the following standing assumptions throughout the paper.

(A1) ‖ b(t, x) − b(t, y) ‖2
d< K1 ‖ x − y ‖2

d.
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(A2) ‖ b(t, x) ‖2
d< K2(1+ ‖ x ‖2

d).

(A3) ‖ b(t, x) − b(s, x) ‖2
d< K3(1+ ‖ x ‖2

d)|s − t|2.

for all x, y ∈ R
d, s, t ∈ [0, 1] where K1,K2 and K3 are positive real constants, and ‖ · ‖d stands

for the usual norm in R
d .

The first theorem states existence of a bound for the global error when the Markov chain
Xn

0 ,Xn
1 , . . . ,Xn

n is used in order to approximate the solution to (1).

Theorem 3.1. (Global error.) There exists a positive constant D such that

E

(

sup
0≤t≤1

||Xn(t) − X(t)||2d
)

≤ D/n.

The following result is concerned with the asymptotic behavior of the scheme used to approx-
imate the solution to (1). Before stating it, let Dx(b(s,X)) and pi(u) denote, respectively, the
d × d-matrix defined as

Dx(b(s,X)) =







∂b1
∂x1

(s,X) · · · ∂b1
∂xd

(s,X)
...

. . .
...

∂bd

∂x1
(s,X) · · · ∂bd

∂xd

(s,X).






,

and

pi(s) = bi(s,X(s)) − hi(bi(s,X(s)) i = 1, . . . , d.

Theorem 3.2. (Central Limit Theorem.) Let Zn(t) =
√

n (Xn(t) − X(t)) and suppose b
continuously differentiable at the second variable. Then, the sequence (Zn;n ∈ N) converges

in law to the solution Z of the following stochastic differential equation

Z(t) =

∫ t

0

Dx (b(s,X (s))) · Z (s)ds + M (t),

where M = (M1, . . . ,Md) is a continuous Gaussian martingale starting at zero and having pre-

dictable quadratic variation given by the diagonal matrix < M > (t) whose diagonal elements

are respectively given by

< Mi > (t) =

∫ t

0

pi(s)(1 − pi(s))ds, i = 1 , . . . , d .

4 Proofs

In order to prove the theorems state in Section 3, we need the following five lemmas.

Lemma 4.1. There exist a positive constants C and such that for each n ∈ N,

E

(

sup
0≤t≤1

||Xn(t)||2d
)

≤ C.
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Proof: From conditions (A1) and (A2) the following inequality holds:

E

(

sup
0≤t≤1

||Xn(t)||2d
)

≤ 3||Xn(0)||2d + 3K2 + 3K2E

(∫ 1

0

sup
0≤u≤s

||Xn(u)||2dds

)

+
3

n2
E

(

sup
1≤r≤[nt]

||Ln
r ||2d

)

.

Since conditional covariances between mn
k (u) and mn

k (v) are equal to zero for u, v = 1 . . . d
with u 6= v, we obtain

E

(

sup
1≤r≤[nt]

||Ln
r ||2d

)

= E

(

sup
1≤r≤[nt]

d
∑

u=1

|
r

∑

k=1

mn
k (u)|2

)

≤
d

∑

u=1

E

(

sup
1≤r≤[nt]

|
r

∑

k=1

mn
k (u)|2

)

≤ 4
d

∑

u=1

E





〈

[nt]
∑

k=1

mn
k (u)

〉





= 4
d

∑

u=1

E





[nt]
∑

k=1

E
(

(mn
k (u))2/Fn

k−1

)





= 4
d

∑

u=1





[nt]
∑

k=1

pn
u(tnk )(1 − pn

u(tnk ))





≤ dn. (6)

Then

E

(

sup
0≤t≤1

||Xn(t)||2d
)

≤ 3||Xn(0)||2d + 3K2 +
3d

n
+ 3K2E

(∫ 1

0

sup
0≤u≤s

||Xn(u)||2dds

)

,

and by the Gronwall inequality we have

E

(

sup
0≤t≤1

||Xn(t)||2d
)

≤ C3

(

1 + ||Xn(0)||2d
)

eC4 ,

where C3 = 3(K2 + d), and C4 = 3K2. This completes the proof.

Lemma 4.2. There exists a positive constant C such that

||X(t) − X(s)||2d ≤ C|t − s|2.

Proof: Since X(t) satisfies (1) for all s < t we have

||X(t) − X(s)||2d ≤ (t − s)

∫ t

s

||b(u,X(u))||2ddu.

This fact and (A2) imply that

||X(t) − X(s)||2d ≤ K2(t − s)

∫ t

s

(1 + ||X(u)||2d)du
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≤ C(t − s)2,

where C = K2 sup0≤u≤1(1 + ||X(u)||2d). Therefore, the proof is complete.

Proof of Theorem 3.1 Let

an(t) = E

(

sup
0≤u≤t

‖Xn(u) − X(u)‖2
d

)

.

We have
an(t) ≤ 4 (An(t) + Bn(t) + Cn(t) + Dn(t))

where

An(t) = E
(

sup0≤u≤t ||
∫ u

0
b(s,X(s)) − b(cn(s),X(s))ds||2d

)

Bn(t) = E
(

sup0≤u≤t ||
∫ u

0
b(cn(s),X(s)) − b(cn(s),X(cn(s)))ds||2d

)

Cn(t) = E
(

sup0≤u≤t ||
∫ u

0
b(cn(s),X(cn(s))) − b(cn(s),Xn(cn(s)))ds||2d

)

Dn(t) = E

(

sup1≤r≤[nt] ||Ln
r ||2d

)

/n2.

From (A3) there exists C1 > 0 such that

An(1) ≤ C1/n2, (7)

and by (A1) and Lemma 4.2, there exists C2 > 0 such that

Bn(1) ≤ C2/n2. (8)

From condition (A1) and Jensen’s inequality, we have

Cn(t) ≤ K1

∫ t

0

an(s)ds, (9)

and from (6) we obtain

Dn(t) ≤ d/n. (10)

Consequently, (7), (8), (9) and (10) imply that

an(t) ≤ 1

n
E + 4K1

∫ t

0

an(u)du, (11)

where E = 4(C1 + C2 + d)), and by applying Gronwall’s inequality to (11), we have an(1) ≤
E exp(4K1)/n, which concludes the proof.
In the sequel, for each n ∈ N, Mn stands for the martingale defined as Mn(t) = Ln

[nt]/
√

n,

t ∈ [0, 1].
Lemma 4.3, Lemma 4.4 and Lemma 4.5 below are used to prove Theorem 3.2.

Lemma 4.3. For each t ∈ [0, 1],

< Mn > (t) →< M > (t) in probability as n → ∞.
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Proof: Since, the conditional covariance between mn
i (j) and mn

i (k) for j, k = 1 . . . d and j 6= k
is equal to zero, we need only prove that for each i = 1, . . . , d,

< Mn
i > (t) →< Mi > (t) in probability, (12)

where Mn = (Mn
1 , . . . ,Mn

d ).
Let f : [0, 1) → R be and gi : [0, 1]×R

d → R
d be the functions defined by f(p) = p(1− p) and

gi(u, x) = f(bi(u, x) − [bi(u, x)]), i = 1, . . . , d, respectively.
We have,

| < Mn
i > (t)− < Mi > (t)| =

∣

∣

∣

∣

∫ t

0

(f(pn
i (u)) − f(pi(u)))du

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ t

{u∈[0,t]:pi(u)=0}

gi(u,Xn(u)))du

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ t

{u∈[0,t]:pi(u)>0}

(f(pn
i (u)) − f(pi(u)))du

∣

∣

∣

∣

∣

.

First and second terms on the right hand side of this inequality converges in probability to zero
due to gi is continuous on R and f ◦ (bi − hi ◦ bi) is continuous at (u, x) whenever pi(u) > 0.
Therefore the proof is complete.

Lemma 4.4. The sequence (Mn;n ∈ N) converges in law to M .

Proof: We use the criterion given by Rebolledo in [5] (Proposition 1). We have sup
0≤t≤1

‖∆Mn(t)‖d ≤

1/
√

n and from Lemma 4.3, for each t ≥ 0, < Mn > (t) converges in probability to < M > (t).
Therefore, by the mentioned criterion, the proof is complete.

Lemma 4.5. There exists C > 0 such that

sup
n∈N

E( sup
0≤t≤1

‖Zn(t)‖2
d) ≤ C. (13)

Proof: Since Xn(cn(u)) = Xn(u), from (1) and (5), we have

Xn(t) − X(t) =

∫ t

0

[b(cn(u),Xn(u)) − b(cn(u),X(u))] d u

+

∫ t

0

[b(cn(u),X(u)) − b(u,X(u))] d u (14)

+ Mn(t)/
√

n.

For a bounded function x from R+ to R
d, we define x∗(t) = sup

0≤u≤t
‖x(u)‖2

d. With this notation,

the following inequality is obtained from (14), (A1) and (A2):

Zn
∗ (t) ≤ 3K1

∫ t

0

Zn
∗ (u) d u + 3K4 + 3Mn

∗ (t), (15)

where K4 = K3 sup0≤u≤t(1+ ‖ X(u) ‖2
d).
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From (6), sup
n∈N

E(Mn
∗ (t)) ≤ d. Hence, (15) and Gronwall’s inequality, imply that (13) holds.

Proof of the Theorem 3.2 Since b : [0, 1] × R
d → R

d is continuously differentiable at the
second variable and Xn(cn(u)) = Xn(u), the Mean Value Theorem implies that

b(cn(u),Xn(cn(u))) − b(u,X(u)) = Dx(b(cn(u), ηn(u))) · (Xn(u) − X(u))

+ b(cn(u),X(u)) − b(u,X(u)) (16)

where ηn = (η1, . . . , ηd) and ηi(u) lies between Xn
i (u) and Xi(u), for i = 1, . . . , d.

By combining (14) and (16) we obtain,

Zn(t) =

∫ t

0

Dx (b(u,X(u))) · Zn(u) d u + Mn(t) + Rn(t), (17)

where

Rn(t) =

∫ t

0

[Dx(b(cn(u), ηn(u))) − Dx(b(u,X(u)))] · Zn(u)du (18)

+
√

n

∫ t

0

[b(cn(u),X(u)) − b(u,X(u))]du.

As usual, D([0, 1], R) denotes the Skorohod space of right-continuous and left-hand limited
functions from [0, 1] to R. Let G be the function from D([0, 1], R) into itself defined by

G(w)(t) = w(t) −
∫ t

0

Dx(b(u,X(u)))w(u)du, 0 ≤ t ≤ 1.

Then,
G(Zn) = Mn + Rn. (19)

From (18) we have

Rn
∗ (1)1/2 ≤ Zn

∗ (1)1/2
d

∑

i=1

∫ 1

0





d
∑

j=1

(

∂bi

xj
(cn(u), ηn(u)) − ∂bi

xj
(u,X(u))

)2




1/2

du

+
√

n

∫ 1

0

‖b(cn(u),X(u)) − b(u,X(u))‖ddu.

From the above inequality, Lemma 4.5 and (A3), there exist positive constants C and D such
that

E(Rn
∗ (1)) ≤ C

d
∑

i=1

d
∑

j=1

∫ 1

0

(

∂bi

xj
(cn(u), ηn(u)) − ∂bi

xj
(u,X(u))

)2

du

+ D/n. (20)

Since b is continuously differentiable at the second variable, it follows from Theorem 3.1 and
(20) that

E(Rn
∗ (1)) → 0 as n → ∞. (21)
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Hence (19) and Lemma 4.4 imply that (G(Zn);n ∈ N) converges in law to M .
From (A1)-(A3), G is a continuous and injective function. Hence in order to conclude the
proof it suffices to verify that (Zn;n ∈ N) is a tight sequence in the Skorohod topology. For
any δ > 0 and z ∈ D([0, 1], R

d), let

ω(z, δ) = sup
|t−s|<δ

{‖z(t) − z(s)‖d : 0 ≤ s, t ≤ 1}.

From (17), we obtain
ω(Zn, δ) ≤ Z.

n
∗ (1) + ω(Mn, δ) + ω(Rn, δ).

Consequently, it follows from Lemma 4.4, Lemma 4.5 and (21) that

lim
δ→0

sup
n∈N

P(ω(Zn, δ) > ǫ) = 0.

This fact implies that (Zn;n ∈ N) is tight and therefore, the proof is complete.
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