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Abstract

Let {X,Xn;n ∈ Nd} be a field of i.i.d. random variables indexed by d-tuples of positive integers and
let Sn =

∑
k≤nXk. We prove some strong limit theorems for Sn. Also, when d ≥ 2 and h(n) satisfies

some conditions, we show that there are no LIL type results for Sn/
√
|n|h(n).

1 Introduction and main results

Let Nd be the set of d-dimensional vectors n = (n1, . . . , nd) whose coordinates n1, . . . , nd are natural

numbers. The symbol ≤ means coordinate-wise ordering in Nd. For n ∈ Nd, we define |n| =
∏d

i=1 ni.
Let X be a random variable, c(x) be a non-decreasing function and F(x) = P(|X | ≥ x), B(x) =
invc(x) := sup{t > 0 : c(t) < x}, ψ(x) = (B(x)/F(x))1/2 , φ(x) = invψ(x). For n ∈ Nd, we define
cn = c(|n|), h(n) = h(|n|), etc.
The present paper proves some strong limit theorems for the partial sums with multidimensional
indices. Before we state our main results, some previous work should be introduced. Let {X,Xn;n ≥
1} be a sequence of real-valued independent and identically distributed (i.i.d.) random variables, and
let Sn =

∑n
i=1Xi, n ≥ 1. Define Lx = loge max{e, x} and LLx = L(Lx) for x ∈ R. The classical

Hartman-Wintner law of the iterated logarithm states that

lim sup
n→∞

±Sn√
2nLLn

= σ a.s.

if and only if EX = 0 and σ2 = EX2 < ∞. Starting with the work of Feller (1968) there has been
quite some interest in finding extensions of the Hartman-Wintner LIL to the infinite variance case.
To cite the relevant work on the two sided LIL behavior for real-valued random variables, let us first
recall some definitions introduced by Klass (1976). As above let X : Ω → R be a random variable
and assume that 0 < E|X | <∞. Set

H(t) := EX2I{|X | ≤ t} and M(t) := E|X |I{|X | > t}, t ≥ 0.

Then it is easy to see that the function

G(t) := t2/(H(t) + tM(t)), t > 0

is continuous and increasing and the function K is defined as its inverse function. Moreover, one has
for this function K that as xր ∞

K(x)/
√
xր (EX2)1/2 ∈]0,∞] (1.1)
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and

K(x)/xց 0. (1.2)

Set γn =
√

2K(n/LLn)LLn. Klass (1976, 1977) established a one-sided LIL result with respect to
this sequence which also implies the two-sided LIL result if EX = 0,

lim sup
n→∞

|Sn|/γn = 1 a.s. (1.3)

if and only if

∞∑

n=1

P(|X | ≥ γn) <∞. (1.4)

But since it can be quite difficult to determine {γn} and (1.4) may be not satisfied, Einmahl and Li
(2005) addressed the following modified forms of the LIL behavior problem.
PROBLEM 1 Give a sequence, an =

√
nh(n), where h is a slowly varying non-decreasing function,

we ask: When do we have with probability 1, 0 < lim supn→∞ |Sn|/an <∞?
PROBLEM 2 Consider a non-decreasing sequence cn satisfying 0 < lim infn→∞ cn/γn <∞. When
do we have with probability 1, 0 < lim supn→∞ |Sn|/cn <∞? If this is the case, what is the cluster
set C({Sn/cn;n ≥ 1})?
Theorem 1 and Theorem 3 in Einmahl and Li (2005) solved the problems above. The reader is also
referred to their paper for some other references on LIL.
Now, let {X,Xn, n ∈ Nd} be i.i.d. random variables and d ≥ 2. It is interesting to ask whether there
are some two-sided LIL behavior for Sn =

∑
k≤nXk (d ≥ 2) with finite expectation and infinite

variance. For example, does the two-sided Klass LIL still hold for Sn when d ≥ 2? The following
one of main results of the present paper answers this question.

Theorem 1.1. Let d ≥ 2. We have

lim sup
n→∞

|Sn|
γn

=

{
∞ a.s. if EX2(log |X |)d−1/ log2 |X | = ∞√
d a.s. if EX2(log |X |)d−1/ log2 |X | <∞ .

Remark 1.1. Here and below, γn denotes γ|n|. Also, from Theorem 1.1, we see that for d ≥ 2,

lim sup
n→∞

|Sn|/γn =
√
d a.s.

if and only if

EX = 0 and EX2(log |X |)d−1/ log2 |X | <∞.

This says that the two-sided Klass LIL is reduced to Wichura’s LIL (Wichura(1973)).
The proof of Theorem 1.1 is based on the following Theorem 1.2, which says that in general there is
no two-sided LIL behavior for Sn =

∑
k≤nXk (d ≥ 2) with a wide class of normalizing sequences if

the variance is infinite.
Let the function c(x), cn = c(n) satisfy the following conditions.

cn/
√
nր ∞, (1.5)

∀ε > 0, ∃ mε > 0: cn/cm ≤ (1 + ε)(n/m), n ≥ m ≥ mε. (1.6)

Theorem 1.2. Let d ≥ 2 and cn =
√
nh(n) satisfy (1.5) and (1.6). Moreover, suppose that h(n)

satisfies

LLn

h(n)
max

1≤i≤n

h(i)

(Li)d−1
= o(1) as n→ ∞. (1.7)
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Then, the following statements are equivalent:
(1). we have

EX = 0,

∞∑

n=1

(Ln)d−1
P

(
|X | ≥

√
nh(n)

)
<∞; (1.8)

(2). we have

lim sup
n→∞

|Sn|√
|n|h(n)

<∞ a.s.; (1.9)

(3). we have

lim sup
n→∞

|Sn|√
|n|h(n)

= 0 a.s. (1.10)

Remark 1.2: Now, we take a look at the condition (1.7). We claim that h(n) satisfies (1.7) when
LLn/h(n) ց 0 as n → ∞. To see this, we let N(ε) denote an integer such that LLn/(Ln)d−1 ≤ ε
when n ≥ N(ε). Then, we have

LLn

h(n)
max

1≤i≤n

h(i)

(Ln)d−1
≤ LLn

h(n)
max

1≤i≤N(ε)

h(i)

(Li)d−1
+
LLn

h(n)
max

N(ε)≤i≤n

h(i)

(Li)d−1

≤ LLn

h(n)
max

1≤i≤N(ε)

h(i)

(Li)d−1
+
LLn

h(n)
max

N(ε)≤i≤n

h(i)

LLi

LLi

(Li)d−1

≤ LLn

h(n)
max

1≤i≤N(ε)

h(i)

(Li)d−1
+ ε→ 0,

as n→ ∞, ε→ 0. Theorem 1.2 can also be seen as a supplement to the Marcinkiewicz strong law of
large numbers for multidimensional indices (d ≥ 2). For example, we can take h(x) = (LLx)r, r > 1,
h(x) = (Lx)r, r > 0 and h(x) = exp((Lx)τ ), 0 < τ < 1 etc. Some other known results, such as some
results of Smythe (1973), Gut (1978, 1980) and Li (1990), are reobtained by Theorem 1.2. Here we
only introduce the results by Li (1990). Let Q be the class of positive non-decreasing and continuous
functions g defined on [0,∞) such that for some constant K(g) > 0, g(xy) ≤ K(g)(g(x) + g(y)) for
all x, y > 0 and x/g(x) is non-decreasing whenever x is sufficiently large. If g ∈ Q and d ≥ 2, Li
(1990) showed that if g(x) ր ∞, then

lim sup
n→∞

|Sn|/
√
|n|g(|n|)L2|n| <∞ a.s.

if and only if

EX = 0,EX2(L|X |)d−1/(g(|X |)L2|X |) <∞.

Remark 1.3: We see from Theorem 1.1 that the Klass LIL does not hold when the variance is
infinite and d ≥ 2 . So it is interesting to find other normalizing sequences instead of γn. But this
seems too difficult to find them. Also, from Theorem 1.2, we see that many two sided LIL results
for the sum of a sequence of random variables do not hold for the sum of a field of random variables
(d ≥2). This is because that condition (1.8) usually implies α0 = 0, where α0 is defined in Theorem
2.1 below. Of course, there maybe exist a random variableX with infinite variance and a normalizing
sequence

√
nh(n) such that condition (1.8) holds and 0 < α0 < ∞ when d ≥ 2. However, it seems

too difficult to find them. Instead, we give the following theorem, which is an answer to PROBLEM
1 when Sn is replaced by Sn, d ≥ 2.

Theorem 1.3. Let d ≥ 2. Suppose that h(x) is a slowly varying non-decreasing function. Then
we have

0 < lim sup
n→∞

|Sn|/
√
|n|h(n) <∞ a.s. (1.11)
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if and only if (1.8) holds and

0 < λ := lim sup
x→∞

Ψ−1(xLLx)

x2LLx
H(x) <∞, (1.12)

where H(x) = EX2I{|X | ≤ x} and Ψ(x) =
√
xh(x).

Remark 1.4. We refer the reader to Einmahl and Li (2005) for some similar conditions as (1.12).
We can see from (3.1) that λ is usually equal to 0 under (1.8).

The remaining part of the paper is organized as follows. In Section 2, we state and prove a general
result on the LIL for the trimmed sums, from which our main results in Section 1 can be obtained.
In Section 3, Theorems 1.1-1.3 are proved. Throughout, C denotes a positive constant and may be
different in every place.

2 Some LIL results for trimmed sums

In this section, we prove a slightly more general theorem. Moreover, we will see that if some ”maximal”
random variables are removed from Sn, the two sided LIL for d ≥ 2 may hold again. Now we introduce

some notations. For an integer r ≥ 1 and |n| ≥ r, let X
(r)
n = Xm if |Xm| is the r-th maximum of

{|Xk|; k ≤ n} (0 if r > |n|). Let Sn =
∑

k≤nXk and (r)Sn = Sn − (X
(1)
n + · · ·+X

(r)
n ) (0 if r > |n|) be

the trimmed sums. (0)Sn is just Sn. Let L
(d)
q denote the space of all real random variables X such

that

J (d)
q :=

∫ ∞

0

(Lt)d−1(tP
(
|X | > t

)q dt

t
<∞.

And let B(x) := c−1(x) denote the inverse function of c(x). Throughout the whole section we assume
that c(x) is an non-decreasing function and {cn} is a sequence of positive real numbers satisfying
conditions (1.5) and (1.6). Finally, let Cn := nEXI{|X | ≤ cn}.

Theorem 2.1 Let d ≥ 2, r ≥ 0. Suppose that B(|X |) ∈ L
(d)
r+1. Set

α0 = sup
{
α ≥ 0 :

∞∑

n=1

n−1(Ln)d−1 exp
(
− α2c2n

2nσ2
n

)
= ∞

}
,

where σ2
n = H(δcn) = EX2I{|X | ≤ δcn} and δ > 0. Then we have with probability 1,

lim sup
n→∞

|(r)Sn − Cn|/cn = α0. (2.1)

Remark 2.1: (The Feller and Pruitt example). Let {X,Xn, n ∈ Nd} (d ≥ 2) be i.i.d. random
variables with the common symmetric probability density function

f(x) =
1

|x|3 I{|x| ≥ 1}.

We have H(x) = log x, x ≥ 1 and chose cn =
√
nLnLLn. One can easily check that B(|X |) ∈ L

(d)
r+1

when r ≥ (d− 1), and σ2
n ∼ 2−1Ln as n→ ∞. Moreover, by Lemma 2.2 below, we have Cn = o(cn).

So, if r ≥ (d− 1), with probability 1,

lim sup
n→∞

|(r)Sn|/
√
|n|(Ln)LLn =

√
d.

Remark 2.2. We continue to consider the Feller and Pruitt example. Let {X,Xn, n ∈ Nd} (d ≥ 2)
be defined in Remark 2.1. Is there any sequence cn =

√
nh(n) satisfying (1.5) and (1.6) such that

0 < lim supn→∞ |Sn|/cn <∞ a.s. ? The answer is negative. We will prove that for any sequence cn =√
nh(n) satisfying (1.5) and (1.6), lim supn→∞ |Sn|/cn <∞ a.s. implies lim supn→∞ |Sn|/cn = 0 a.s.

To prove this, we should first note that lim supn→∞ |Sn|/cn <∞ a.s. implies
∑

n∈Nd P(|X | ≥ cn) <∞
by the Borel-Cantelli lemma. So

∑∞
n=1(Ln)d−1

P(|X | ≥ cn) < ∞. And since P(|X | ≥ x) = x−2
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for |x| > 1, we have
∑∞

n=1(Ln)d−1/(nh(n)) < ∞. This implies
∑∞

i=1 i
d−1/h(2i) < ∞. Hence∑2n

i=n i
d−1/h(2i) = o(1). It follows that nd = o(h(22n)) which in turn implies h(n) ≥ (Ln)d for n

large. Note that σ2
n ∼ 2−1Ln. So α0 = 0. We end the proof by Theorem 2.1 and the fact Cn = o(cn),

implied by Lemma 2.2 below.
To prove Theorem 2.1, we need the following lemmas. Recall the functions F(x) and φ(x) defined
in Section 1.
Lemma 2.1. B(|X |) ∈ Ld

r+1 if and only if

∫ ∞

0

(Lt)d−1(tP
(
|X | > εct

)r+1 dt

t
<∞ (∀ε > 0).

And if B(|X |) ∈ Ld
r+1, then for k > 2 + 2r and any δ > 0

∫ ∞

0

(Lt)d−1tk−1Fk(φ(δt))dt <∞,

and for Q large enough (say Q > 4 + 4r),

∫ ∞

0

x−1(Lt)d−1
(φ(x)

c(x)

)Q

dx <∞.

Proof. See Zhang (2002).
Lemma 2.2. If B(|X |) ∈ Ld

r+1, then for any τ > 0 and β > 2

E|X |I{φ(n) ≤ |X | ≤ cn} = o(cn/n) as n→ ∞, (2.2)

E|X |βI{|X | ≤ τcn} = o(cβn/n) as n→ ∞. (2.3)

If B(|X |) ∈ Ld
r+1 and cn/cm ≤ C(n/m)µ, n ≥ m, where µ = (1 + r)−1 ∨ ν, for some 0 < ν < 1, then

E|X |I{|X | ≥ φ(n)} = o(cn/n) as n→ ∞, (2.4)

Proof. We prove (2.4) first. If r = 0, then µ = 1. So

c−1
n nE|X |I{|X | ≥ φ(n)}
≤ nF(φ(n)) + c−1

n nE|X |I{|X | ≥ cn}

≤ nF(φ(n)) + c−1
n n

∞∑

j=n

cjP(cj−1 < |X | ≤ cj)

≤ nF(φ(n)) +

∞∑

j=n

jP(cj−1 < |X | ≤ cj)

= o(1).

If r > 0, then µ < 1, and

c−1
n nE|X |I{|X | ≥ φ(n)}

≤ c−1
n n

∞∑

j=n

cjP
(
φ(j − 1) < |X | ≤ φ(j)

)

≤ Cn

∞∑

j=n

jµ

nµ
P

(
φ(j − 1) < |X | ≤ φ(j)

)

≤ CnF(φ(n− 1)) + Cn1−µ
∞∑

j=n

jµ−1F(φ(j))

=: J1 + J2.
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We can infer J1 → 0 from Lemma 2.1. And

J2 ≤ Cn1−µ
∞∑

j=n

jµ−2jF(φ(j)) = o(1)n1−µ
∞∑

j=n

jµ−2 = o(1).

Therefore, (2.4) is true.
The proof of (2.2) is easy. So we omit it. Now we prove (2.3). By (1.5),

c−β
n nE|X |βI{|X | ≤ τcn}

≤ c−β
n n

n∑

j=1

cβnP(τcj−1 < |X | ≤ τcj)

≤ Cn

n∑

j=1

n−β/2jβ/2
P(τcj−1 < |X | ≤ τcj)

≤ Cn

n∑

j=1

n−β/2jβ/2−2jP(|X | ≥ τcj)

= o(1)n

n∑

j=1

n−β/2jβ/2−2

= o(1).

Lemma 2.3. Define

α
′

0 = sup
{
α ≥ 0 :

∞∑

n=1

n−1(Ln)d−1 exp
(
− α2c2n

2nσ̃2
n

)
= ∞

}
,

where σ̃2
n = EX2I{|X | ≤ φ(δn)}, δ > 0. Let α0 be defined in Theorem 2.1 and B(|X |) ∈ Ld

r+1. Then

α0 = α
′

0.
Proof. It can be proved by Lemma 2.1 that φ(n)/cn → 0. Let ∆n = EX2I{φ(δn) < |X | ≤ δcn}.
For any ω > 0, we have

exp
(
− α2c2n

2nσ2
n

)
≤ exp

(
− α2c2n

2n(1 + ω)σ̃2
n

)
+ exp

(
− α2c2n

2n(1 + ω−1)∆n

)
. (2.5)

To see (2.5), we can assume that ∆n ≤ σ2
n(1 + ω−1)−1, otherwise (2.5) holds spontaneously. But

∆n ≤ σ2
n(1 + ω−1)−1 implies σ̃2

n(1 + ω) ≥ σ2
n, we see that (2.5) is always right. By Lemma 2.1 and

the trivial inequality exp(−x) ≤ Cx−Q for any Q > 0 when x large enough, we have

∞∑

n=1

n−1(Ln)d−1 exp
(
− α2c2n

2n(1 + ω−1)∆n

)
≤ C

∞∑

n=1

n−1(Ln)d−1
(n∆n

c2n

)Q

≤ C

∞∑

n=1

n−1(Ln)d−1
(
nF(φ(δn))

)Q

<∞.

Therefore, α0 ≤
√

1 + ωα
′

0. It is obvious that α
′

0 ≤ α0. Since we can choose ω arbitrarily small, we
see that α

′

0 = α0. �

Lemma 2.4. Let nj = [(1 + ε)j ], j ≥ 1, ε > 0. Suppose that B(|X |) ∈ Ld
r+1. Then we have:

∞∑

j=1

jd−1 exp
(
−

α2c2nj

2njσ̃2
nj

){
= ∞ if α < α0

<∞ if α > α0
.

Proof. Let α < α0. We have

∞ =

∞∑

j=j0

nj+1∑

n=nj+1

n−1(Ln)d−1 exp
(
− α2c2n

2nσ̃2
n

)
≤ C

∞∑

j=j0

jd−1 exp
(
−

α2c2nj

2njσ̃2
nj+1

)
.
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Since nj+1/nj = O(1), and δ is a arbitrary number, we see that

∞∑

j=j0

jd−1 exp
(
−

α2c2nj

2njσ̃2
nj

)
= ∞.

Another part of the lemma follows similarly. �

The last lemma comes from Einmahl and Mason [2], p 293.
Lemma 2.5 Let X1, · · · , Xm be independent mean zero random variables satisfying for some M > 0,
|Xi| ≤ M , 1 ≤ i ≤ m. If the underlying probability space (Ω,ℜ, P ) is rich enough, one can define
independent normally distributed mean zero random variables V1, . . . , Vm with Var(Vi) = Var(Xi),
1 ≤ i ≤ m, such that

P

(
|

m∑

i=1

(Xi − Vi)| ≥ δ
)
) ≤ c1 exp(−c2δ/M),

here c1 and c2 are positive universal constants.
We are ready to prove Theorem 2.1 now.

Proof of Theorem 2.1. First we prove

lim sup
n→∞

|(r)Sn − Cn|/cn ≤ α0 a.s. (2.6)

Obviously it can be assumed that α0 <∞. Let θ > 1 and θj denote [θj ]. By the definition of α0, we
can easily show that

∞∑

j=1

jd−1 exp
(
− 2α2

0c
2
θj+1

2θjσ2
θj

)
<∞.

So θjσ2
θj/c2θj+1 → 0 as j → ∞. This implies nσ2

n = o(c2n). Recall the definition of φ(x) in Section 1.
Throughout the proofs, we let θi = (θi1 , · · · , θid), φ(θi) = φ(|θi|) etc. Let

S1,n(i) =
∑

k≤n

XkI{|Xk| ≤ φ(θi)}, S2,n(i) =
∑

k≤n

XkI{|Xk| ≤ εcθi}, ε > 0.

We have
∑

i∈Nd

P

(
max
m≤θi

|(r)Sm − Cm| ≥ (α0 + 6ε+ 3εr)cθi

)

≤
∑

i∈Nd

P

(
max
m≤θi

|(r)Sm − S2,m(i)| ≥ εrcθi

)

+
∑

i∈Nd

P

(
max
m≤θi

|S2,m(i) − S1,m(i)| ≥ ε(2r + 3)cθi

)

+
∑

i∈Nd

P

(
max
m≤θi

|S1,m(i) − Cm| ≥ (α0 + 3ε)cθi

)

=: I1 + I2 + I3.

And

I1 ≤
∑

i∈Nd

P

(
|X(r+1)

θi | ≥ εcθi

)
≤

∑

i∈Nd

(
|θi|F(εcθi)

)r+1

≤ C
∞∑

j=1

jd−1
(
θjF(εcθj )

)r+1

≤ C
∞∑

j=1

j−1(Lj)d−1
(
jF(εcj)

)r+1

<∞,

I2 ≤
∑

i∈Nd

P

(
♯{|Xk| ≥ φ(θi); k ≤ θi} ≥ 2r + 3

)
≤ C

∑

i∈Nd

(
|θi|F(φ(θi))

)2r+3

≤ C

∞∑

j=1

jd−1
(
θjF(φ(θj))

)2r+3

≤ C

∞∑

j=1

j−1(Lj)d−1
(
jF(φ(j))

)2r+3

<∞.
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By Lemma 2.2, we have (S1,θi(i) − Cθi/cθi → 0 in probability. Therefore, by a version of the Lévy
inequalities (cf. Lemma 2 and Remark 6 in Li and Tomkins (1998)) and (2.2),

I3 ≤ C
∑

i∈Nd

P

(
|S1,θi(i) − ES1,θi(i)| ≥ (α0 + 2ε)cθi

)

≤ C
∑

i∈Nd

P

(
|T (i)| ≥ (α0 + ε)cθi

)
+ C

∑

i∈Nd

P

(
|S1,θi(i) − ES1,θi(i) − T (i)| ≥ εcθi

)

=: I31 + I32,

where T (i) =
∑

k≤θi Yk, and {Yk, k ≤ θi} are i.i.d. normal random variables with mean zero and

variance Var

(
XI{|X | ≤ φ(θi)}

)
, i ∈ Nd. Now, by Lemma 2.2 and Lemma 2.5, for q large enough,

I32 ≤ C
∞∑

j=1

jd−1
(φ(θj)

cθj

)q

≤ C
∞∑

j=1

j−1(Lj)d−1
(φ(j)

cj

)q

<∞.

From the tail probability estimator of the standard normal distribution and Lemma 2.4, we have

I31 ≤ C
∑

i∈Nd

exp
(
− (α0 + ε)2c2θi

2|θi|H(φ(θi))

)
≤ C

∞∑

j=1

jd−1 exp
(
− (α0 + ε)2c2θj

2θjH(φ(θj))

)
<∞.

Then, by the Borel-Cantelli lemma,

lim sup
i→∞

maxm≤θi |(r)Sm − Cm|
cθi

≤ α0 a.s.

A standard argument and (1.6) yield

lim sup
n→∞

|(r)Sn − Cn|
cn

≤ α0 a.s.

So, we only need to prove

lim sup
n→∞

|(r)Sn − Cn|/cn ≥ α0 a.s. (2.7)

Case 1: α0 <∞. To prove (2.7), it is sufficient to show that for every ε > 0, there is a θ0 > 0 such
that when θ > θ0,

lim sup
i→∞

(r)Sθi − Cθi

cθi

≥ α0 − ε a.s. (2.8)

But if we prove that for every ε > 0 and θ large enough,

lim sup
i→∞

S1,θi(i) − Cθi

cθi

≥ α0 − ε a.s. (2.9)

then, by I1 < ∞ and I2 < ∞, we can see that (2.8) holds. Now we come to prove (2.9). Obviously,
it can be assumed that α0 > 0. Let Ni = {n : θi-1 < n ≤ θi}, Nc

i = {n : n ≤ θi} − Ni and

S3(i) =
∑

k∈Ni

XkI{|Xk| ≤ φ(θi)}, S4(i) =
∑

k∈Nc
i

XkI{|Xk| ≤ φ(θi)}.

Note that α0 <∞. Just as the proof of I3 <∞ and by the Borel-Cantelli lemma, we have

lim sup
i→∞

|S4(i) − ES4(i)|
cθi

≤ α0θ
−1 a.s.

So, in order to prove (2.9), by the Borel-Cantelli lemma, we only need to show that for every ε > 0
and θ large enough,

∑

i∈Nd

P

(∣∣∣
S3(i) − ES3(i)

cθi

∣∣∣ ≥ α0 − ε
)

= ∞.
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By Lemma 2.5 and note that I32 <∞, it suffices to prove

∑

i∈Nd

P

(∣∣∣
T3(i)

cθi

∣∣∣ ≥ α0 − ε
)

= ∞ (2.10)

for every ε > 0 and θ large enough, where T3(i) =
∑

k∈Ni
Yk and {Yk, k ∈ Ni} are i.i.d. normal

random variables with mean zero and variance Var

(
XI{|X | ≤ φ(θi)}

)
, i ∈ Nd. That is, we shall

prove that

∑

i∈Nd

P

(∣∣∣
H

′

(φ(θi))N

cθi

∣∣∣ ≥ α0 − ε
)

= ∞,

where H
′

(φ(θi)) ∼
(
|θi|(1−θ−1)d

Var

(
XI{|X | ≤ φ(θi)}

))1/2

denotes the square root of the variance

of T3(i) and N denotes a standard normal random variable. Note that

nEX2I{|X | ≤ cn}
c2n

= o(1) as n→ ∞,

we can get for |i| large enough,

P

(∣∣∣
H

′

(φ(θi))N

cθi

∣∣∣ ≥ α0 − ε
)
≥ C exp

(
− (α0 − ε/2)2c2θi

2|θi|H(φ(θi))

)
.

By Lemma 2.4,

∑

i∈Nd

P

(∣∣∣
H

′

(φ(θi))N

cθi

∣∣∣ ≥ α0 − ε
)
≥ C

∑

i∈Nd

exp
(
− (α0 − ε/2)2c2θi

2|θi|H(φ(θi))

)

≥ C

∞∑

j=1

jd−1 exp
(
− (α0 − ε/2)2c2θj

2θjH(φ(θj))

)
= ∞,

which implies (2.10). So (2.7) holds.
Case 2: α0 = ∞. Obviously, it is enough to verify

lim sup
i→∞

S1,θi(i) − Cθi

cθi

= ∞ a.s. (2.11)

We first assume

lim sup
i→∞

S4(i) − ES4(i)

cθi

<∞ a.s.

Then, by (2.2) and the Borel-Cantelli lemma, in order to prove (2.11), it suffices to show

∑

i∈Nd

P

(
S3(i) − ES3(i) ≥ εcθi

)
= ∞ for every ε > 10. (2.12)

The same as above, we only need to prove

∑

i∈Nd

P

(
T3(i) ≥ εcθi

)
= ∞ for every ε > 10.

Set

N0 = {i :
cθi

H ′(φ(θi))
≥ 1} and N c

0 = {i :
cθi

H ′(φ(θi))
< 1}.

If Card N c
0 = ∞, we have

∑

i∈Nc
0

P

(
T3(i) ≥ εcθi

)
=

∑

i∈Nc
0

P

(
N ≥ εcθi

H ′(φ(θi))

)
≥

∑

i∈Nc
0

P

(
N ≥ ε

)
= ∞.
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So (2.12) holds. Therefore we can assume that Card N c
0 < ∞. By the tail probability estimator of

the normal distribution, we have

P(N ≥ x) ≥ Cx−1 exp
(
− x2

2

)
≥ C exp(−x2), x ≥ 10.

And by Lemma 2.3, Lemma 2.4 and Card N c
0 <∞, α0 = ∞,

∑

i∈Nd

P

(
N ≥ εcθi

H ′(φ(θi))

)
≥

∑

i∈N0

P

(
N ≥ εcθi

H ′(φ(θi))

)
≥

∑

i∈N0

exp
(
−

( εcθi

H ′(φ(θi))

)2)

≥ C

∞∑

j=1

jd−1 exp
(
−

( εcθj

H ′(φ(θj))

)2)
= ∞,

which implies (2.12). Therefore we have (2.11).
It remains for us to prove (2.11) when

lim sup
i→∞

S4(i) − ES4(i)

cθi

= ∞ a.s. (2.13)

By using (2.2), we have

lim sup
i→∞

S4(i) − Cθi-1

cθi

= ∞ a.s. (2.14)

Hence if we show that

lim
i→∞

∑
k∈Nc

i

XkI{φ(θi-1) ≤ |Xk| ≤ φ(θi)}
cθi

= 0 a.s. (2.15)

then, together with (2.14), (2.11) is proved.
Now we prove (2.15). The same as above (using (2.2) and Lemma 2.5), it suffices to show

I :=
∑

i∈Nd

exp
(
− εc2θi

|θi|EX2I{φ(θi-1) ≤ |X | ≤ φ(θi)}
)
<∞ for every ε > 0.

But this follows from Lemma 2.1 and

I ≤ C
∑

i∈Nd

( |θi|EX2I{φ(θi-1) ≤ |X | ≤ φ(θi)}
c2θi

)Q

≤ C
∑

i∈Nd

(
|θi|F(φ(θi-1))

)Q

<∞

for some large Q. The proof of Theorem 2.1 is terminated now. �

3 Proofs of main results in Section 1

Since the proof of Theorem 1.1 is based on Theorem 1.2, we shall prove Theorem 1.2 first.

Proof of Theorem 1.2: The proofs of (3)⇒(2) is obviously. From (1.6), we see that cn ≤ Cn. So
by the law of larger numbers and the Borel-Cantelli lemma, it is easy to see that (2)⇒(1). Now, we
show that (1)⇒ (3). Recall Cn = nEXI{|X | ≤ cn}. From Lemma 2.2, it holds that Cn = o(cn). By
Theorem 2.1, it suffices to show α0 = 0, which will be implied by

LLj

h(j)
EX2I{|X | ≤

√
jh(j)} = o(1) (3.1)

as j → ∞. Now we come to prove it. By (1.8),

∞∑

j=1

j(Lj)d−1
P

(
cj−1 < |X | ≤ cj

)
<∞.
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Then

n∑

k=1

min
i≤k

i(Li)d−1

c2i
c2kP

(
ck−1 < |X | ≤ ck

)
≤ C for some C > 0 and n ≥ 1.

That is

EX2I{|X | ≤ cn} ≤ Cmax
j≤n

h(j)

(Lj)d−1
,

which together with (1.7), implies (3.1). The proof is completed. �

Proof of Theorem 1.1: If EX2(log |X |)d−1/ log2 |X | <∞, then σ2 = EX2 <∞ since d ≥ 2. We
have that K(n/LLn)LLn ∼ σ

√
nLLn. So from the classical LIL (c.f. Wichura (1973)) we can get

lim supn→∞ |Sn|/γn =
√
d a.s.

Now, we assume that EX2(log |X |)d−1/ log2 |X | = ∞. If lim supn→∞ |Sn|/γn < ∞ a.s. and EX2 <
∞, then lim supn→∞ |Sn|/

√
|n|LLn < ∞ a.s., which implies EX2(log |X |)d−1/ log2 |X | < ∞ by

Kolmogorov’s 0-1 law and the Borel-Cantelli lemma. By the contradiction, we must have either
lim supn→∞ |Sn|/γn = ∞ a.s. or EX2 = ∞. We claim that EX2 = ∞ implies

lim sup
n→∞

|Sn|/γn = ∞ a.s. (3.2)

If (3.2) is not true, then by Kolmogorov’s 0-1 law, lim supn→∞ |Sn|/γn =: C <∞ a.s. So we have

∞∑

n=1

(Ln)d−1
P(|X | ≥ γn) <∞. (3.3)

By Lemma 2.2, we obtain

nE|X |I{|X | ≥ γn} = o(γn) and nEX2I{|X | ≤ γn} = o(γ2
n). (3.4)

Obviously γn satisfies conditions (1.5) and (1.6). Moreover, when EX2 = ∞, we have LLn/h(n) ց 0,
where h(n) := 2K2(n/LLn)(LLn)2/n. So, by Theorem 1.2 and Remark 1.2, we have

lim sup
n→∞

|Sn|/γn = 0 a.s. (3.5)

Next, we prove that under (3.3), we can get lim supn→∞ |Sn|/γn ≥
√
d a.s. By Theorem 2.1, it

suffices to prove that

∞∑

n=1

n−1(Ln)d−1 exp
(
− α2γ2

n

2nH(γn)

)
= ∞ for every α <

√
d. (3.6)

Obviously, if we have

H(γn) ≥ (
1

2
− ε)

γ2
n

nLLn
for every ε > 0 (3.7)

when n large enough, then (3.6) holds. Now we prove (3.7). By (3.4) and the definition of the
K-function,

H(γn) ≥ H(K(n/LLn)) +K(n/LLn)E|X |I{K(n/LLn) < |X | ≤ γn}

=
K2(n/LLn)LLn

n
−K(n/LLn)E|X |I{|X | > γn}

≥ (
1

2
− ε)

γ2
n

nLLn
.

Therefore (3.7) holds and lim supn→∞ |Sn|/γn ≥
√
d a.s. But this contradicts (3.5). So we have (3.2).

We complete the proof of Theorem 1.1. �
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Proof of Theorem 1.3. Note that (1.11) implies (1.8) by the law of larger numbers and the
Borel-Cantelli lemma. Hence in order to prove the theorem, it is sufficient to prove that under (1.8),

Cλ1/2 ≤ lim sup
n→∞

|Sn|√
|n|h(n)

≤ (2dλ)1/2 a.s. (3.8)

for some C > 0.

Now, we come to prove the upper bound. Obviously we can assume that λ < ∞. It will be shown
that under (1.8) and λ <∞,

A :=
∞∑

n=1

n−1(Ln)d−1 exp
(
− εc2n
n∆n

)
<∞, ∀ε > 0, (3.9)

where ∆n = EX2I{cn/LLn ≤ |X | ≤ cn}, cn =
√
nh(n). Clearly, we haveH(cn/LLn) ≤ Ch(n)/LLn

when λ < ∞. Therefore ∆n ≤ H(cn) ≤ Ch(n(LLn)2)/LLn. Also by a property of the slowly
varying function, we have h(n)/h(n(LLn)2) ≥ C(LLn)−1/2. So, by the inequality exp(−x) ≤
Cx−1 exp(−x/2) for x > 0,

A ≤ C
∞∑

n=1

n−1(Ln)d−1n∆n

c2n
exp

(
− εc2n

2n∆n

)

≤ C

∞∑

n=1

(Ln)d−1 E|X |3I{|X | ≤ cn}
c3n

LLn exp
(
− εc2n

2n∆n

)

≤ C
∞∑

n=1

(Ln)d−1 E|X |3I{|X | ≤ cn}
c3n

LLn exp
(
− Ch(n)LLn

h(n(LLn)2)

)

≤ C

∞∑

n=1

(Ln)d−1 E|X |3I{|X | ≤ cn}
c3n

≤ C

∞∑

n=1

(Ln)d−1
n∑

k=1

c3k
c3n

P(ck−1 ≤ |X | ≤ ck)

≤ C

∞∑

k=1

P(ck−1 ≤ |X | ≤ ck)

∞∑

n=k

k3/2

n3/2
(Ln)d−1

≤ C
∞∑

k=1

k(Lk)d−1
P(ck−1 ≤ |X | ≤ ck)

< ∞.

In the above inequalities, (1.5) is used.

Since H(cn/LLn) ≤ (λ+ ε)h(n)/LLn for ∀ε > 0 and n large enough, we can easily obtain that

∞∑

n=1

n−1(Ln)d−1 exp
(
− α2c2n

2nH(cn/LLn)

)
<∞

for α > (2dλ+ ε)1/2 and ∀ε > 0. Then using the following inequality

exp
(
− a

x+ y

)
≤ exp

(
− a

(1 + δ)x

)
+ exp

(
− a

(1 + δ−1)y

)

for any a, x, y, δ > 0, and together with (3.9), we have

∞∑

n=1

n−1(Ln)d−1 exp
(
− α2c2n

2nH(cn)

)
<∞

for α > (2dλ+ ε)1/2 and ∀ε > 0. The upper bound is proved now by Theorem 2.1.
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Next, we shall prove the lower bound in (3.8). Clearly, it can be assumed that λ > 0. By Theorem
2.1, it is enough to check that there exists a positive constant C1 such that

∞∑

n=1

n−1(Ln)d−1 exp
(
− α2h(n)

H(cn)

)
= ∞ for any α < (C1λ)

1/2. (3.10)

The arguments in Einmal and Li (2005) will be used. We can find a subsequence mk ր ∞ so that

H(cmk
) ≥ λ(1 − 1

k
)
h(mk)

LLmk
and h(mk) ≥ (1 − 1

k
)h(2mk), k ≥ 1.

Thus, we have

H(cn) ≥ λ(1 − 1

k
)2
h(n)

LLn
, mk ≤ n ≤ nk := 2mk,

which in turn implies that

nk∑

n=mk

(Ln)d−1

n
exp

(
− α2h(n)

H(cn)

)
≥ d−1

[
(Lnk)d − (Lmk)d

]
(Lnk)−α2/{λ(1−1/k)2}

≥ C(Lmk)d−1−2ε → ∞

for α < (ελ)1/2 and 0 < ε < 1/2. Hence (3.10) holds with any 0 < C1 < 1/2. The proof of Theorem
1.3 is completed. �
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