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Abstract

We derive a unified stochastic picture for the duality of a resampling-selection model with
a branching-coalescing particle process (cf. [1]) and for the self-duality of Feller’s branching
diffusion with logistic growth (cf. [7]). The two dual processes are approximated by particle
processes which are forward and backward processes in a graphical representation. We identify
duality relations between the basic building blocks of the particle processes which lead to the
two dualities mentioned above.

1 Introduction

Two processes (Xt)t≥0 and (Yt)t≥0 with state spaces E1 and E2, respectively, are called dual
with respect to the duality function H if H : E1 × E2 → R is a measurable and bounded
function and if Ex[H(Xt, y)] = Ey[H(x, Yt)] holds for all x ∈ E1, y ∈ E2 and all t ≥ 0 (see
e.g. [9]). Here superscripts as in Px or in Ex indicate the initial value of a process. In this
paper, E1 and E2 will be subsets of [0,∞) or will be equal to {0, 1}N . We speak of a moment

duality if H(x, y) = yx or H(x, y) = (1− y)x, x ∈ E1 ⊂ N0, y ∈ [0, 1], and of a Laplace duality

if H(x, y) = exp (−λx·y), x, y ∈ E1 = E2 ⊂ [0,∞), for some λ > 0.

We provide a unified stochastic picture for the following moment duality and the following
Laplace duality of prominent processes from the field of stochastic population dynamics. For
the moment duality, let b, c, d ≥ 0. Denote by Xt ∈ N0 the number of particles at time
t ≥ 0 of the branching-coalescing particle process defined by the initial value X0 = n and
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the following dynamics: Each particle splits into two particles at rate b, each particle dies
at rate d and each ordered pair of particles coalesces into one particle at rate c. All these
events occur independently of each other. In the notation of Athreya and Swart [1], this is the
(1, b, c, d)-braco-process. Its dual process (Yt)t≥0 is the unique strong solution with values in
[0, 1] of the one-dimensional stochastic differential equation

dYt = (b − d)Yt dt − bY 2
t dt +

√

2cYt(1 − Yt) dBt, Y0 = y, (1)

where (Bt)t≥0 is a standard Brownian motion. Athreya and Swart [1] call this process the
resampling-selection process with selection rate b, resampling rate c and mutation rate d, or
shortly the (1, b, c, d)-resem-process. They prove the moment duality

En
[

(1 − y)Xt

]

= Ey
[

(1 − Yt)
n
]

∀n ∈ N0, y ∈ [0, 1], t ≥ 0. (2)

For the Laplace duality, let (Xt)t≥0 denote Feller’s branching diffusion with logistic growth,
i.e., the strong solution of

dXt = αXt dt − γX2
t dt +

√

2βXt dBt, (3)

where α, γ, β ≥ 0 and (Bt)t≥0 is a standard Brownian motion. We call this process the
logistic Feller diffusion with parameters (α, γ, β). Let (Yt)t≥0 be a logistic Feller diffusion
with parameters (α, rβ, γ/r) for some r > 0. Hutzenthaler and Wakolbinger [7] establish the
Laplace duality

Ex
[

e−rXt·y]

= Ey
[

e−rx·Yt

]

, ∀x, y ∈ [0,∞), t ≥ 0. (4)

The duality relations (2) and (4) include as special cases (see Remark 4.2 and Remark 4.4)
the Laplace duality of Feller’s branching diffusion with a deterministic process, the moment
duality of the Fisher-Wright diffusion with Kingman’s coalescent, and the moment duality of
the (continuous time) Galton-Watson process with a deterministic process.
In the references [1] and [7], the duality relations (2) and (4) are proved analytically by means of
a generator calculation. In this paper, we take a different approach by explaining the dynamics
of the processes via basic mechanisms on the level of particles which lead to the above dualities.
To this end, for every N ∈ N, we construct approximating Markov processes

(

XN
t

)

t≥0
and

(

Y N
t

)

t≥0
with càdlàg sample paths and state space {0, 1}N and with the following properties.

The processes (XN
t )t≥0 and (Y N

t )t≥0 are dual in the sense that

PxN [

XN
t ∧ yN = 0

]

= PyN [

xN ∧ Y N
t = 0

]

, ∀ xN , yN ∈ {0, 1}N ∀ t ≥ 0. (5)

The notation xN ∧yN denotes component-wise minimum and 0 denotes the zero configuration.
If |XN

0 | = n, for some fixed n ≤ N , then
(

|XN
t |

)

t≥0
converges weakly to a branching-coalescing

particle process as N → ∞. We use the notation |xN | :=
∑N

i=1 xN
i for xN ∈ {0, 1}N . Assume

that the set of càdlàg-paths is equipped with the Skorohod topology (see e.g. [4]). If n = n(N)
depends on N such that n/N → x ∈ [0, 1] as N → ∞, then (|XN

t |/N)t≥0 converges weakly to

a resampling-selection model. If n = n(N) satisfies n/
√

N → x ≥ 0, then
(

|XN
t
√

N
|/
√

N
)

t≥0

converges weakly to Feller’s branching diffusion with logistic growth. The process (Y N
t )t≥0

differs from (XN
t )t≥0 only by the set of parameters and by the initial condition.

We will derive the moment duality (2) and the Laplace duality (4) from (5) in the following way.
Let the random variable XN

0 be uniformly distributed over all configurations xN ∈ {0, 1}N

with total number of individuals of type 1 equal to |xN | = n = n(N) for a given n(N) ≤ N .
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Similarly, choose Y N
0 uniformly in {0, 1}N with |Y N

0 | = k = k(N) for a given k(N) ≤ N . We
will prove in Proposition 3.1 that property (5) implies a prototype duality relation, namely

lim
N→∞

E
[

1 − k

N

]

∣

∣XN

tTN

∣

∣

= lim
N→∞

E
[

1 −
∣

∣Y N
tTN

∣

∣

N

]

n

, t ≥ 0, (6)

under some assumptions – including the convergence of both sides – on the two processes and on
the sequence (TN)N≥1 ⊂ R≥0. Choosing n fixed, k such that k

N → y ≥ 0 and letting TN = 1,

we deduce from (6) (and from the convergence properties of (XN
t )t≥0 and of (Y N

t )t≥0) the
moment duality of a branching-coalescing particle process with a resampling-selection model
(cf. Theorem 4.1). In order to obtain a Laplace duality of logistic Feller diffusions, choose n, k

such that n√
N

→ x ≥ 0, k√
N

→ y ≥ 0 and TN =
√

N . Notice that (1 − y√
N

)x
√

N converges

to e−xy uniformly in 0 ≤ x, y ≤ x̃ as N → ∞ for every x̃ ≥ 0. This together with the weak
convergence of the rescaled processes will imply

lim
N→∞

E
[

e−|XN

t
√

N
|·y

/√
N

]

= lim
N→∞

E
[

e−x·|Y N

t
√

N
|
/√

N
]

. (7)

For the construction of the approximating processes, we interpret the elements of {1, . . . , N}
as “individuals” and the elements of {0, 1} as the “type” of an individual. In the terminology
of population genetics, individuals are denoted as “genes”, whereas in population dynamics,
the statement “individual i is of type 1 (resp. 0)” would be phrased as “site i is occupied
(resp. not occupied) by a particle”. Throughout the paper, we assume that whenever a change
of the configuration happens at most two individuals are involved. We call every function
f : {0, 1}2 → {0, 1}2 a basic mechanism. A finite tuple (f1, ..., fm), m ∈ N, of basic mechanisms
together with rates λ1, ..., λm ∈ [0,∞) defines a process with state space {0, 1}N by means of
the following graphical representation, which is in the spirit of Harris [6]. With every k ≤ m
and every ordered pair (i, j) ∈ {1, ..., N}2, i 6= j, of individuals, we associate a Poisson process
with rate parameter λk. At every time point of this Poisson process, the configuration of (i, j)
changes according to fk. For example, if the pair of types was (1, 0) before, then it changes
to fk(1, 0) ∈ {0, 1}2. All Poisson processes are supposed to be independent. This construction
can be visualised by drawing arrows from i to j at the time points of the Poisson processes
associated with the pair (i, j) (cf. Figure 1).
As an example, consider the following continuous time Moran model (MN

t )t≥0 with state space
{0, 1}N . This is a population genetic model where ordered pairs of individuals resample at
rate β/N , β > 0. When a resampling event occurs at (i, j), individual i bequeaths its type to
individual j. Thus, the basic mechanism is fR defined by

fR(1, ·) := (1, 1), fR(0, ·) := (0, 0). (8)

Figure 1 shows a realisation with three resampling events. At time t1, the pair (2, 1) resamples.
The arrow in Figure 1 at time t1 indicates that individual 2 bequeaths its type to individual
1. Furthermore, individual 5 inherits the type of individual 3 at time t3. The dual process of
the Moran model is a coalescent process. This process is defined by the coalescent mechanism
fC given by

fC(1, ·) := (0, 1), fC(z) := z, z ∈ {(0, 0), (0, 1)}, (9)

and by the rate β/N . To put it differently, the coalescent process is a coalescing random walk
on the complete oriented graph of {1, . . . , N}. In Section 2, we will specify in which sense
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Figure 1: Three resampling events. Type 1 is indicated by black lines, absent lines correspond to
type 0.

fR and fC are dual, and why this implies (5) (see Proposition 2.3). More generally, we will
identify all dual pairs of basic mechanisms.

Our method elucidates the role of the square in (3) for the duality of the logistic Feller diffusion
with another logistic Feller diffusion. We illustrate this by the Laplace duality of Feller’s
branching diffusion (Ft)t≥0, which is the logistic Feller diffusion with parameters (0, 0, β),
β > 0. Its dual process (yt)t≥0 is the logistic Feller diffusion with parameters (0, β, 0), i.e., the
solution of the ordinary differential equation

d

dt
yt = −β y2

t , y0 = y ∈ [0,∞). (10)

The duality relation between these two processes is Ex[e−Fty] = e−xyt, t ≥ 0. In Theorem 4.3,
we prove that the rescaled Moran model

(

|MN
t
√

N
|/
√

N
)

t≥0
converges weakly to (Ft)t≥0 as

N → ∞. To get an intuition for this convergence, notice that (|MN
t |)t≥0 is a pure birth-death

process with size-dependent transition rates (“birth” corresponds to creation of an individual
with type 1, whereas “death” corresponds to creation of an individual with type 0). It remains
to prove that the birth and death events become asymptotically independent as N → ∞. It is
known, see e.g. Section 2 in [3], that the dual process of the Moran model (MN

t )t≥0, N ≥ 1,
is a coalescing random walk. Furthermore, the total number of particles of this coalescing
random walk is a pure death process on {1, ..., N} which jumps from k to k− 1 at exponential
rate β

N k(k − 1), 2 ≤ k ≤ N . This rate is essentially quadratic in k for large k. We will see
that a suitably rescaled pure death process converges to a solution of (10); see Remark 4.5.
The square in (10) originates in the quadratic rate of the involved pure death process; see the
equations (42) and (29) for details.

In the literature, e.g. [9], the duality function H(xN , yN) = 1xN≤yN , xN , yN ∈ {0, 1}N , can
be found frequently, where xN ≤ yN denotes component-wise comparison. Processes (XN

t )t≥0

and (Y N
t )t≥0 with state space {0, 1}N are dual with respect to this duality function if they

satisfy

PxN [

XN
t ≤ yN

]

= PyN [

xN ≤ Y N
t

]

∀ xN , yN ∈ {0, 1}N , t ≥ 0. (11)

The biased voter model is dual to a coalescing branching random walk in this sense (see [8]).
Property (11) could also be used to derive the dualities mentioned in this introduction. In fact,
the two properties (5) and (11) are equivalent in the following sense: If (XN

t )t≥0 and (Y N
t )t≥0

satisfy (5) then (XN
t )t≥0 and (1 − Y N

t )t≥0 satisfy (11) and vice versa. In the configuration
1 every individual has type 1 and 1 − y denotes component-wise subtraction. The dynamics
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of the process (1 − Y N
t )t≥0 is easily obtained from the dynamics of (Y N

t )t≥0 by interchanging
the roles of the types 0 and 1.

2 Dual basic mechanisms

Fix m ∈ N and let (XN
t )t≥0 and (Y N

t )t≥0 be two processes defined by basic mechanisms
(f1, ..., fm) and (g1, ..., gm), respectively. Suppose that the Poisson processes associated with
k ≤ m have the same rate parameter λk ≥ 0, k = 1, . . . , m. We introduce a property of basic
mechanisms which will imply (5).

Definition 2.1 Let f, g : {0, 1}2 → {0, 1}2 and for x = (x1, x2) ∈ {0, 1}2 let x† := (x2, x1).
The basic mechanisms f and g are said to be dual iff the following two conditions hold:

∀x, y ∈ {0, 1}2 : y ∧
(

f(x)
)†

= (0, 0) =⇒ g(y) ∧ x† = (0, 0), (12)

∀x, y ∈ {0, 1}2 : x ∧
(

g(y)
)†

= (0, 0) =⇒ f(x) ∧ y† = (0, 0). (13)

To see how this connects to the duality relation in (5), we illustrate this definition by an
example.

Example 2.2 The resampling mechanism fR defined in (8) and the coalescent mechanism
fC defined in (9) are dual. We check condition (12) with f = fR and g = fC by looking
at Figure 2. The resampling mechanism acts in upward time (solid lines), the coalescent

1 0

11

1 1

11

0 1

00

1 1

1 0
0 1

00

0 1

1 0
0 1

00

0 0

0 0

Figure 2: The resampling mechanism and the coalescent mechanism satisfy (12)

mechanism in downward time (dashed lines). There are three nontrivial configurations for x,
i.e., (1, 1), (1, 0) and (0, 1). In the first two cases, we have fR(x) = (1, 1). Then only y = (0, 0)

satisfies y ∧ (fR(x))
†

= (0, 0). In the third case, every y satisfies y ∧ (fR(0, 1))
†

= (0, 0)
and has to be checked separately. We see that whenever the configuration y is disjoint from
(f(x))

†
, i.e., y∧(f(x))

†
= (0, 0), then g(y) is disjoint from x†. The coalescent mechanism is the

natural dual mechanism of the resampling mechanism. Type 1 of the coalescent mechanism
“traces back” the lines of descent of type 0 of the resampling mechanism. The “birth event”
(0, 1) 7→ (0, 0) of an individual of type 0 results in a coalescent event of ancestral lines.
Figure 3 is useful to verify condition (13). Again, the coalescent mechanism is drawn with
dashed lines. Here, the coalescent process is started in the nontrivial configurations (1, 1),

(1, 0) and (0, 1). In any case we obtain (fC(y))
†

= (1, 0). Hence, all admissible x are of the
form (0, ·). Condition (13) then follows from fR(0, ·) = (0, 0).
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Figure 3: The resampling mechanism and the coalescent mechanism satisfy (13)

The following proposition shows that two processes are dual in the sense of (5) if their defin-
ing basic mechanisms are dual (cf. Definition 2.1). The proofs of both Proposition 2.3 and
Proposition 3.1 follow similar ideas as in [5].

Proposition 2.3 Let m ∈ N and let the processes (XN
t )t≥0 and (Y N

t )t≥0 be defined by basic

mechanisms (f1, ..., fm) and (g1, ...,gm), respectively. Suppose that the Poisson processes asso-

ciated with k ∈ {1, . . . , m} in (XN
t )t≥0 and in (Y N

t )t≥0 have the same rate parameter λk ≥ 0.
If fk and gk are dual for every k = 1, . . . , m, then (XN

t )t≥0 and (Y N
t )t≥0 satisfy the duality

relation (5).

Proof: Fix T > 0 and initial values XN
0 , Y N

0 ∈ {0, 1}N . Assume for simplicity that m = 1
and let f := f1, g := g1. Define the process

(

Ŷ N
t

)

0≤t≤T
in backward time in the following way.

Reverse all arrows in the graphical representation of (XN
t )t≥0. At (forward) time T , start with

a type configuration given by Ŷ N
0 := Y N

0 . Now proceed until (forward) time 0: Whenever you
encounter an arrow, change the configuration according to g. Recall that the direction of the
arrow indicates the order of the involved individuals. We show that the processes (XN

t )t≥0

and (Ŷ N
t )0≤t≤T satisfy

XN
0 ∧ Ŷ N

T = 0 ⇐⇒ XN
T ∧ Ŷ N

0 = 0 ∀ XN
0 , Ŷ N

0 ∈ {0, 1}N , (14)

for every realisation. We prove the implication “ =⇒ ” by contradiction. Hence, assume that
for some initial configuration there is a (random) time t ∈ [0, T ] such that

XN
0 ∧ Ŷ N

T = 0 and XN
t ∧ Ŷ N

T−t 6= 0. (15)

There are only finitely many arrows until time T and no two arrows occur at the same time
almost surely. Hence, there is a first time τ such that the processes are disjoint before this
time but not after this time. The arrow at time τ points from i to j, say. Denote by (x−

i , x−
j ) ∈

{0, 1}2 and (x+
i , x+

j ) the types of the pair (i, j) ∈ {1, ..., N}2 according to the process (XN
t )t≥0

immediately before and after forward time τ , respectively. By the definition of the process, we
then have f(x−

i , x−
j ) = (x+

i , x+
j ). Furthermore, denote by (y−

j , y−
i ) the types of the pair (j, i)

according to (Y N
t )t≥0 immediately before backward time T − τ . We have chosen τ, i, j such

that

(x−
i , x−

j ) ∧
(

g(y−
j , y−

i )
)†

= (0, 0) and (x+
i , x+

j ) ∧ (y−
i , y−

j ) 6= (0, 0). (16)

However, this contradicts the duality of f and g. The proof of the other implication is analo-
gous.
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It remains to prove that Y N
T and Ŷ N

T are equal in distribution. The assertion then follows
from

P
[

XN
0 ∧ Y N

T = 0
]

= P
[

XN
0 ∧ Ŷ N

T = 0
] (14)

= P
[

XN
T ∧ Ŷ N

0 = 0
]

= P
[

XN
T ∧ Y N

0 = 0
]

. (17)

If a Poisson process is conditioned on its value at some fixed time T > 0, then the time points
are uniformly distributed over the interval [0, T ]. The uniform distribution is invariant under
time reversal. In addition, the Poisson processes of (Y N

t )t≥0 nd (XN
t )t≥0 have the same rate

parameter. Thus, (Y N
t )0≤t≤T and (Ŷ N

t )0≤t≤T have the same one-dimensional distributions.
2

We will now give a list of those maps f : {0, 1}2 → {0, 1}2 for which there exists a dual basic
mechanism (see Definition 2.1). The maps f and g in every row of the following table are dual
to each other. As in Example 2.2, it is elementary to check this.

No f(0, 0) f(0, 1) f(1, 0) f(1, 1) g(0, 0) g(0, 1) g(1, 0) g(1, 1)

i) (0,0) (0,0) (1,1) (1,1) (0,0) (0,1) (0,1) (0,1)
ii) (0,0) (0,1) (1,1) (1,1) (0,0) (0,1) (1,1) (1,1)
iii) (0,0) (0,0) (0,1) (0,1) (0,0) (0,0) (0,1) (0,1)
iv) (0,0) (0,1) (1,0) (1,1) (0,0) (0,1) (1,0) (1,1)
v) (0,0) (1,1) (1,1) (1,1) (0,0) (1,1) (1,1) (1,1)
vi) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Check that the pair (f, g) is dual if and only if the pair (f †, g†) is dual where f †(x) := (f(x†))†.
Furthermore, the pair (f, g) is dual if and only if (f̂ , ĝ†) is dual where f̂(x) := f(x†) and
ĝ†(x) = (g(x))† for x ∈ {0, 1}2. Thus, for each of the listed dual pairs (f, g), the pairs (f †, g†),

(f̂ , ĝ†) and (f̂ †, ĝ) are also dual. Modulo this relation, the listing of dual basic mechanisms is
complete. The proof of this assertion is elementary but somewhat tedious and is thus omitted.
Readers interested in the proof are invited to contact the authors in order to get the detailed
classification of dual basic mechanisms.
Of particular interest are the dualities in i)-iii). The first of these is the duality between
the resampling mechanism and the coalescent mechanism, which we already encountered in
Example 2.2. The duality in ii) is the self-duality of the pure birth mechanism

fB : {0, 1}2 → {0, 1}2, (1, 0) 7→ (1, 1) and x 7→ x ∀x ∈ {(0, 0), (0, 1), (1, 1)} (18)

and iii) is the self-duality of the death/coalescent mechanism

fDC : {0, 1}2 → {0, 1}2, (1, ·) 7→ (0, 1) and (0, ·) 7→ (0, 0). (19)

We are only interested in the effect of a basic mechanism on the total number of individuals
of type 1. The identity map in iv) does not change the number of individuals of type 1 in the
configuration. The effect of v) and vi) on the number of individuals of type 1 is similar to

the effect of ii) and iii), respectively. Furthermore, both f † and f̂ have the same effect on the
number of individuals of type 1 as f .
Closing this section, we define processes which satisfy the duality relation (5). These processes
will play a major role in deriving the dualities (2) and (4) in Section 4. For u, e, γ, β ≥ 0, let

(XN
t )t≥0 = (X

N,(u,e,γ,β)
t )t≥0 be the process on {0, 1}N with the following transition rates (of

independent Poisson processes):
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• With rate u
N , the pure birth mechanism fB occurs (cf.(18)).

• With rate e
N , the death/coalescent mechanism fDC occurs (cf. (19)).

• With rate γ
N , the coalescent mechanism fC occurs (cf. (9)).

• With rate β
N , the resampling mechanism fR occurs (cf. (9)).

Together with an initial configuration, this defines the process. The process (X
N,(u,e,γ,β)
t )t≥0

is defined by the basic mechanisms (fB, fDC , fC , fR), and the process (X
N,(u,e,β,γ)
t )t≥0 is

defined by the basic mechanisms (fB, fDC , fR, fC). Proposition 2.3 then yields the following
corollary.

Corollary 2.4 Let u, e, γ, β ≥ 0. The two processes (X
N,(u,e,γ,β)
t )t≥0 and (X

N,(u,e,β,γ)
t )t≥0

satisfy the duality relation (5).

3 Prototype duality

In this section, we derive the prototype duality (6) from (5). The main idea for this is to
integrate equation (5) in the variables xN and yN with respect to a suitable measure. Fur-
thermore, we will exploit the fact that drawing from an urn with replacement and without
replacement, respectively, is almost surely the same if the urn contains infinitely many balls.

Proposition 3.1 Let (XN
t )t≥0 and (Y N

t )t≥0 be processes with state space {0, 1}N , N ≥ 1.
Assume that (XN

t )t≥0 and (Y N
t )t≥0 satisfy the duality relation (5). Choose n, k ∈ {0, ..., N}

which may depend on N . Define µN
n (xN ) :=

(

N
n

)−11|xN |=n for every xN ∈ {0, 1}N where

|xN | =
∑N

i=1 xN
i is the total number of individuals of type 1. Assume L

(

XN
0

)

= µN
n and

L
(

Y N
0

)

= µN
k . Suppose that the process (XN

t )t≥0 satisfies

n

N
→ 0 and

E
[
∣

∣XN
tN

∣

∣

]

N
−→ 0 as N → ∞, (20)

where tN ≥ 0. Then

lim
N→∞

E

[

(

1 − k
N

)

∣

∣XN

tN

∣

∣

]

= lim
N→∞

E

[

(

1 −
∣

∣Y N

tN

∣

∣

N

)

n
]

(21)

under the assumption that the limits exist.

Proof: A central idea of the proof is to make use of the well known fact that the hyper-
geometric distribution Hyp(N, R, l), R, l ∈ {0, ..., N}, can be approximated by the binomial
distribution B(l, R

N ) as N → ∞ provided that l is sufficiently small compared to N . In fact,
by Theorem 4 of [2],

∣

∣

∣
B(l, R

N )
[

{0}
]

− Hyp(N, R, l)
[

{0}
]

∣

∣

∣
≤ dTV

(

B
(

l, R
N

)

, Hyp(N, R, l)

)

≤ 4 · l
N

∀ R, l ≤ N,

(22)
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where dTV is the total variation distance. By assumption (20), we have (with R := k, l :=
∣

∣XN
tN

∣

∣)

E

[

(

1 − k
N

)

∣

∣XN

tN

∣

∣

]

= E

[

B
(

∣

∣XN
tN

∣

∣, k
N

)

[

{0}
]

]

= E
[

Hyp
(

N, k,
∣

∣XN
tN

∣

∣

)[

{0}
]

]

+ o(1) (23)

as N → ∞. Similarly, we have (with R :=
∣

∣Y N
tN

∣

∣, l := n)

E

[

(

1 −
∣

∣Y N

tN

∣

∣

N

)

n]

= E

[

B
(

n,

∣

∣Y N

tN

∣

∣

N

)

[

{0}
]

]

= E
[

Hyp
(

N,
∣

∣Y N
tN

∣

∣, n
)[

{0}
]

]

+ o(1) (24)

as N → ∞. By definition of the hypergeometric distribution, we get

Hyp
(

N,
∣

∣Y N
t

∣

∣, n
)[

{0}
]

=

(

N

n

)−1
∑

xN : |xN |=n

1{xN∧Y N

t
=0} = µN

n

[

xN : xN ∧ Y N
t = 0

]

. (25)

By the same argument, we also obtain

Hyp
(

N, k,
∣

∣XN
t

∣

∣

)[

{0}
]

= Hyp
(

N,
∣

∣XN
t

∣

∣, k
)[

{0}
]

= µN
k

[

yN : XN
t ∧ yN = 0

]

. (26)

We denote by PxN

the law of the process (XN
t )t≥0 started in the fixed initial configuration

xN ∈ {0, 1}N . Starting from the left-hand side of (21), the above considerations yield

E
[

(

1 − k

N

)

∣

∣XN

tN

∣

∣

]

+ o(1)
(23)
= E

[

Hyp(N, k,
∣

∣XN
tN

∣

∣)
[

{0}
]

]

(26)
=

∫

ExN
[

µN
k

[

XN
tN

∧ yN = 0
]

]

µN
n (dxN )

(5)
=

∫ ∫

PyN
[

xN ∧ Y N
tN

= 0
]

µN
k (dyN )µN

n (dxN ) = E
[

µN
n

[

xN ∧ Y N
tN

= 0
]

]

(25)
= E

[

Hyp(N,
∣

∣Y N
tN

∣

∣, n)
[

{0}
]

]

(24)
= E

[

(

1 −
∣

∣Y N
tN

∣

∣

N

)

n]

+ o(1),

(27)

which proves the assertion. 2

4 Various scalings

Recall the definition of the process (X
N,(u,e,γ,β)
t )t≥0 from the end of Section 2. Define XN

t :=

X
N,(u,e,γ,β)
t and Y N

t := X
N,(u,e,β,γ)
t for t ≥ 0 and N ∈ N. Notice that the Poisson process

attached to the resampling mechanism in the process (Y N
t )t≥0 has rate γ. By Corollary 2.4,

the two processes (XN
t )t≥0 and (Y N

t )t≥0 satisfy the duality relation (5). Let L
(

XN
0

)

= µN
n

and L
(

Y N
0

)

= µN
k for some n, k ∈ N to be chosen later, where µN

n is defined in Proposition 3.1.
In order to apply Proposition 3.1, we essentially have to prove existence of the limits in (21).
Depending on the scaling, this will result in the moment duality (2) of a resampling-selection
model with a branching-coalescing particle process and in the Laplace duality (4) of the logistic
Feller diffusion with another logistic Feller diffusion, respectively. Both dualities could be
derived simultaneously. However, in order to keep things simple, we consider the two cases
separately.
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Theorem 4.1 Assume that b, c, d ≥ 0. Denote by (Xt)t≥0 and (Yt)t≥0 the (1, b, c, d)-braco-
process and the (1, b, c, d)-resem-process, respectively. The initial values are X0 = n ∈ N0 and

Y0 = y ∈ [0, 1]. Then

En
[

(1 − y)Xt

]

= Ey
[

(1 − Yt)
n
]

, t ≥ 0. (28)

Remark 4.2 In the special case b = 0 = d and c > 0, this is the moment duality of the
Fisher-Wright diffusion with Kingman’s coalescent. Furthermore, choosing c = 0 and b, d > 0
results in the moment duality of the Galton-Watson process with a deterministic process.

Proof: Choose u, e, β ≥ 0 and γ = γ(N) such that b = u + β, d = e + β and γ/N → c
as N → ∞. In the first step, we prove that the process (|XN

t |)t≥0 of the total number of
individuals of type 1 converges weakly to (Xt)t≥0. The total number of individuals of type
1 increases by one if a “birth event” occurs (fB or fR) and if the type configuration of the
respective ordered pair of individuals is (1, 0). If the total number of individuals of type 1 is
equal to k, then the probability of the type configuration of a randomly chosen ordered pair to
be (1, 0) is k

N
N−k
N−1 . The number of Poisson processes associated with a fixed basic mechanism

is N(N − 1). Thus, the process of the total number of individuals of type 1 has the following
transition rates:

k → k + 1 : u+β
N · N(N − 1) · k

N
N−k
N−1 ,

k → k − 1 : e+β
N · N(N − 1) · N−k

N
k

N−1 + e+γ
N · N(N − 1) · k

N
k−1
N−1 ,

(29)

where k ∈ N0. Notice that the coalescent mechanism produces the quadratic term k(k − 1)
because the probability of the type configuration of a randomly chosen ordered pair to be (1, 1)
is k

N
k−1
N−1 if there are k individuals of type 1. The transition rates determine the generator

GN = GN,(u,e,γ,β) of (|XN
t |)t≥0, namely

GNf(k) =
u + β

N
· k(N − k) ·

(

f(k + 1) − f(k)
)

+
e + β

N
· k(N − k) ·

(

f(k − 1) − f(k)
)

+
e + γ

N
· k(k − 1) ·

(

f(k − 1) − f(k)
)

, k ∈ {0, . . . , N},

(30)

for f : {0, . . . , N} → R. The (1, u + β, c, e + β)-braco-process (Xt)t≥0 is the unique solution of
the martingale problem for G (see [1]) where

Gf(k) := (u + β)k
(

f(k + 1) − f(k)
)

+
(

(e + β) + c(k − 1)
)

k
(

f(k − 1) − f(k)
)

, k ∈ N0,
(31)

for f : N0 → R with finite support. Letting N → ∞, we see that

GNf(k) −→ Gf(k) as N → ∞, k ∈ N0, (32)

for f : N0 → R with finite support. We aim at using Lemma 5.1 which is given below (with
EN = {0, . . . , N} and E = N0), to infer from (30) the weak convergence of the corresponding
Markov processes. A coupling argument shows that (|XN

t |)t≥0 is dominated by (ZN
t )t≥0 :=

(|XN,(u,0,0,β)
t |)t≥0. The process (ZN

t )t≥0 solves the martingale problem for GN,(u,0,0,β). Thus,
we obtain

ZN
t − ZN

0 =

∫ t

0

GN,(u,0,0,β)ZN
s ds + CN

t =

∫ t

0

uZN
s

N−ZN

s

N ds + CN
t (33)
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where (CN
t )t≥0 is a martingale. Hence, (ZN

t )t≥0 is a submartingale. Taking expectations,
Gronwall’s inequality implies

E[ZN
t ] ≤ E[ZN

0 ]eut, ∀ t ≥ 0. (34)

Let SN = TN = 1, sN = u and recall |XN
0 | = n. With this, the assumptions of Lemma 5.1 are

satisfied. Thus, Lemma 5.1 implies that (|XN
t |)t≥0 converges weakly to (Xt)t≥0 as N → ∞.

Let k = kN ∈ {0, ..., N} be such that k/N → y as N → ∞. For every n̄ ∈ N, (1− k
N )n converges

uniformly in n ≤ n̄ to (1 − y)n as N → ∞. In general, if the sequence (X̃n)n∈N of random
variables with complete and separable state space converges weakly to X̃ and if the sequence
(fn)n∈N, fn ∈ Cb, converges uniformly on compact sets to f ∈ Cb, then E[fn(X̃n)] → E[f(X̃)]
as n → ∞. Hence,

En
[

(1 − y)Xt

]

= lim
N→∞

E

[

(

1 − k

N

)

∣

∣XN

t

∣

∣

]

. (35)

The next step is to prove that the rescaled processes (|Y N
t |/N)t≥0 converge weakly to (Yt)t≥0

as N → ∞. The generator of (|Y N
t |/N)t≥0 is given by

GN,(u,e,β,γ)f
(

k
N

)

=γk
N − k

N

(

f
(

k+1
N

)

+ f
(

k−1
N

)

− 2f
(

k
N

)

)

+ uk
N − k

N

(

f
(

k+1
N

)

− f
(

k
N

)

)

+ ek
N − k

N

(

f
(

k−1
N

)

− f
(

k
N

)

)

+ e+β
N k(k − 1)

(

f
(

k−1
N

)

− f
(

k
N

)

)

, k ∈ {0, ..., N},

(36)

for f ∈ C2
c ([0, 1]). Choose k = kN ≤ N such that k

N → y ∈ [0, 1] as N → ∞. Notice that

N2·
(

f
(

k+1
N

)

+ f
(

k−1
N

)

− 2f
(

k
N

)

)

→ f
′′

(y) as N → ∞. (37)

As N → ∞, the right-hand side of (36) converges to

cy(1 − y) · f ′′

(y) + (u − e)y(1 − y) · f ′

(y) − (e + β)y2 · f ′

(y)

= (u − e)y · f ′

(y) − (u + β)y2 · f ′

(y) + cy(1 − y) · f ′′

(y) =: Gf(y)
(38)

for every f ∈ C2
c ([0, 1]). Athreya and Swart [1] show that the (1, b, c, d)-resem-process (Yt)t≥0

solves the martingale problem for G and that this solution is unique. Let EN = {0, 1, . . . , N},
E = [0, 1], ZN

t := |XN,(u,0,0,γ)
t |, SN = N and TN = 1. With this, the assumptions of

Lemma 5.1 are satisfied and we conclude that (|Y N
t |/N)t≥0 converges weakly to (Yt)t≥0. It

follows that, for k = kN ∈ {0, ..., N} with k/N → y,

lim
N→∞

E

[

(

1 −
∣

∣Y N
t

∣

∣

N

)

n
]

= Ey
[

(1 − Yt)
n
]

. (39)

This proves existence of the limits in (21) with tN := t. Inequality (34) and |XN
0 | = n << N

imply condition (20). Thus, Proposition 3.1 establishes equation (21). The assertion follows
from equations (35), (21) and (39). 2

Next, we derive the Laplace duality of a logistic Feller diffusion with another logistic Feller
diffusion. Recall that the logistic Feller diffusion with parameters (α, γ, β) solves equation (3).



Graphical Representation Of Some Duality Relations 217

Theorem 4.3 Suppose that α, γ, β ≥ 0, r > 0 and X0 = x ≥ 0, Y0 = y ≥ 0. Let (Xt)t≥0

and (Yt)t≥0 be logistic Feller diffusions with parameters (α, γ, β) and (α, rβ, γ/r), respectively.

Then

Ex
[

e−rXt·y] = Ey
[

e−rx·Yt

]

(40)

for all t ≥ 0.

Remark 4.4
[(a)]

For β, γ > 0 and r = γ/β, Theorem 4.3 yields the self-duality of the logistic Feller
diffusion.

1.2. For α = 0, γ = 0, r = 1 and β > 0, Theorem 4.3 specialises to the Laplace duality of
Feller’s branching diffusion.

Proof: Choose u = uN ≥ 0 and e = eN ≥ 0 such that (u − e)
√

N → α as N → ∞. We
prove that the rescaled process (|Y N

t
√

N
|/(r

√
N))t≥0 converges weakly to (Yt)t≥0 as N → ∞.

The generator of the rescaled process is given by (cf. (36))

√
NGNf

(

k
r
√

N

)

=
√

N · γ · k (N − k)

N
·
(

f
(

k+1
r
√

N

)

+ f
(

k−1
r
√

N

)

− 2f
(

k
r
√

N

)

)

+
√

NuN · k (N − k)

N
·
(

f
(

k+1
r
√

N

)

− f
(

k
r
√

N

)

)

+
√

NeN · k (N − k)

N
·
(

f
(

k−1
r
√

N

)

− f
(

k
r
√

N

)

)

+
√

N · (eN + β) · k(k − 1)

r2N
r2 · r

√
N

r
√

N

(

f
(

k−1
r
√

N

)

− f
(

k
r
√

N

)

)

,

(41)

for k ∈ {0, . . . , N} and for f ∈ C2
c ([0,∞)). Let k = k(N) ∈ {0, . . . , N} be such that

k/(r
√

N) → y. Letting N → ∞, the right-hand side converges to

γ
r y · f ′′

(y) + α y · f ′

(y) − βr y2 · f ′

(y) =: Gf(y) (42)

for every f ∈ C2
c ([0,∞)). Notice that the quadratic term y2 originates in the quadratic term

k(k − 1). Hutzenthaler and Wakolbinger [7] prove that (Yt)t≥0 is the unique solution of the

martingale problem for G. Let |Y N
0 | = k = k(N) be such that k/(r

√
N) → y ∈ [0, 1] as

N → ∞ and define ZN
0 := k. As before, (ZN

t )t≥0 := (|XN,(u,0,0,γ)
t |)t≥0 is a submartingale

which dominates (Y N
t )t≥0 and which satisfies

sup
N

1

r
√

N
E[ZN

t
√

N
] ≤ sup

N

1

r
√

N
E[ZN

0 ]euN t
√

N < ∞, ∀ t ≥ 0. (43)

Let EN := {0, . . . , N}, E := [0,∞), sN := uN , SN := r
√

N and TN :=
√

N . The assumptions
of Lemma 5.1 are satisfied and we conclude that (|Y N

t
√

N
|/(r

√
N))t≥0 converges weakly to

(Yt)t≥0. This also proves that (|XN
t
√

N
|/
√

N)t≥0 converges weakly to (Xt)t≥0 if |XN
0 | = n =

n(N) is such that n/
√

N → x as N → ∞. It is not hard to see that, for every z̃ ≥ 0,

(

1 − r k/(r
√

N)√
N

)

√
Nz

−→ e−rzy and
(

1 − r z√
N

)

√
N

n√
N −→ e−rxz as N → ∞ (44)
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uniformly in 0 ≤ z ≤ z̃. Together with the weak convergence of the rescaled processes, this
implies

Ex
[

e−rXt·y]

= lim
N→∞

En

[

(

1 − r k/(r
√

N)√
N

)

√
N ·XN

t
√

N
/
√

N
]

(45)

and

lim
N→∞

Ek

[

(

1 − r
Y N

t
√

N
/(r

√
N)

√
N

)n
]

= Ey
[

e−rx·Yt

]

(46)

for t ≥ 0. This proves existence of the limits in (21) with tN := t
√

N . Inequality (43) and
|XN

0 | = n << N imply condition (20). Thus, Proposition 3.1 establishes equation (21). The
assertion follows from equations (45), (21) and (46). 2

Remark 4.5 Assume u = e = γ = α = 0 and r = 1 in the proof of Theorem 4.3. Then
(|Y N

t |)t≥0 is a pure death process on {1, ..., N} which jumps from k to k − 1 at exponential

rate β
N k(k − 1), 2 ≤ k ≤ N . Furthermore, (Yt)t≥0 is a solution of (10). We have just shown

that the rescaled pure death process (|Y N
t
√

N
|/
√

N)
t≥0

converges weakly to (Yt)t≥0 as N → ∞.

5 Weak convergence of processes

In the proofs of Theorem 4.1 and Theorem 4.3, we have established convergence of generators
plus a domination principle. In this section, we prove that this implies weak convergence of
the corresponding processes. For the weak convergence of processes with càdlàg paths, let the
topology on the set of càdlàg paths be given by the Skorohod topology (see [4], Section 3.5).

Lemma 5.1 Let E ⊂ R≥0 be closed. Assume that the martingale problem for (G, ν) has at

most one solution where G : C2
c (E) → Cb(E) is a linear operator and ν is a probability measure

on E. Furthermore, for N ∈ N, let EN ⊂ R≥0 and let (Y N
t )t≥0 be an EN -valued Markov

process with càdlàg paths and generator GN . Let (SN )N∈N and (TN)N∈N be sequences in R>0

with yN/SN ∈ E for all yN ∈ EN and N ∈ N. Suppose that

yN ∈ EN , lim
N→∞

yN

SN

= y ∈ E implies TNGNf
(

yN

SN

)

→ Gf(y) as N → ∞, (47)

for every f ∈ C2
c (E). Assume that, for N ∈ N, (Y N

t )t≥0 is dominated by a process (ZN
t )t≥0,

i.e., Y N
t ≤ ZN

t for all t ≥ 0 almost surely, which is a submartingale satisfying E[ZN
t ] ≤

E[ZN
0 ]etsN for all t ≥ 0 and some constant sN . In addition, suppose that lim supN→∞ sNTN <

∞ and lim supN→∞
E[ZN

0
]

SN
< ∞. If Y N

0 /SN converges in distribution to ν as N → ∞, then

L
(

(

Y N
tTN

/

SN

)

t≥0

)

=⇒ Lν
(

(

Yt

)

t≥0

)

as N → ∞ (48)

where (Yt)t≥0 is a solution of the martingale problem (G, ν) with initial distribution ν.

Proof: We aim at applying Corollary 4.8.16 of Ethier and Kurtz [4]. For this, define

ẼN := { yN

SN

: yN ∈ EN}, G̃Nf(ỹN ) := TNGNf
(

yN

SN

)

∣

∣

∣

yN=ỹN SN

, ỹN ∈ ẼN , (49)
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for f ∈ C2
c (E) and let ηN : ẼN → E be the embedding function. The process

(

Y N
tTN

/SN

)

t≥0

has state space ẼN and generator G̃N . Now we prove the compact containment condition, i.e.,
for fixed ε, t > 0 we show

(

∃K > 0
) (

∀N ∈ N)

P
[

sup
s≤t

Y N
sTN

SN
≤ K

]

≥ 1 − ε. (50)

Using Y N
t ≤ ZN

t , t ≥ 0, and Doob’s Submartingale Inequality, we conclude for all N ∈ N
P

[

sup
s≤t

Y N
sTN

≥ KSN

]

≤ P
[

sup
s≤t

ZN
sTN

≥ KSN

]

≤ 1

KSN
E

[

ZN
tTN

]

≤ 1

K
sup
N∈N E

[

ZN
0

]

SN
· exp

(

t · sup
N∈N(sNTN )

)

=:
C

K
.

(51)

Thus, choosing K := C
ε completes the proof of the compact containment condition.

It remains to verify condition (f) of Corollary 4.8.7 of [4]. Condition (47) implies that for every
f ∈ C2

c and every compact set K ⊂ E

sup
y∈K∩ẼN

|G̃Nf(y) − Gf(y)| → 0 as N → ∞. (52)

Choose a sequence KN such that (52) still holds with K replaced by KN . This together
with the compact containment condition implies condition (f) of Corollary 4.8.7 of [4] with
GN := KN ∩ẼN and fN := f |ẼN

. Furthermore, notice that C2
c (E) is an algebra that separates

points and E is complete and separable. Now Corollary 4.8.16 of Ethier and Kurtz [4] implies
the assertion. 2

Open Question: Athreya and Swart [1] prove a self-duality of the resem-process given
by (1). We were not able to establish a graphical representation for this duality. Thus, the
question whether our technique also works in this case yet waits to be answered.
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