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Abstract

Let X,X1,X2, ... be i.i.d. Rd-valued random variables. We prove large and moderate devi-
ations for Hotelling’s T 2-statistic when X is in the generalized domain of attraction of the
normal law.

1 Introduction

Let X,X1,X2, ... be a sequence of independent and identically distributed (i.i.d.) nondegen-
erate Rd-valued random vectors with mean µ, where d ≥ 1. Let

Sn =

n∑
i=1

Xi, V n =

n∑
i=1

(Xi − Sn/n)(Xi − Sn/n)′

Define Hotelling’s T 2 statistic by

T 2
n = (Sn − nµ)′V −1n (Sn − nµ). (1.1)
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The T 2-statistic is used for testing hypotheses about the mean µ and for obtaining confidence
regions for the unknown µ. When X has a normal distribution N(µ,Σ), it is known that
(n − d)T 2

n/(dn) is distributed as an F -distribution with d and n − d degrees of freedom (see,
e.g., Anderson (1984)). The T 2-test has a number of optimal properties. It is uniformly most
powerful in the class of tests whose power function depends only on µ′Σ−1µ (Simaika (1941)),
is admissible (Stein (1956) and Kiefer and Schwartz (1965)), and is robust (Kariya (1981)).
One can refer to Muirhead (1982) for other invariant properties of the T 2-test. When the
distribution ofX is not normal, it was proved by Sepanski (1994) that the limiting distribution
of T 2

n as n→∞ is a χ2-distribution with d degrees of freedom. An asymptotic expansion for
the distribution of T 2

n is obtained by Fujikoshi (1997) and Kano (1995) independently. The
main aim of this note is to give a large and moderate deviations for the T 2-statistic.

Theorem 1.1 Assume that µ = 0. For α ∈ (0, 1), let

K(α) = sup
b≥0

sup
||θ||=1

inf
t≥0

E exp
(
t
(
bθ′X − α((θ′X)2 + b2)/2

))
. (1.2)

Then, for all x > 0,

lim
n→∞

P
(
T 2
n ≥ xn

)1/n
= K(

√
x/(1 + x)) . (1.3)

Theorem 1.2 Let {xn, n ≥ 1} be a sequence of positive numbers with xn → ∞ and xn =
o(n) as n→∞. Assume that h(x) := E||X||21{||X|| ≤ x} is slowly varying and

lim inf
x→∞

inf
θ∈Rd,||θ||=1

E(θ′X)21{||X|| ≤ x}/h(x) > 0 . (1.4)

If µ = 0, then

lim
n→∞

x−1n lnP
(
T 2
n ≥ xn

)
= −1

2
. (1.5)

From Theorem 1.2 we have the following law of the iterated logarithm.

Theorem 1.3 Assume that h(x) := E||X||21{||X|| ≤ x} is slowly varying and (1.4) is
satisfied. If µ = 0, then

lim sup
n→∞

T 2
n

2 log log n
= 1 a.s.

Theorems 1.1 and 1.2 demonstrate again that the Hotelling’s T 2 statistic is very robust. Theo-
rem 1.1 also provides a direct tool to estimate the efficiency of the T 2 test, such as the Bahadur
efficiency. See He and Shao (1996).
Theorems 1.1 and 1.2 are in the context of the so-called self-normalized limit theorems. The
past decade has witnessed important developments in this area. One can refer to Griffin and
Kuelbs (1989) for the self-normalized law of the iterated logarithm when d = 1; Dembo and
Shao (1998a, 1998b) for d ≥ 1; Shao (1997) for self-normalized large and moderate deviations
of i.i.d. sums; Faure (2002) for self-normalized large deviation for Markov chains; Jing, Shao
and Zhou (2004) for self-normalized saddlepoint approximation; Jing, Shao and Wang (2003)
for self-normalized Cramér- type large deviations for independent random variables; Bercu,
Gassiat and Rio (2002) for large and moderate deviations for self-normalized empirical pro-
cesses; Chistyakov and Götze (2004a) for the necessary and sufficient condition for having a
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non-degenerate limiting distribution of self-normalized sums; Shao (1998, 2004) for surveys
of recent developments in this subject. Other self-normalized large deviation results can be
found in Chistyakov and Götze (2004b), Robinson and Wang (2004) and Wang (2005).

Remark 1.1 Following Dembo and Shao (1998b), it is possible to have a large deviation
principle for T 2

n . Formula (1.2) may become clearer from the large deviation principle point of
view. However, it may be not easy to compute K(α) in general.

Remark 1.2 It is easy to see that when E||X||2 < ∞ and X is nondegenerate, h(x) con-
verges to a constant and (1.4) is satisfied.

Remark 1.3 In (1.1) when V n is not full rank, i.e., V n is degenerate, x′V −1n x is defined
as (see (2.1) in the next section)

x′V −1n x = sup
||θ||=1,θ′x≥0

(θ′x)2

θ′V nθ
,

where 0/0 is interpreted as ∞. The latter convention is the reason why b = 0 is allowed in the
definition (1.2) of K(α), which is essential for the validity of Theorem 1.1 in case the law of
X has atoms.

Remark 1.4 X is said to be in the generalized domain of attraction of the normal law
(X ∈ GDOAN) if there exist nonrandom matrices An and constant vector bn such that

An(Sn − bn)
d.→ N(0, I).

Hahn and Klass (1980) proved that X ∈ GDOAN if and only if

lim
x→∞

sup
||θ||=1

x2P (|θ′X| > x)

E|θ′X|2I{|θ′X| ≤ x}
= 0. (1.6)

If conditions in Theorem 1.2 are satisfied, then (1.6) holds. We conjecture that Theorem 1.3
remains valid under condition (1.6).

2 Proofs

Let B be an d× d symmetric positive definite matrix. Then, clearly,

∀ x ∈ Rd, x′B−1x = sup
ϑ∈Rd

(
2ϑ′x− ϑ′Bϑ

)
= sup
||θ||=1,b≥0

{
2bθ′x− b2θ′Bθ

}
= sup

||θ||=1,θ′x≥0

(θ′x)2

θ′Bθ
(2.1)

(taking ϑ = bθ, with b ≥ 0 and ||θ|| = 1).
Proof of Theorem 1.1. Letting

Γn =

n∑
i=1

XiX
′
i,
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we can rewrite V n as
V n = Γn − SnS′n/n.

By (2.1), for any a > 0

{T 2
n ≥ a2} = {S′nV

−1
n Sn ≥ a2} (2.2)

=
{
∃ θ ∈ Rd, ||θ|| = 1,θ′Sn/

√
θ′V nθ ≥ a

}
=

{
∃ θ ∈ Rd, ||θ|| = 1,θ′Sn ≥ a

√
θ′Γnθ − (θ′Sn)2/n

}
=

{
∃ θ ∈ Rd, ||θ|| = 1,θ′Sn ≥

a√
1 + a2/n

√
θ′Γnθ

}
Hence, for all x > 0

P
(
T 2
n ≥ xn

)
= P

(
sup
||θ||=1

θ′Sn√
θ′Γnθ

≥ (x/(1 + x))1/2n1/2
)

(2.3)

Notice that

θ′Sn =

n∑
i=1

θ′Xi and θ′Γnθ =

n∑
i=1

(θ′Xi)
2

By Theorem 1.1 of Shao (1997), it follows from (2.3) that

lim inf
n→∞

P
(
T 2
n ≥ xn

)1/n
≥ K(

√
x/(x+ 1))

(for K(·) of (1.2)). To prove the upper bound of (1.3), it suffices to show that for α ∈ (0, 1)

lim sup
n→∞

P
(

sup
||θ||=1

{
θ′Sn − αn1/2

√
θ′Γnθ

}
≥ 0
)1/n

≤ K(α). (2.4)

Let A ≥ 2 and define ξi(θ) := ξi(θ, A) = θ′Xi1{||Xi|| ≤ A}. We can make the proof of the
upper bound with any fixed α ∈ (0, 1) and ε ∈ (0, 1/2),

P
(

sup
||θ||=1

{
θ′Sn − αn1/2

√
θ′Γnθ

}
≥ 0
)

(2.5)

≤ P
(

sup
||θ||=1

{ n∑
i=1

ξi(θ)− (1− ε)αn1/2(

n∑
i=1

ξ2i (θ))1/2
}
≥ 0
)

+ P
(

sup
||θ||=1

{ n∑
i=1

θ′Xi1{||Xi|| > A} − εαn1/2(

n∑
i=1

(θ′Xi)
2)1/2

}
≥ 0
)

:= I1 + I2.

By the Cauchy inequality and

∀ a > 0, P (B(n, p) ≥ an) ≤ (3p/a)an (2.6)

for the binomial random variable B(n, p), we have

lim sup
n→∞

I
1/n
2 ≤ lim sup

n→∞
P
( n∑
i=1

1{||Xi|| > A} ≥ (εα)2n
)

(2.7)

≤ (3(αε)−2P (||X|| > A))(αε)
2

.
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It remains to bound I1. Using the representation

∀ y > 0, x ≥ 0, z ≥ x/y x y = (1/2) inf
0<b≤z

1

b

(
x2 + b2y2

)
,

we see that

(

n∑
i=1

ξ2i (θ))1/2n1/2 = (1/2) inf
0<b≤A

1

b

( n∑
i=1

ξ2i (θ) + b2n
)

and

I1 = P
( ⋃
||θ||=1

{ n∑
i=1

ξi(θ) ≥ (1− ε)α
2

inf
0<b≤A

1

b

( n∑
i=1

ξ2i (θ) + b2n
)})

(2.8)

= P
(

sup
0≤b≤A

sup
||θ||=1

n∑
i=1

Zi(θ, b) ≥ 0
)
,

where Zi(θ, b) := bξi(θ)− (1−ε)α(ξ2i (θ)+b2)/2. Let 0 < η < 1/4 and consider a finite η-cover
G of {(θ, b) : θ ∈ Rd, ||θ|| = 1, 0 ≤ b ≤ A} with respect to maximum norm in Rd+1. That is,
for any 0 ≤ b ≤ A and θ ∈ Rd with ||θ|| = 1, there exists (θ0, b0) ∈ G such that

||θ − θ0||∞ ≤ η, |b− b0| ≤ η, and ||θ0|| = 1 . (2.9)

Since |ξi(θ)| ≤ A it follows that for some C = C(α, d) <∞ all i and all (θ0, b0) ∈ G,

sup
|b−b0|≤η

sup
||θ−θ0||∞≤η

|Zi(θ, b)− Zi(θ0, b0)| ≤ CA2η . (2.10)

By Chebyshev’s inequality we obtain that

P
(

sup
|b−b0|≤η

sup
||θ−θ0||∞≤η

n∑
i=1

Zi(θ, b) ≥ 0
)

(2.11)

≤ inf
t≥0

{
etCA

2ηE exp(tZ(θ0, b0))
}n

≤ inf
0≤t≤m

{
etCA

2ηE exp(tZ(θ0, b0))
}n

for any m > 0, where Z(θ, b) := bθ′X1{||X|| ≤ A} − (1 − ε)α((θ′X)21{||X|| ≤ A} + b2)/2.
Hence,

lim sup
n→∞

I
1/n
1 ≤ sup

0≤b≤A
sup
||θ||=1

inf
0≤t≤m

etCA
2ηE exp(tZ(θ, b)) . (2.12)

Let V (θ, b, ε) := bθ′X − (1− ε)α((θ′X)2 + b2)/2. Then, for all t ≥ 0,

E exp(tZ(θ, b)) ≤ E exp(tV (θ, b, ε)) + P (||X|| > A) .

Therefore, considering η ↓ 0 and then A ↑ ∞, it follows from (2.5), (2.7) and (2.12) that

lim sup
n→∞

P
(

sup
||θ||=1

θ′Sn√
θ′Γnθ

≥ αn1/2
)1/n

≤ sup
b≥0

sup
||θ||=1

inf
0≤t≤m

E exp(tV (θ, b, ε)).
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Observing that (see the proof of (A.1) in Shao (1997))

lim
k→∞

sup
b≥k

sup
||θ||=1

inf
0≤t≤m

E exp(tV (θ, b, ε)) = 0 (2.13)

uniformly in 0 ≤ ε ≤ 1/2 and m ≥ 1, we have

lim
ε↓0

sup
b≥0

sup
||θ||=1

inf
0≤t≤m

E exp(tV (θ, b, ε)) = sup
b≥0

sup
||θ||=1

inf
0≤t≤m

E exp(tV (θ, b, 0)).

Finally by Lemma 4 of Chernoff (1952) and (2.13) again,

lim
m→∞

sup
b≥0

sup
||θ||=1

inf
0≤t≤m

E exp(tV (θ, b, 0)) = sup
b≥0

sup
||θ||=1

inf
0≤t

E exp(tV (θ, b, 0)) = K(α).

This proves Theorem 1.1. �

Proof of Theorem 1.2. By (2.2), it suffices to show that for all yn →∞, yn = o(n),

lim
n→∞

y−1n lnP
(

sup
||θ||=1

∑n
i=1 θ

′Xi

(
∑n
i=1(θ′Xi)2)1/2

≥ y1/2n

)
= −1

2
(2.14)

Recall that for any Rd-valued random variable X

E||X||21{||X|| ≤ x} slowly varying ⇔ x2P (||X|| > x)/E||X||21{||X|| ≤ x} → 0 (2.15)

(see for example, Theorem 1.8.1 of Bingham et al. (1987)). Since h(x) = E||X||21{||X|| ≤ x}
is slowly varying, it follows from (2.15) and (1.4) that for every θ ∈ Rd with ||θ|| = 1,

x2P (|θ′X| > x) ≤ x2P (||X|| > x) = o(h(x))

= o(E(θ′X)21{||X|| ≤ x}) = o(E(θ′X)21{|θ′X| ≤ x}).

Applying (2.15) for the R-valued θ′X, we see that E(θ′X)21{|θ′X| ≤ x} is slowly varying.
With Eθ′X = 0 it follows from Theorem 3.1 of Shao (1997) that

lim inf
n→∞

y−1n lnP
(

sup
||θ||=1

∑n
i=1 θ

′Xi

(
∑n
i=1(θ′Xi)2)1/2

≥ y1/2n

)
≥ lim inf

n→∞
y−1n lnP

( ∑n
i=1 θ

′Xi

(
∑n
i=1(θ′Xi)2)1/2

≥ y1/2n

)
= −1

2
,

establishing the lower bound in (2.14). Since yn = o(n) there exists zn → ∞ such that
yn = (1 + o(1))nz−2n h(zn) (cf. Proposition 1.3.6 and Theorems 1.8.2, 1.8.5 of Bingham et al.
(1987)). It thus suffices to prove the complementary upper bound in (2.14) for yn = nz−2n h(zn)
and any zn →∞. Fixing zn →∞ and 0 < ε < 1/4 set

ξi(θ) := ξi(θ, zn) = θ′Xi1{||Xi|| ≤ εzn} .
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Similarly to (2.5), we see that

P
(

sup
||θ||=1

∑n
i=1 θ

′Xi

(
∑n
i=1(θ′Xi)2)1/2

≥ y1/2n

)
(2.16)

≤ P
(

sup
||θ||=1

{ n∑
i=1

ξi(θ)− (1− ε)y1/2n (

n∑
i=1

ξ2i (θ))1/2
}
≥ 0
)

+ P
( n∑
i=1

1{||Xi|| > εzn} ≥ ε2yn
)

:= J1 + J2

With yn = nz−2n h(zn) and zn →∞, it follows by (2.6) that

y−1n ln J2 ≤ ε2 ln
(

3z2nP (||X|| > εzn)/(ε2h(zn))
)

With h(x) slowly varying, it follows from (2.15) that (εzn)2P (||X|| ≥ εzn)/h(zn) → 0 as
n→∞, hence

lim sup
n→∞

y−1n ln J2 = −∞ . (2.17)

Let η ∈ (0, 1/(4d)). Consider a finite η-cover H of {θ : θ ∈ Rd, ||θ|| = 1} with respect to the
maximum norm in Rd. Thus, for any θ ∈ Rd with ||θ|| = 1, there exists θ0 ∈ H such that

||θ − θ0||∞ ≤ η and ||θ0|| = 1 .

Since
∑n
i=1 ξi(θ) is linear in θ, it follows that

sup
||θ−θ0||∞≤η

n∑
i=1

ξi(θ) = max
ϑ∈H(θ0)

n∑
i=1

ξi(ϑ) ,

where H(θ0) := {θ0 + ηδ : δ ∈ {−1, 1}d}. Consequently,

P
(

sup
||θ−θ0||∞≤η

{ n∑
i=1

ξi(θ)− (1− ε)y1/2n (

n∑
i=1

ξ2i (θ))1/2
}
≥ 0
)

(2.18)

≤ P
(

max
ϑ∈H(θ0)

n∑
i=1

ξi(ϑ) ≥ (1− ε)y1/2n inf
||θ−θ0||∞≤η

(

n∑
i=1

ξ2i (θ))1/2
)

≤
∑

ϑ∈H(θ0)

{
P
( n∑
i=1

ξi(ϑ) ≥ (1− ε)2y1/2n (nEξ2(ϑ))1/2
)

+P
(

inf
||θ−ϑ||∞≤2η

n∑
i=1

ξ2i (θ) ≤ (1− ε)nEξ2(ϑ)
)}

:=
∑

ϑ∈H(θ0)

{
J1,1(ϑ) + J1,2(ϑ)

}
.

Recall that E||X||1{||X|| > x} = xP (||X|| > x) +
∫∞
x
P (||X|| > y)dy = o(h(x)/x) (cf.

Proposition 1.5.10 of Bingham et al. (1987), or (4.5) of Shao (1997)). Thus, with EX = 0 it
follows that

|Eξ(ϑ)| = |Eϑ′X1{||X|| > εzn}| ≤ ||ϑ||E||X||1{||X|| > εzn} = o(h(εzn)/(εzn))
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By assumption (1.4) we have Eξ2(ϑ) ≥ c0h(εzn)/2 and hence

n∑
i=1

Eξi(ϑ) ≤ ε(1− ε)2y1/2n (nEξ2(ϑ))1/2 ,

for all n large enough and all ϑ ∈ H(θ0), θ0 ∈ H. As ||ϑ|| ≤ 1 + 1/(4
√
d) ≤ 5/4, |ξ(ϑ)| ≤

(5/4)εzn. It follows by (1.4) and Bernstein’s inequality that for some C < ∞ and all n large
enough, ϑ ∈ H(θ0), θ0 ∈ H,

J1,1(ϑ) ≤ P
( n∑
i=1

(ξi(ϑ)− Eξi(ϑ)) ≥ (1− ε)3y1/2n (nEξ2(ϑ))1/2
)

(2.19)

≤ exp
(
− (1− ε)6yn nEξ2(ϑ)

2nEξ2(ϑ) + 2(1− ε)3(yn nEξ2(ϑ))1/2(εzn)

)
≤ exp

(
− (1− ε)6yn

2(1 + Cε)

)
.

As to J1,2(ϑ), noting that

inf
||θ−ϑ||∞≤2η

n∑
i=1

ξ2i (θ) ≥
n∑
i=1

ξ2i (ϑ)− 8
√
dη

n∑
i=1

||Xi||21{||Xi|| ≤ εzn},

we have

J1,2(ϑ) ≤ P
( n∑
i=1

ξ2i (ϑ) ≤ (1− ε/2)nEξ2(ϑ)
)

(2.20)

+ P
(

8
√
dη

n∑
i=1

||Xi||21{||Xi|| ≤ εzn} ≥ εnEξ2(ϑ)/2
)
.

Recall that

Eξ4(ϑ) ≤ ||ϑ||4E||X||41{||X|| ≤ εzn} = o((εzn)2h(zn)) (2.21)

(cf. Proposition 1.5.10 of Bingham et al. (1987)). Using (1.4), (2.21) and Bernstein’s inequal-
ity, we see that for all sufficiently large n, ϑ ∈ H(θ0), θ0 ∈ H,

P
( n∑
i=1

ξ2i (ϑ) ≤ (1− ε/2)nEξ2(ϑ)
)

(2.22)

≤ exp
(
− (εnEξ2(ϑ)/2)2

2nEξ4(ϑ) + εnEξ2(ϑ)(εzn)2

)
≤ exp

(
− (nEξ2(ϑ))2

o(1)nz2nh(zn)

)
+ exp

(
− nEξ2(ϑ)

4εz2n

)
≤ exp

(
− ync20/o(1)

)
+ exp

(
− ync0/(8ε)

)
.
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Similarly, for η sufficiently small, say η < εc0/(32
√
d), by (1.4),

P
( n∑
i=1

||Xi||21{||Xi|| ≤ εzn} ≥
εnEξ2(ϑ)

16
√
dη

)
(2.23)

≤ P
( n∑
i=1

(
||Xi||21{||Xi|| ≤ εzn} − E||Xi||21{||Xi|| ≤ εzn}

)
≥ nh(εzn)

)
≤ exp

(
− yn/(2ε2 + o(1))

)
Combining (2.18), (2.19), (2.20), (2.22) and (2.23) yields for all ε small enough and n large
enough,

J1 = O(1) exp
(
− (1− ε)6yn/(2(1 + Cε))

)
(2.24)

Taking n→∞ then ε→ 0 this proves the upper bound of (2.14). �.

Proof of Theorem 1.3. By using the Ottaviani maximum inequality and following the proof
of Theorem 1.2, one can have a stronger version of (2.14): for arbitrary 0 < ε < 1/2, there
exist 0 < δ < 1, y0 > 1 and n0 such that for any n ≥ n0 and y0 < y < δn,

P
(

sup
n≤k≤(1+δ)n

sup
||θ||=1

∑k
i=1 θ

′Xi

(
∑k
i=1(θ′Xi)2)1/2

≥ y1/2
)
≤ exp

(
− (1− ε)y/2

)
. (2.25)

Using the subsequence method it follows from (2.25) and the Borel-Cantelli lemma that

lim sup
n→∞

T 2
n

2 log log n
≤ 1 a.s.

As to the lower bound, it follows from the representation (2.1) and the self-normalized law of
the iterated logarithm for d = 1 (see Theorem 1 of Griffin and Kuelbs (1989)). For a similar
proof, see that of Corollary 5.2 of Dembo and Shao (1998).

Acknowledgements. The authors would like to thank two referees and the editor for their
valuable comments.
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