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Abstract
We give a simple development of the concentration properties of compound Poisson measures
on the nonnegative integers. A new modification of the Herbst argument is applied to an ap-
propriate modified logarithmic-Sobolev inequality to derive new concentration bounds. When
the measure of interest does not have finite exponential moments, these bounds exhibit optimal
polynomial decay. Simple new proofs are also given for earlier results of Houdré (2002) and
Wu (2000).

1 Introduction

Concentration of measure is a well-studied phenomenon, and in the past 30 years or so it has
been explored through a wide array of tools and techniques; [14][11][12] offer broad introduc-
tions. Results in this area are equally well motivated by theoretical questions (in areas such
as geometry, functional analysis and probability), as by numerous applications in different
fields including the analysis of algorithms, mathematical physics and empirical processes in
statistics.
From the probabilistic point of view, measure concentration describes situations where a ran-
dom variable is strongly concentrated around a particular value. This is typically quantified by
the rate of decay of the probability that the random variable deviates from that value (usually
its mean or median) by a certain amount. As a simple concrete example consider a function
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f(W ) of a Poisson(λ) random variable W ; if f : Z+ → R is 1-Lipschitz, i.e., |f(k)−f(k+1)| ≤ 1
for all k ∈ Z+ = {0, 1, 2, . . .}, then [2],

Pr
{
f(W )− E[f(W )] > t

}
≤ exp

{
− t

4
log

(
1 +

t

2λ

)}
. (1)

Although the distribution of f(W ) may be quite complex, (1) provides a simple, explicit bound
on the probability that it deviates from its mean by an amount t. This is a general theme:
Under appropriate conditions, it is possible to derive useful, accurate bounds of this type for
a large class of random variables with complex and often only partially known distributions.
We also note that the consideration of Lipschitz functions is motivated by applications, but it
is also related to fundamental concentration properties captured by isoperimetric inequalities
[11].
The bound (1) was established in [2] using the so-called“entropy method,”pioneered by Ledoux
[9][10][11]. The entropy method consists of two steps. First, a (possibly modified) logarithmic-
Sobolev inequality is established for the distribution of interest. Recall that, for an arbitrary
probability measure µ and any nonnegative function f on the same space, the entropy func-
tional Entµ(f) is defined by

Entµ(f) = ∫ f log fdµ− (∫ fdµ) log(∫ fdµ),

whenever all the above integrals exist. In the case of the Poisson, Bobkov and Ledoux [2]
proved the following modified log-Sobolev inequality: Writing Pλ for the Poisson(λ) measure,
for any function f : Z+ → R with positive values,

EntPλ
(f) ≤ λEPλ

[ 1
f
|Df |2

]
,

where Df(k) = f(k+1)−f(k), k ≥ 0, is the discrete gradient, and Eµ denotes the expectation
operator with respect to a measure µ. In fact, they also established the following sharper bound
which we will use below; for any function f on Z+,

EntPλ

(
ef

)
≤ λEPλ

[
ef

{
|Df |e|Df | − e|Df | + 1

}]
. (2)

The second step in the entropy method is the so-called Herbst argument: Starting from some
Lipschitz function f , the idea is to use the modified log-Sobolev inequality to obtain an upper
bound on the entropy of eτf , and from that to deduce a differential inequality for the moment-
generating function F (τ) = E[eτf ] of f . Then, solving the differential inequality yields an
upper bound on G(τ), and this leads to a concentration bound via Markov’s inequality.
Our main goal in this work is to carry out a similar program for an arbitrary compound Poisson
measure on Z+. Recall that for any λ > 0 and any probability measure Q on the natural
numbers N = {1, 2, . . .}, the compound Poisson distribution CP(λ, Q) is the distribution of
the random sum Z

D=
∑W

i=1 Xi, where W ∼ Poisson(λ) and the Xi are independent random
variables with distribution Q on N, also independent of W ; we denote the CP(λ, Q) measure by
CPλ,Q. The class of compound Poisson distributions is much richer than the one-dimensional
Poisson family. In particular, the CP(λ, Q) law inherits its tail behavior from Q: CP(λ, Q)
has finite variance iff Q does, it has exponentially decaying tails iff Q does, and so on [13]. It
is in part from this versatility of tail behavior that the compound Poisson distribution draws
its importance in many applications. Alternatively, CP(λ, Q) is characterized as the infinite
divisible law without a Gaussian component and with Lévy measure λQ.
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From the above discussion we observe that the Herbst argument is heavily dependent on the
use of moment-generating functions, which assumes the existence of exponential moments. Our
main technical contribution is a modification of the Herbst argument for the case when the
random variables of interest do not satisfy such exponential integrability conditions. We derive
what appear to be perhaps the first concentration inequalities for a class of infinitely divisible
random variables that have finite variance but do not have finite exponential moments. Apart
from the derivation of the present results, the modified Herbst argument is applicable in a
variety of other cases and may be of independent interest. In particular, this approach can be
applied to prove analogous inequalities for compound Poisson vectors, as well as concentration
bounds for more general infinitely divisible laws.
Our starting point is the following modified log-Sobolev inequality for the compound Poisson
measure CPλ,Q.

Theorem 1. [Modified Log-Sobolev Inequality for Compound Poisson Measures]
For any λ > 0, any probability measure Q on N and any bounded f : Z+ → R,

EntCPλ,Q

(
ef

)
≤ λ

∑
j≥1

QjECPλ,Q

[
ef

{
|Djf |e|D

jf | − e|D
jf | + 1

}]
, (3)

where Djf(k) = f(k + j)− f(k), for j, k ∈ Z+.

This can be derived easily from [15, Cor 4.2] of Wu, which was established using elaborate
stochastic calculus techniques. In Section 3 we also give an alternative, elementary proof, by
tensorizing the Bobkov-Ledoux result (2). Note the elegant similarity between the bounds in
(2) and (3).
We then apply the Herbst argument (both the classical form and our modified version) to
establish concentration bounds for CP(λ, Q) measures under various assumptions on the tail
behavior of Q. These are stated in Section 2 and proved in Section 4. For example, we
establish the following polynomial concentration result. Recall that a function f : Z+ → R is
K-Lipschitz if |f(j + 1)− f(j)| ≤ K, for all j ∈ Z+.

Corollary 2. [Polynomial Concentration] Suppose that Z has CP(λ, Q) distribution
where Q has finite moments up to order L,

L = sup
{
τ ≥ 1 :

∑
j≥1j

τ Qj < ∞
}

> 1,

and write qr for its integer moments,

qr =
∑

j≥1j
r Qj , r ∈ N.

If f : Z+ → R is K-Lipschitz, then for any positive integer n < L and any t > 0 we have,

Pr
{
|f(Z)− E[f(Z)]| > t

}
≤ A ·Bn · t−n,

where for the constants A,B we can take,

A = exp
{

λ

n∑
r=1

(
n

r

)
qr

}
B = 2|f(0)|+ 2Kλq1 + 1.

Various stronger and more general results are given in Section 2. There, at the price of more
complex constants, we get bounds which, for large t, are of (the optimal) order t−L+δ for
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any δ > 0. Note that although the bound of Corollary 2 is not useful for small t, it is in
general impossible to obtain meaningful results for arbitrary t > 0. For example, if f is the
identity function and Z ∼ Poisson(λ) where λ is of the form m + 1/2 for an integer m, then
|Z − E(Z)| ≥ 1/2 with probability 1; a more detailed discussion is given in Section 2.
As noted above, the results of Section 2 appear to be some of the first non-exponential concen-
tration bounds that have been derived, with the few recent exceptions discussed next. Of the
extensive current literature on concentration, our results are most closely related to the work
of Houdré and his co-authors. Using sophisticated technical tools derived from the “covariance
representations” developed in [7][8], Houdré [5] obtained concentration bounds for Lipschitz
functions of infinitely divisible random vectors with finite exponential moments. In [6], trunca-
tion and explicit computations were used to extend these results to the class of stable laws on
Rd, and the preprint [4] extends them further to a large class of functionals on Poisson space.
To our knowledge, the results in [6][4] are the only concentration bounds with power-law de-
cay to date. But when specialized to scalar random variables they only apply to distributions
with infinite variance, whereas our results hold for compound Poisson random variables with
a finite Lth moment for any L > 1. Although the methods of [6][4] as well as the form of the
results themselves are very different from those derived here, more detailed comparisons are
possible as outlined in Section 2. Finally, the recent paper [3] contains a different extension
of the Herbst argument to cases where exponential moments do not exist. The focus there is
on moment inequalities for functions of independent random variables, primarily motivated by
statistical applications.

2 Concentration Bounds

The following result illustrates the potential for using the Herbst argument even in cases where
the existence of exponential moments fails or cannot be assumed.

Theorem 3. [Power-law Concentration] Suppose that Z has CP(λ, Q) distribution
where Q has finite moments up to order L,

L = sup
{
τ ≥ 1 :

∑
j≥1j

τ Qj < ∞
}

> 1,

and write q1 =
∑

j≥1j Qj for its first moment.

(i) If f : Z+ → R is K-Lipschitz, then for any t > 0 and ε > 0 we have,

Pr
{
|f(Z)− Ef(Z)| > t

}
≤ exp

{
inf

0<α<L

[
Iε(α) + α log

(2|f(0)|+ 2Kλq1 + ε

t

)]}
, (4)

where

Iε(α) = λ
∑
j≥1

Qj

{
Cα

j,ε − 1− α log Cj,ε

}
Cj,ε = 1 +

jK

ε
.

(ii) The upper bound (4) is meaningful (less than 1) iff t > T := 2|f(0)| + 2Kλq1 + ε, and
then,

Pr
{
|f(Z)− Ef(Z)| > t

}
≤ exp

{
−

∫ log(t/T )

0

i−1
ε (s)ds

}
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where iε(α) := I ′ε(α) = λ
∑

j≥1 Qj [Cα
j,ε − 1] log Cj,ε.

Remarks.
1. Taking α = L− δ for any δ > 0 in the exponent of (4), we get a bound on the tails of f(Z)
of order t−(L−δ) for large t. By considering the case where f is the identity function f(k) = k,
k ∈ Z+, we see that this power-law behavior is in fact optimal. In particular, this shows that
the tail of the CP(λ, Q) law decays like the tail of Q, giving a quantitative version of a classical
result from [13].
2. As will become evident from the proof, Theorem 3 holds for any random variable Z with
law µ instead of CPλ,Q, as long as µ satisfies the log-Sobolev inequality of Theorem 1 with
respect to some probability measure Q on N and some λ > 0, and assuming that µ has finite
moments up to order L. The bound (4) remains exactly the same, except that the first moment
M1 = E[Z] of µ replaces λq1.
3. Integrability properties follow immediately from the theorem: For any K-Lipschitz function
f , ECPλ,Q

[|f |τ ] < ∞ for all τ < L, and the same holds for any law µ as in the previous remark.
4. Since the support of CP(λ, Q) is Z+, we would expect the range of f to be highly discon-
nected. Therefore, it is natural to consider the (typical) class of functions f : Z+ → R whose
mean under CPλ,Q is not in the range of f . Indeed, if we assume that |f(j)−E[f(Z)]| ≥ ε > 0,
for all j, then, under the same assumptions as in Theorem 3, the exponent in the bound (4)
simplifies to inf0<α<L[Iε(α) + α log(D/t)

]
, where D := E|f(Z)− E[f(Z)]|. obvious that any

bound can only be useful for t > D0 := mink∈Z+ |f(k) − E[f(Z)]|, since the probability that
|f(Z)−E[f(Z)]| ≥ D0 is equal to 1. Moreover, D and D0 coincide in many special cases, e.g.,
when the range of f is a lattice in R and its mean E[f(Z)] is on the midpoint between two
lattice points. In this sense, the restriction t > D is quite natural.
6. The expression 2|f(0)| + 2Kλq1 in Theorem 3 is simply an upper bound to the constant
D = E|f(Z)−E[f(Z)]|. In both cases, when L > 2 it is possible to obtain potentially sharper
results by bounding D above using Jensen’s inequality by,

[
{K2λq2 + {|f(0)| + Kλq1}2

] 1
2 ,

where q2 is the second moment of Q. Similar expressions can be derived in the case of higher
moments.
7. The most closely related results to our power-law concentration bounds appear to be in
the recent preprint [4].2 The main assumptions in [4] are that the random variable of interest
has infinite variance, and also certain growth conditions.3 Because of the infinite-variance
assumption, the majority of the results in this paper (corresponding to L > 2) apply to cases
that are not covered in [4]. As for the growth conditions, they are convenient to check in
several important special classes, e.g., for α-stable laws on R, but they can be unwieldy in the
compound Poisson case, especially as they depend on Q in an intricate way. On the other
hand, if Q has infinite variance, [4, Cor. 5.3] gives optimal-order bounds, including the case
when Q has infinite mean, for which our results do not apply.

Next we show how the Herbst argument can be used to recover precisely a result of [5] in the
case when we have exponential moments.

2The results in [4] are stated in the much more general setting of functionals on an abstract Poisson space.
Using the Wiener-Ito decomposition, any infinitely divisible random variable can be represented as a Poisson
stochastic integral, which in turn can be realized as a “nice” functional on Poisson space.

3Actually, the relevant bounds in [4] specialized to Lipschitz functions of CP(λ, Q) random variables require
that the probability measure Q be non-atomic, which excludes all the cases we consider. However, shortly after
the first writing of this paper, C. Houdré in a personal communication informed us that this assumption can
be removed by an appropriate construction. Although we did not check every detail of this generalization for
ourselves, in our comparison we assume that the results in [4] remain valid (and their statements unchanged)
even if Q is atomic.
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Theorem 4. [Exponential Concentration] [5] Suppose that Z has CP(λ, Q) distribution
where Q has finite exponential moments up to order M ,

M = sup
{
τ ≥ 0 :

∑
j≥1e

τj Qj < ∞
}

> 0.

If f : Z+ → R is K-Lipschitz, then for any t > 0 we have,

Pr
{
f(Z)− Ef(Z) > t

}
≤ exp

{
inf

0<α<M/K
[H(α)− αt]

}
= exp

{
−

∫ t

0

h−1(s) ds
}

, (5)

where H(α) := λ
∑

j≥1 Qj [eαKj − 1− αKj], and h−1 is the inverse of h(α) := H ′(α).

Remarks.
8. Theorem 1 of [5] gives concentration bounds for a class of infinitely divisible laws with
finite exponential moments, and in the compound Poisson case it reduces precisely to (5),
which also applies to any random variable Z whose law satisfies the result of Theorem 1. It
is also interesting to note that Theorem 4 can be derived by applying [15, Prop 3.2] to a
compound Poisson random variable (constructed via the Wiener-Ito decomposition), and then
using Markov’s inequality.
9. Theorems 3 and 4 easily generalize to Hölder continuous functions. In the discrete setting of
Z+, f is K-Lipschitz iff it is Hölder continuous for every exponent β ≥ 1 with the same constant
K. But if f is Hölder continuous with exponent β < 1, this more stringent requirement makes
it possible to strengthen Theorem 3 and Theorem 4, by respectively redefining, Cj,ε = 1+ jβK

ε ,
and

H(α) = λ
∑
j≥1

Qj

[
eαKjβ

− 1− αKjβ
]
.

10. While all our power-law results dealt with two-sided deviations, the bound in Theorem 4 is
one-sided. The reason for this discrepancy is that the last step in all the relevant proofs is an
application of Markov’s inequality, which leads us to restrict attention to nonnegative random
variables. When exponential moments exist, the natural consideration of the exponential of
the random variable takes care of this issue, but in the case of regular moments we are forced
to take absolute values.

3 Proof of Theorem 1

An alternative representation for the law of a CP(λ, Q) random variable Z is in terms of the
series

Z
D=

∞∑
j=1

j Yj , Yj ∼ Poisson(λQj), (6)

where the Yj are independent.
For each n, let µn denote the joint (product) distribution of (Y1, . . . , Yn). In this instance, the
tensorization property of the entropy [1][10][11] can be expressed as

Entµn(G) ≤
n∑

j=1

E
[
EntPλQj

(
Gj(Y1, . . . , Yj−1, ·, Yj+1, . . . , Yn)

)]
, (7)
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where G : Zn
+ → R+ is an arbitrary function, and the entropy on the right-hand side is applied

to the restriction Gj of G to its jth co-ordinate. Now given an f as in the statement of the
theorem, define the functions G : Zn

+ → R+ and H : Zn
+ → R+ by

H(y1, . . . , yn) = f
( n∑

k=1

kyk

)
, yn

1 ∈ Zn
+,

and G = eH . Let µ̄n denote the distribution of the sum Sn :=
∑n

k=1 kYk and write Hj : Z+ →
R for the restriction of H to the variable yj with the remaining yi’s fixed. Applying (7) to G
we obtain,

Entµ̄n
(ef ) = Entµn(G) ≤

n∑
j=1

E
[
EntPλQj

(
Gj(Y1, . . . , Yj−1, ·, Yj+1, . . . , Yn)

)]
=

n∑
j=1

E
[
EntPλQj

(
eHj(Y1,...,Yj−1,·,Yj+1,...,Yn)

)]
.

Using the Bobkov-Ledoux inequality (2) to bound each term in the above sum, and noting
that, trivially, DHj(y1, . . . , yn) = Djf(

∑n
k=1 kyk),

Entµ̄n
(ef ) ≤

n∑
j=1

λQjEµn

[
eH

{
|DHj |e|DHj | − e|DHj | + 1

}]
= λ

n∑
j=1

QjEµ̄n

[
ef

{
|Djf |e|D

jf | − e|D
jf | + 1

}]
,

≤ λ

∞∑
j=1

QjEµ̄n

[
ef

{
|Djf |e|D

jf | − e|D
jf | + 1

}]
, (8)

where the last inequality follows from the fact that xex − ex + 1 ≥ 0 for x ≥ 0.
Finally, we want to take the limit as n →∞ in (8). Since µ̄n ⇒ CPλ,Q as n →∞ by (6), and
since f is bounded, by bounded convergence

Entµ̄n(ef ) → EntCPλ,Q
(ef ), n →∞. (9)

Similarly, changing the order of summation and expectation in the right-hand side of (8) by
Fubini, taking n →∞ by bounded convergence, and interchanging the order again, it converges
to

λ
∑
j≥1

QjECPλ,Q

[
ef

{
|Djf |e|D

jf | − e|D
jf | + 1

}]
.

This together with (9) implies that (8) yields the required result upon taking n →∞. 2

4 Concentration Proofs

For notational convenience we define the function η(x) := xex − ex + 1, x ∈ R, and note that
it is non-negative; it achieves its minimum at 0; it is strictly convex on (−1,∞) and strictly
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concave on (−∞,−1); it decreases from 1 to 0 as x increases to zero, and it is increasing to
infinity for x > 0.
The main technical ingredient of the paper is the following proposition, which is based on a
modification of the Herbst argument.

Proposition 5. Suppose that Z has CP(λ, Q) distribution where Q has finite moments up to
order L > 1. If f : Z+ → R is bounded and K-Lipschitz, then for t > 0, ε > 0 and α ∈ (0, L),
we have,

Pr{|f(Z)− Ef(Z)| > t} ≤ exp
{

Iε(α) + αE[log gε(Z)]− α log t
}

,

where Iε(α) is defined as in Theorem 3 and

gε(x) := |f(x)− E[f(Z)]| I{ |f(x)−E[f(Z)]|≥ε } + ε I{ |f(x)−E[f(Z)]|<ε }.

Proof of Proposition 5. Since f is bounded, by its definition gε is also bounded above by
2‖f‖∞ + ε and below by ε. Therefore, the (polynomial) moment-generating function G(τ) :=
E[gε(Z)τ ] is well-defined for all τ > 0. Moreover, since both gε and log gε are bounded,
dominated convergence justifies the following differentiation under the integral,

G′(τ) = E

[
∂

∂τ
eτ log gε(Z)

]
= E

[
gε(Z)τ log gε(Z)

]
so we can relate G(τ) to the entropy of gτ

ε ,

EntCPλ,Q
(gτ

ε ) = τG′(τ)−G(τ) log G(τ) = τ2G(τ)
d

dτ

[
log G(τ)

τ

]
. (10)

In order to bound this entropy we will apply Theorem 1 to the function φ(x) := τ log gε(x).
First we observe that gε can be written as the composition gε = h ◦ (f − E[f(Z)]), where it
is easy to verify that the function h(x) := |x|I{|x|≥ε} + εI{|x|<ε} is 1-Lipschitz. And since f is
K-Lipschitz by assumption, gε is itself K-Lipschitz. Hence we can bound Djφ as

Djφ(x) = τ log
∣∣∣∣gε(x + j)

gε(x)

∣∣∣∣ ≤ τ log
(

1 +
∣∣∣∣Djgε(x)

gε(x)

∣∣∣∣) ≤ τ log
(

1 +
jK

ε

)
= τ log Cj,ε.

The same argument also yields a corresponding lower bound, so that |Djφ(x)| ≤ τ log Cj,ε.
Applying Theorem 1 to φ gives,

EntCPλ,Q
(gτ

ε ) = EntCPλ,Q
(eφ) ≤ λ

∑
j≥1

QjECPλ,Q
[eφη(|Djφ|)] ≤ λG(τ)

∑
j≥1

Qjη(τ log Cj,ε),

since η(x) is increasing for x ≥ 0. Combining this with (10) we obtain the following differential
inequality valid for all τ > 0:

d

dτ

[
log G(τ)

τ

]
≤ λ

∑
j≥1

Qj
η(τ log Cj,ε)

τ2
.
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To solve, we integrate with respect to τ on (0, α] to obtain, for any α < L,

log G(α)
α

− E[log gε(Z)] ≤ λ
∑
j≥1

Qj

∫ α

0

η(τ log Cj,ε)
τ2

dτ

= λ
∑
j≥1

Qj log Cj,ε

∫ α log Cj,ε

0

η(s)
s2

ds

= λ
∑
j≥1

Qj log Cj,ε

[
es − 1− s

s

]α log Cj,ε

0

= Iε(α)/α,

or, equivalently,

G(α) ≤ exp
{
αE[log gε(Z)] + Iε(α)

}
, (11)

where the exchange of sum and integral is justified by Fubini’s theorem since all the quantities
involved are nonnegative. To complete the proof we observe that gε ≥ |f − E[f(Z)]|, so that
by (11) and an application of Markov’s inequality,

Pr
{
|f(Z)− E[f(Z)]| > t

}
≤ Pr

{
gε(Z) > t

}
= Pr

{
gε(Z)α > tα

}
≤ t−α ·G(α)

≤ exp
{

Iε(α) + αE[log gε(Z)]− α log t

}
. 2

Remark 11. The starting point of the above derivation – namely the use of Markov’s
inequality – can be combined with any number of methods that can be subsequently used to
control the (polynomial) moment-generating function of f(Z). For example, in the specialized
setting of Corollary 2 with n even, as pointed out by the referee, bounds that are sometimes
better than those of Corollary 2 can be obtained by simply noting that

Pr{|f(Z)− Ef(Z)| > t} ≤ E[|f(Z)− Ef(Z)|n]
tn

≤ 2nKnE|Z|n

tn
,

and then expressing EZn in terms of the moments of Q by differentiating the characteristic
function of Z. However, such methods do not seem to be applicable when the best polynomial
decay one can expect has an odd degree (consider, for instance, a Q whose mass function Qj

is proportional to (j5 log j)−1, where one can explicitly evaluate the bound of Corollary 2), or
more generally when we seek to obtain the optimal rate of decay t−L, for arbitrary real L > 1
as in Theorem 3.

Using Proposition 5 we can prove Theorem 3 and Corollary 2.

Proof of Theorem 3. The first step is to bring the upper bound in Proposition 5 into a
more tractable form. Observe that by its definition, gε(x) ≤ |f(x)− E[f(Z)]|+ ε, so that, by
Jensen’s inequality, for a function f satisfying the hypotheses of Proposition 5,

E[log gε(Z)] ≤ log E[gε(Z)] ≤ log
[
E

{
|f(Z)− E[f(Z)]|

}
+ ε

]
. (12)
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Thus the upper bound in Proposition 5 can be weakened to

Pr
{
|f(Z)− E[f(Z)]| > t

}
≤ exp

{
Iε(α) + α log

(
D + ε

)
− α log t

}
, (13)

where D := E
{
|f(Z)−E[f(Z)]|

}
. Next we use the Lipschitz property of f to obtain an upper

bound for the above exponent which is uniform over all f with f(0) fixed. Since f(j) ∈
[f(0)−Kj, f(0) + Kj], we have |f(j)| ≤ |f(0)|+ Kj, and hence

D ≤ 2E|f(Z)| ≤ 2|f(0)|+ 2Kλq1,

where we used the fact that the mean of the CP(λ, Q) law is λq1. Substituting in (13) and
taking the infimum over α yields the required result (4), and it only remains to remove the
boundedness assumption on f . But since the bound itself only depends on f via f(0) and K,
truncating f at level ±n and passing to the limit n →∞ proves part (a).
With T = 2|f(0)|+ 2Kλq1 + ε, in order to evaluate the exponent

inf
0<α<L

[
Iε(α) + α log

(
T/t

)]
(14)

in (4), we calculate the first two derivatives of Iε(α) with respect to α as,

I ′ε(α) = λ
∑
j≥1

Qj [Cα
j,ε − 1] log Cj,ε and I ′′ε (α) = λ

∑
j≥1

QjC
α
j,ε(log Cj,ε)2,

where the exchange of differentiation and expectation is justified by dominated convergence;
observe that, since Cj,ε > 1, both are positive for all α > 0. In particular, since Iε(α) > 0,
the exponent (14) can only be negative (equivalently, the bound in (4) can only be less than
1) if the second term in (14) is negative, i.e., if t > T . On the other hand, since I ′ε(0) = 0 and
I ′′ε (α) > 0 for all α, we see that Iε(α) is locally quadratic around α = 0. This means that, as
long as t > T , choosing α sufficiently small we can make (14) negative, therefore the bound of
the theorem is meaningful precisely when t > T .
To obtain the alternative representation, fix any ε > 0 and set iε(α) = I ′ε(α). Since I ′′ε (α) is
strictly positive, for t > T the expression Iε(α) + α log(T/t) is uniquely minimized at α∗ > 0
which solves iε(α) = log(t/T ) > 0. Hence, for all t > T , integrating by parts,

min
0<α<L

[
Iε(α) + α log(T/t)

]
= Iε(α∗) + α∗ log(T/t)

=
∫ α∗

0

iε(s)ds + α∗ log(T/t)

=
∫ iε(α

∗)

0

x di−1
ε (x) + α∗ log(T/t)

= iε(α∗)i−1
ε

(
iε(α∗)

)
−

∫ iε(α
∗)

0

i−1
ε (x)dx + α∗ log(T/t)

= −
∫ log(t/T )

0

i−1
ε (x)dx,

which proves part (b). 2
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Proof of Corollary 2. This is an application of Theorem 3 for specific values of α and
ε: Bounding the infimum by the value at α = n and taking ε = K,

Pr
{
|f(Z)− Ef(Z)| > t

}
≤ exp

{
IK(n) + n log

(2|f(0)|+ 2Kλq1 + K

t

)}
. (15)

Using the binomial theorem to expand I1(n),

IK(n) = λ
∑
j≥1

Qj

{
Cn

j,K − 1− n log Cj,K

}
= λ

∑
j≥1

Qj

{
(1 + j)n − 1

}
− λn

∑
j≥1

Qj log(1 + j)

≤ λ
∑
j≥1

Qj

n∑
r=1

(
n

r

)
jr ≤ λ

n∑
r=1

(
n

r

)
qr

Substituting this bound into (15) and rearranging yields the result. 2

Next we go on to prove the exponential concentration result Theorem 4 using the classical
Herbst argument in conjunction with the modified log-Sobolev inequality of Theorem 1.

Proof of Theorem 4. We proceed similarly to the proof of Proposition 5. Assume f is a
bounded and K-Lipschitz, and let F (τ) = E[exp{τf(Z)}], τ > 0 be the moment-generating
function of f(Z). Dominated convergence justifies the differentiation

F ′(τ) = E[f(Z)eτf(Z)],

so we can relate F ′(τ) to the entropy of eτf by

EntCPλ,Q
(eτf ) = τF ′(τ)− F (τ) log F (τ) = τ2F (τ)

d

dτ

[
log F (τ)

τ

]
. (16)

Since f is K-Lipschitz, the function g := τf is τK-Lipschitz, so that |Djg| ≤ τKj. Applying
Theorem 1 to g,

EntCPλ,Q
(eτf ) = EntCPλ,Q

(eg) ≤ λ
∑
j≥1

QjE
[
eg(Z)η(|Djg(Z)|)

]
≤ λF (τ)

∑
j≥1

Qj η(jτK).

Combining this with (16) yields

d

dτ

[
log F (τ)

τ

]
≤ λ

∑
j≥1

Qj

{
η(jτK)

τ2

}
,

and integrating with respect to τ from 0 to α > 0 we obtain

log F (α)
α

− E[f(Z)] ≤ λ

∫ α

0

∑
j≥1

Qj

{
η(jτK)

τ2

}
dτ

= λ
∑
j≥1

jKQj

∫ jαK

0

η(s)
s2

ds

= λ
∑
j≥1

Qj

[
ejKα − 1− jKα

α

]
,
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where the exchange of the sum and integral is justified by Fubini’s theorem since the integrand
is nonnegative. Therefore, we have the following a bound on the moment-generating function
F ,

F (α) ≤ exp
{
αE[f(Z)] + H(α)

}
, α > 0, (17)

where H(α) = λ
∑

j Qj

[
ejKα − 1− jKα

]
. An application of Markov’s inequality now gives

Pr
{
f(Z)− E[f(Z)] > t

}
≤ e−αtE

[
exp

{
α[f(Z)− E[f(Z)])]

}]
= e−αtF (α)e−αE[f(Z)]

≤ exp
{
H(α)− αt

}
.

The removal of the boundedness assumption is a routine truncation argument as in the proof
of Theorem 3 or in [2][5]. In order to obtain the best bound for the deviation probability,
we minimize the exponent over α ∈ (0,M/K). This yields the first expression in Theorem 4;
the second representation follows from a standard argument as in the last part of the proof of
Theorem 3 or [5]. 2
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[5] C. Houdré. Remarks on deviation inequalities for functions of infinitely divisible random
vectors. Ann. Probab., 30(3):1223–1237, 2002.
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[8] C. Houdré and N. Privault. Concentration and deviation inequalities in infinite dimensions
via covariance representations. Bernoulli, 8(6):697–720, 2002.

[9] M. Ledoux. Isoperimetry and Gaussian analysis. In Lectures on probability theory and
statistics, volume 1648 of Lecture Notes in Math., pages 165–294. Springer, Berlin, 1996.

[10] M. Ledoux. On Talagrand’s deviation inequalities for product measures. ESAIM Probab.
Statist., 1:63–87 (electronic), 1997.

[11] M. Ledoux. The concentration of measure phenomenon. American Mathematical Society,
Providence, RI, 2001.

[12] C. McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathe-
matics, pages 195–248. Algorithms Combin., 16, Springer, Berlin, 1998.
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