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Abstract

We study partition distributions in a population genetics model incorporating symmetric selec-
tion and mutation. They generalize Ewens distributions in the infinitely-many-neutral-alleles
model, an explicit expression of which is known as the Ewens sampling formula. A sampling
formula for the generalized model is obtained by means of calculus for Poisson and gamma
processes.

Introduction and the main result

Random partitions of integers arise in various contexts of mathematics (see e.g. §2.1 of [1]
for several combinatorial examples) and the natural sciences, like population genetics (e.g.
[3]). Among various partition distributions (i.e., probability distributions on a set of integer
partitions), we are concerned in this paper with partition structure, which was introduced by
Kingman [9] in connection with the sampling theory in population genetics. In this theory,
we observe a partition a = (a1, . . . , an) generated by a random sample of n genes from a
population, i.e., ai is the number of alleles in the sample which appeared exactly i times.
Thus ai are nonnegative integers such that

∑n
i=1 iai = n. In Kingman’s papers [9], [10] on

partition structures, Ewens distributions [3], which describe laws of random partitions An in
the stationary infinitely-many-neutral-alleles model, play a central role. These distributions
form a one-parameter family {Pθ : θ > 0} of partition structures, each of which admits an
explicit expression

Pθ(An = a) =
n!Γ(θ)

Γ(θ + n)

n∏

i=1

θai

iaiai!
(1)

often referred to as the Ewens sampling formula [4]. It is well known (see e.g. [11]) that
(1) can be described in terms of a random discrete distribution derived from the points of a
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Poisson point process, say Z1 > Z2 > · · · , on (0,∞) with intensity θdz/(zez). More precisely,
points {Yj} of the normalized process given by Yj = Zj/T with T =

∑
j Zj are interpreted as

(random) ranked frequencies of alleles in the stationary infinitely-many-neutral-alleles model
with mutation rate θ. Consider an infinite dimensional simplex

∇ =



y = {yj} : y1 ≥ y2 ≥ · · · ≥ 0,

∑

j

yj = 1



 ,

which is equipped with the topology of coordinate-wise convergence. The above {Yj} is nothing
but the ranked jumps of a (standard) Dirichlet process with parameter θ, and its law νθ on ∇
is called the Poisson-Dirichlet distribution with parameter θ. The conditional probability that
An = a given an arbitrary sequence of allele frequencies {yj} ∈ ∇ is evaluated in general as

Prob(An = a| {yj}) =
n!

n∏

i=1

i!ai

∑

m:m∈〈a〉

ym1

1 ym2

2 · · · =: Φa({yj}), (2)

where 〈a〉 stands for the totality of sequences m = (m1,m2, . . .) of nonnegative integers such
that n = m1 + m2 + · · · and this equality (when ignoring the vanishing terms) defines the
integer partition a, i.e.,

]{α : mα = i} = ai (i = 1, . . . , n), (3)

where ] stands for the cardinality. The left side of (1) is given by

Pθ(An = a) = Eνθ [Φa({Yj})] . (4)

In this paper, we discuss a more general class of partition structures of the form

Pθ,s,q(An = a) = Eνθ
[
esFq({Yj})Φa({Yj})

]
/Eνθ

[
esFq({Yj})

]
, (5)

where s is an arbitrary real number, q ≥ 1 and Fq({yj}) :=
∑

j y
q
j , which is a bounded

measurable function on ∇. Obviously, (5) corresponds to a random element of ∇ whose law
νθ,s,q is determined by the relation

dνθ,s,q
dνθ

({yj}) = esFq({yj})/Eνθ
[
esFq({Yj})

]
, {yj} ∈ ∇. (6)

In the special case where q = 2, F2(·) is known as the population homozygosity, and the
distribution νθ,s,2 arises in the population genetics model incorporating symmetric selection
and mutation. In this contexts, s > 0 means that homozygotes are selectively advantageous
relative to heterozygotes (underdominant selection) while s < 0 implies the opposite situation
(overdominant selection). Watterson [19], [20] obtained a number of asymptotic results con-
cerning Pθ,s,2 for small values of s, proposing a powerful statistics for the test of neutrality.
Further, for the symmetric overdominance model, Grote and Speed [5] recently derived certain
approximate sampling formulae with numerical discussions of interest.
The main purpose of this paper is to give an explicit expression of Pθ,s,q(An = a) for arbitrarily
fixed values of θ, s and q. It is expected that such exact formula, if available, must not
only reveal mathematical structure behind the quantity studied but also be informative for
applications. Note that the denominator in the right-hand side of (6) coincides formally with
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the numerator with a = 0 (‘the partition of 0’; a1 = a2 = · · · = 0) if we define Φ0 ≡ 1. In
addition to this convention, it is useful to define for any n = 1, 2, . . .

∆n =

{
(y1, . . . , yn) : y1 > 0, . . . , yn > 0,

n∑

i=1

yi < 1

}

and for any n ∈ {0, 1, 2, . . .} =: Z+ and integer partition a of n

Mn(a) =
n!

n∏

i=1

(i!aiai!)

,

which is a variant of multinomial coefficient. (In particular, M0(0) = 1.) The main result of
this paper is the following.

Theorem 1 Let θ > 0, s ∈ R and q ≥ 1 be arbitrary. Let a be a partition of n ∈ Z+. Set
k = a1+ · · ·+an and take any k positive integers n1, . . . , nk such that n = n1+ · · ·+nk defines
the partition a. Then

Eνθ
[
esFq({Yj})Φa({Yj})

]
= Mn(a)θ

k
∞∑

l=0

θl

l!
Il(a), (7)

where Il(a) = Il(a; θ, s, q) is given by

Il(a) =

∫

∆k+l

k∏

α=1

(ynαα esy
q
α)

k+l∏

α=k+1

(esy
q
α − 1)


1−

k+l∑

β=1

yβ




θ−1

dy1 · · · dyk+l

y1 · · · yk+l
(8)

except the case of n = 0 = l for which case I0(0) = 1. Also, it holds that

∣∣Mn(a)θ
kIl(a)

∣∣





≤ Pθ(An = a)
max{1, es(k+l)}(|s|Γ(q))lΓ(θ + n)

Γ(θ + n+ ql)
,

≥ Pθ(An = a)
min{1, es(k+l)}(|s|Γ(q))lΓ(θ + n)

Γ(θ + n+ ql)
.

(9)

We shall give some remarks on immediate implications of Theorem 1 for special values of
parameters.

Remarks. (i) The formula (7) with s = 0 reduces to the Ewens sampling formula (1). This is
seen by observing that Il(a; θ, 0, q) = 0 for each l = 1, 2, . . . and that

I0(a; θ, 0, q) =

∫

∆k

k∏

α=1

ynαα ·


1−

k∑

β=1

yβ




θ−1

dy1 · · · dyk
y1 · · · yk

=
k∏

α=1

Γ(nα) ·
Γ(θ)

Γ(θ + n)
=

n∏

i=1

(i− 1)!ai ·
Γ(θ)

Γ(θ + n)
, (10)
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where the second equality is known as Dirichlet’s formula (e.g. [2], Appendix M12).
(ii) In case of n = 0 or a = 0, (7) yields the following formula for the denominator in the right
side of (5).

Eνθ
[
esFq({Yj})

]
= 1 +

∞∑

l=1

θl

l!

∫

∆l

l∏

α=1

(esy
q
α − 1)


1−

l∑

β=1

yβ




θ−1

dy1 · · · dyl
y1 · · · yl

(11)

In fact, an ‘implicit version’ of (11) was essentially obtained by Pitman and Yor [16] (the
formula (174)).
(iii) Since F1 ≡ 1, the left side of (7) with q = 1 is equal to esPθ(An = a). Direct verification
that the right side of (7) coincides with this value is rather involved and will be given later.

Unfortunately, our formula (7) itself seems not useful for likelihood-based statistical inference
because the right side is not of product form. In general, the condition for a partition structure
to be of such a form is quite restrictive as shown in Theorem 42 of [14]. On the other hand, (9)
exhibits a rapid convergence of the series in (7) and hence its applicability in some numerical
issues.
In the next section, we give a proof of Theorem 1 after providing some lemmas regarding
technicalities. Main tools are calculus involving Poisson process and certain distinguished
properties of the gamma process. The former calculus for a class of partition structures can
be found in [13] (which was revised as [15]) and [6] (a condensed version of which is [7]). The
latter ingredient, the use of which we call the ‘Γ-trick’, is now standard. (See e.g. [8], [12],
[17], [18].) However, the crucial idea here is that this is exploited in an ‘unusual’ way: for each
s = −σ < 0, it is shown that the expectation E

[
e−σFq({Zj})Φa({Zj})

]
with Fq and Φa being

naturally extended can be expressed in terms of Eνθ
[
e−uFq({Yj})Φa({Yj})

]
, u ∈ (0,∞), and

after a procedure of inversion we arrive at (7). Also, at the end, the verification mentioned in
the Remark (iii) will be given.

1 Calculus for Poisson and gamma processes

Throughout this section let a = (a1, . . . , an) be an integer partition of n and set k = a1 +
· · ·+ an. Suppose that k positive integers n1, . . . , nk satisfy ]{α : nα = i} = ai (i = 1, . . . , n).
Consider obvious extention of the functions Φa and Fq, which were defined originally on ∇, to
the functions of any sequence {zj} of positive numbers, i.e.,

Φa({zj}) =
n!

n∏

i=1

i!ai

∑

m:m∈〈a〉

zm1

1 zm2

2 · · · , Fq({zj}) =
∑

j

zqj .

Note that these functions are symmetric in z1, z2, . . .. By suitable change of order of the sum,
the following expression of Φa is derived.

Φa({zj}) = Mn(a)
∑

j1,...,jk:distinct

zn1

j1
· · · znkjk , (12)

where the sum extends over k-tuples (j1, . . . , jk) such that j1, . . . , jk are mutually distinct. Our
first task is calculation of the expectation of Φa({Zj}) for a class of Poisson point processes
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on (0,∞). Let Λ(dz) be a continuous Borel measure on (0,∞) such that Λ((0,∞)) =∞ and

∫ ∞

0

min{z, 1}Λ(dz) <∞. (13)

Assume that a realization Z1 > Z2 > · · · > 0 of the Poisson point process with mean measure
Λ is given. That is, a random discrete measure ξ :=

∑
j δZj has Laplace transform

EΛ

[
e−〈ξ,f〉

]
= exp

(
−

∫ ∞

0

(1− e−f(z))Λ(dz)

)
=: LΛ(f(·)), (14)

where f is an arbitrary non-negative Borel function on (0,∞) and 〈ξ, f〉 =
∑

j f(Zj). In the
above and what follows, EΛ is used for notation of the expectation in order to indicate the
process we are working on.

Lemma 2 Let Λ be as above. We suppose additionally that

∫ ∞

0

znαΛ(dz) <∞ (α = 1, . . . , k). (15)

Then

EΛ [Φa({Zj})] = Mn(a)

k∏

α=1

∫ ∞

0

znαΛ(dz). (16)

Proof. Observe that at least formally

∑

j1,...,jk:distinct

Zn1

j1
· · ·Znk

jk

=
∂k

∂t1 · · · ∂tk

∣∣∣∣
t1=···=tk=0

∏

j

(
1 + t1Z

n1

j + · · ·+ tkZ
nk
j

)

=
∂k

∂t1 · · · ∂tk

∣∣∣∣
t1=···=tk=0

exp〈ξ, log (1 + t1z
n1 + · · ·+ tkz

nk)〉.

Here almost sure convergence of 〈ξ, log (1 + t1z
n1 + · · ·+ tkz

nk)〉 for any t1, . . . , tk ≥ 0 follows
from (15) by virtue of Campbell’s theorem (see e.g. [11], §3.2), and therefore the above
equalities hold a.s. Moreover this theorem also justifies the following calculations.

EΛ


 ∑

j1,...,jk:distinct

Zn1

j1
· · ·Znk

jk




=
∂k

∂t1 · · · ∂tk

∣∣∣∣
t1=···=tk=0

EΛ [exp〈ξ, log (1 + t1z
n1 + · · ·+ tkz

nk)〉]

=
∂k

∂t1 · · · ∂tk

∣∣∣∣
t1=···=tk=0

exp

(
t1

∫ ∞

0

zn1Λ(dz) + · · ·+ tk

∫ ∞

0

znkΛ(dz)

)
.

Combining this with (12) shows (16). ¤
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Next, we show that the exponential factor in the expectation in (7) can be handled by changing
the measure of Poisson point process. For any nonnegative Borel function f on (0,∞), set

Λf (dz) = e−f(z)Λ(dz).

The following lemma can be found in [6] (Proposition 1) and the proof requires only (14).

Lemma 3 Let f and Λf be as above. Then for all nonnegative Borel measurable functions Φ
of ξ

EΛ

[
e−〈ξ,f〉Φ(ξ)

]
= EΛf [Φ(ξ)]LΛ(f(·)). (17)

So far, we prepared the auxiliaries regarding Poisson point processes on the half line. We now
specify the process as in the previous section by fixing θ > 0 arbitrarily and setting

Λ(dz) = θz−1e−zdz. (18)

The associated process {Zj} has the distinguished property that the total sum T :=
∑

j Zj

and the normalized process {Yj := Zj/T} are mutually independent. (See e.g. [8], [12], [17],
[18].) For simplicity, we call the ‘Γ-trick’ use of this property. Recall also that the distribution
of T on (0,∞) is given by

1

Γ(θ)
tθ−1e−tdt. (19)

Let q ≥ 1 be arbitrarily. Put for each σ ∈ R

J(σ) = EΛ

[
e−σFq({Yj})Φa({Yj})

]
= Eνθ

[
e−σFq({Yj})Φa({Yj})

]
,

which we are going to evaluate. Here is an implicit version of (7).

Proposition 4 It holds that for any τ > 0

1

Γ(θ)

∫ ∞

0

uθ+n−1J(uq)e−τudu

=
Mn(a)θ

k

τθ
exp

(
−θ

∫ ∞

0

1− e−zq

z
e−τzdz

) k∏

α=1

∫ ∞

0

znα−1e−zq−τzdz. (20)

Proof. Let fq(z) = zq and Λ be as in (18). Given σ > 0, consider

Ĵ(σ) = EΛ

[
e−σFq({Zj})Φa({Zj})

]
= EΛ

[
e−σ〈ξ,fq〉Φa({Zj})

]
.

Since the symmetric function Φa can be regarded also as a measurable function of ξ, Lemmas
2 and 3 imply that

Ĵ(σ) = EΛσfq [Φa({Zj})]LΛ(σfq(·))

= EΛσfq [Φa({Zj})] exp

(
−θ

∫ ∞

0

1− e−σzq

z
e−zdz

)

= Mn(a)θ
k exp

(
−θ

∫ ∞

0

1− e−σzq

z
e−zdz

) k∏

α=1

∫ ∞

0

znα−1e−σzq−zdz. (21)
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Noting that Fq({Zj}) = T qFq({Yj}) and Φa({Zj}) = TnΦa({Yj}), we can also calculate Ĵ(σ)
by the Γ-trick as follows.

Ĵ(σ) = EΛ

[
Φa({Yj})T

ne−σT qFq({Yj})
]

=
1

Γ(θ)

∫ ∞

0

tθ−1e−tEΛ

[
Φa({Yj})t

ne−σtqFq({Yj})
]
dt

=
1

Γ(θ)

∫ ∞

0

tθ+n−1e−tJ(σtq)dt

=
σ−(θ+n)/q

Γ(θ)

∫ ∞

0

uθ+n−1e−uσ−1/q

J(uq)du. (22)

By setting σ−1/q =: τ , it follows from (21) and (22) that

1

Γ(θ)

∫ ∞

0

uθ+n−1e−τuJ(uq)du = τ−(θ+n)Ĵ(τ−q)

=
Mn(a)θ

k

τθ+n
exp

(
−θ

∫ ∞

0

1− e−zqτ−q

z
e−zdz

)
k∏

α=1

∫ ∞

0

znα−1e−zqτ−q−zdz

=
Mn(a)θ

k

τθ
exp

(
−θ

∫ ∞

0

1− e−zq

z
e−τzdz

) k∏

α=1

∫ ∞

0

znα−1e−zq−τzdz.

This completes the proof of Proposition 4 ¤

Proof of Theorem 1. First, we show the bound (9). Observe that for each 0 < y < 1

∣∣∣esy
q

− 1
∣∣∣ = yq

∣∣∣∣
∫ s

0

euy
q

du

∣∣∣∣
{
≤ max{1, es}yq|s|,
≥ min{1, es}yq|s|.

Hence, in view of (1), (9) is implied by (8) together with Dirichlet’s formula:

∫

∆k+l

k∏

α=1

ynαα

k+l∏

α=k+1

yqα


1−

k+l∑

β=1

yβ




θ−1

dy1 · · · dyk+l

y1 · · · yk+l
=

k∏

α=1

Γ(nα) · Γ(q)
lΓ(θ)

Γ(n+ θ + ql)
.

An immediate consequence of (9) is that the right side of (7) defines a real analytic function
of s. On the other hand, since Fq is bounded on ∇, the left side of (7) is also real analytic in
s. So, it is sufficient to prove (7) for 0 > s =: −σ only. Define

I(σ) = Mn(a)θ
k

∞∑

l=0

θl

l!
Il(a; θ,−σ, q), (23)

where Il (l = 0, 1, . . .) are given by (8). By virtue of Proposition 4 and the uniqueness of
Laplace transform, we only have to verify the equality (20) with J(·) being replaced by I(·).
For each l = 1, 2, . . ., let

Cl = {(z1, . . . , zl) : z1 > 0, . . . , zl > 0}
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and define a σ-finite measure ml on Cl by

ml(dz1 · · · dzl) =
dz1 · · · dzl
z1 · · · zl

,

which is invariant under arbitrary multiplications of components. For any u > 0, set

∆l(u) =

{
(z1, . . . , zl) : z1 > 0, . . . , zl > 0,

l∑

α=1

zα < u

}
.

With the above notation, we have by Fubini’s theorem

∫ ∞

0

uθ+n−1Il(a; θ,−uq, q)e−τudu

=

∫ ∞

0

e−τudu

∫

∆k+l

k∏

α=1

((uyα)
nαe−(uyα)

q

)

×

k+l∏

α=k+1

(e−(uyα)
q

− 1)


u−

k+l∑

β=1

(uyβ)




θ−1

mk+l(dy1 · · · dyk+l)

=

∫ ∞

0

e−τudu

∫

∆k+l(u)

k∏

α=1

(znαα e−zqα)

×

k+l∏

α=k+1

(e−zqα − 1)


u−

k+l∑

β=1

zβ




θ−1

mk+l(dz1 · · · dzk+l)

=

∫

Ck+l

mk+l(dz1 · · · dzk+l)

k∏

α=1

(znαα e−zqα)

k+l∏

α=k+1

(e−zqα − 1)

×

∫ ∞

∑k+l
α=1 zα

e−τu


u−

k+l∑

β=1

zβ




θ−1

du.

Since this last (one-dimensional) integral is

exp


−τ

k+l∑

β=1

zβ


 Γ(θ)

τθ
,

we obtain for each l = 0, 1, . . .

∫ ∞

0

uθ+n−1Il(a; θ,−uq, q)e−τudu

=

k∏

α=1

∫ ∞

0

znα−1e−zq−τzdz ·

(∫ ∞

0

e−zq − 1

z
e−τzdz

)l
Γ(θ)

τθ
. (24)
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Similarly

∫ ∞

0

uθ+n−1 |Il(a; θ,−uq, q)| e−τudu

=

k∏

α=1

∫ ∞

0

znα−1e−zq−τzdz ·

∣∣∣∣
∫ ∞

0

e−zq − 1

z
e−τzdz

∣∣∣∣
l
Γ(θ)

τθ
.

This implies that it is possible to integrate (23) with σ replaced by uq term by term, and
therefore

∫ ∞

0

uθ+n−1I(uq)e−τudu

= Mn(a)θ
k

k∏

α=1

∫ ∞

0

znα−1e−zq−τzdz · exp

(
−θ

∫ ∞

0

1− e−zq

z
e−τzdz

)
Γ(θ)

τθ
.

Comparing this with (20), we completes the proof of Theorem 1. ¤

At the end of this section, we give a direct proof of the fact claimed in the Remark (iii). That
is,

Proposition 5 For any θ > 0 and s ∈ R, let Il(a; θ, s, 1) be given by the right side of (8) with
q = 1. Then

Mn(a)θ
k

∞∑

l=0

θl

l!
Il(a; θ, s, 1) = esPθ(An = a). (25)

Proof. For notational simplicity, put yl+1 = 1− (y1 + · · ·+ yl) for (y1, . . . , yl) ∈ ∆l. First,
we assume that s > 0. This assumption makes us possible to exchange sums appearing in the
subsequent calculations. Expansions

esyα =

∞∑

mα=0

smαymα
α

mα!
(α = 1, . . . , k)

and

esyk+β − 1 =

∞∑

pβ=1

spβy
pβ
k+β

pβ !
(β = 1, . . . , l)

reduce (8) with q = 1 to

Il(a; θ, s, 1)

=
∞∑

m=0

sm
∑∗ 1

k∏

α=1

mα!

l∏

β=1

pβ !

×

∫

∆k+l

k∏

α=1

ynα+mα
α

l∏

β=1

y
pβ
k+β(yk+l+1)

θ−1 dy1 · · · dyk+l

y1 · · · yk+l
,
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where the sum
∑∗

is taken over k-tuples (m1, . . . ,mk) of nonnegative integers and l-tuples
(p1, . . . , pl) of positive integers such that m1+ · · ·+mk+p1+ · · ·+pl = m. By using Dirichlet’s
formula, this can be rewritten into

∞∑

m=0

sm
∑∗ 1

k∏

α=1

mα!

l∏

β=1

pβ !

·

k∏

α=1

Γ(nα +mα)

l∏

β=1

Γ(pβ) · Γ(θ)

Γ(n+m+ θ)
,

and therefore
∞∑

l=0

θl

l!
Il(a; θ, s, 1)

=

∞∑

m=0

sm
∑∗∗

k∏

α=1

Γ(nα +mα) · Γ(θ)

k∏

α=1

mα! · Γ(n+m+ θ)

∑∗∗∗

θl
l∏

β=1

Γ(pβ)

l!
l∏

β=1

pβ !

, (26)

where
∑∗∗

indicates the sum taken over k-tuples (m1, . . . ,mk) of nonnegative integers such
that 0 ≤ m − (m1 + · · · + mk) =: mk+1 and where

∑∗∗∗
is the sum taken over finite

sequences (p1, . . . , pl) (with l varying) of positive integers summing up to mk+1. By setting
bi = ]{β : pβ = i} (i = 1, . . . ,mk+1), this last sum is nothing but the following sum taken over
all integer partitions b = (b1, . . . , bmk+1

) of mk+1:

∑∗∗∗

θl
l∏

β=1

Γ(pβ)

l!

l∏

β=1

pβ !

=
1

mk+1!

∑

b

Mmk+1
(b)

mk+1∏

i=1

(
θbiΓ(i)bi

)
=

Γ(mk+1 + θ)

mk+1! Γ(θ)
.

Here the last equality follows from

Mmk+1
(b)

mk+1∏

i=1

(
θbiΓ(i)bi

)
= Pθ(Amk+1

= b)
Γ(mk+1 + θ)

Γ(θ)
.

(Compare with (1).) Accordingly, the sum
∑∗∗

in (26) is equal to

∑ 1
k+1∏

α=1

mα!

·

k∏

α=1

Γ(nα +mα) · Γ(mk+1 + θ)

Γ(n+m+ θ)

=
1

m!

∫

∆k

∑ m!
k+1∏

α=1

mα!

·

k∏

α=1

ynα+mα
α · (yk+1)

mk+1+θ−1 dy1 · · · dyk
y1 · · · yk

,
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where the both sums extend over k+1-tuples (m1, . . . ,mk+1) adding to m. So the multinomial
theorem and Dirichlet’s formula together reduce this to

1

m!

∫

∆k

k∏

α=1

ynαα (y1 + · · ·+ yk + yk+1)
m(yk+1)

θ−1 dy1 · · · dyk
y1 · · · yk

=

k∏

α=1

Γ(nα) · Γ(θ)

m! Γ(n+ θ)
.

Consequently (26) becomes

∞∑

l=0

θl

l!
Il(a; θ, s, 1) =

∞∑

m=0

sm

m!
·

k∏

α=1

Γ(nα) · Γ(θ)

Γ(θ + n)
= es

Γ(θ)

Γ(θ + n)

n∏

i=1

Γ(i)ai .

In view of (1), this proves (25) for all s > 0. All the calculations seen in the above hold true
for s < 0 because all the series appeared are absolutely convergent. The proof of Proposition
5 is now complete. ¤
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