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Abstract

We give upper bounds for the probability P(|f(X)−Ef(X)| > x), where X is a stable random
variable with index close to 2 and f is a Lipschitz function. While the optimal upper bound
is known to be of order 1/xα for large x, we establish, for smaller x, an upper bound of order
exp(−xα/2), which relates the result to the gaussian concentration.

1 Statement of the result

Let X be an α-stable random variable on Rd, 0 < α < 2, with Lévy measure ν given by

ν(B) =

∫

Sd−1

λ(dξ)

∫ +∞

0

1B(rξ)
dr

r1+α
, (1)

for any Borel set B ∈ B(Rd). Here λ, which is called the spherical component of ν, is a finite
positive measure on Sd−1, the unit sphere of Rd (see [5]). The following concentration result
is established in [3]:

Theorem 1 ([3]) Let X be an α-stable random variable, α > 3/2, with Lévy measure given
by (1). Set L = λ(Sd−1) and M = 1/(2−α). Then if f : Rd → R is a Lipschitz function such
that ‖f‖Lip ≤ 1,

P (f(X)− Ef(X) ≥ x) ≤
(1 + 8e2)L

xα
, (2)

for every x satisfying
xα ≥ 4LM logM log(1 + 2M logM).

For α close to 2, this roughly tells us that the natural (and optimal, up to a multiplicative
constant) upper bound L/xα holds for xα of order LM(logM)2. On the other hand, suppose
that X is a 1–dimensional, stable random variable and let Y (1) be the infinitely divisible
vector whose Lévy measure is the Lévy measure of X truncated at 1. Then it is easy to check
that var(Y (1)) = LM . This clearly indicates that one cannot hope to obtain any interesting
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inequality if x2 is much smaller than LM . In fact, when xα is of order LM , another result in
[3] gives an upper bound of order cLM/xα. However, comparing this with the bound cL/xα

of Theorem 1, we see that there is an important discrepancy when M is large, and so it is
natural to investigate the case when xα lies in the range [LM,LM(logM)2] for large M . Here
is our result:

Theorem 2 Using the same notations as in Theorem 1, we have:
(i) Let a < 1 and a′, ε > 0. Then if M is sufficiently large, for every x of the form xα = bLM
with a′ < b < a logM ,

P (f(X)− Ef(X) ≥ x) ≤ (1 + ε)e−b/2. (3)

(ii) Let a > 2, ε > 0. Then if M is sufficiently large, for every x such that xα > aLM logM ,

P (f(X)− Ef(X) ≥ x) ≤

[

1

α
+ (2 + ε) exp

(

1 +
(1 + ε)LM(logM)2

2xα

)]

L

xα
.

As a consequence of (i), let X(α) be the stable law whose Lévy measure ν is the uniform
measure on Sd−1 with total mass 1/M . Then since LM = 1, (3) can be rewritten as

P (f(X(α))− Ef(X(α)) ≥ x) ≤ (1 + ε)e−x
α/2 (4)

for x smaller than (logM)1/α. When α → 2, X(α) converges in distribution to a standard
gaussian variable X ′, for which we have the following classical bound [1, 6], valid for all x > 0:

P (f(X ′)− Ef(X ′) ≥ x) ≤ e−x
2/2

So we see that (4) recovers the result for the gaussian concentration.
Remark that (ii) slightly improves Theorem 1 when the index α is close to 2 and xα is of order
LM(logM)2.
To some extent, the existence of two regimes (i) and (ii), depending on the order of magnitude
of x with regard to (LM logM)1/α, is reminiscent of the famous Talagrand inequality:

P (f(U)− Ef(U) ≥ x) ≤ exp(− inf(x/a, x2/b))

where U is an infinitely divisible random variable with Lévy measure given by

ν(dx1 . . . dxk) = 2−ke−(|x1|+...+|xk|)dx1 . . . dxk,

and f is a Lipschitz function, a and b being related to the L1 and L2 norm of f , respectively
(see [7] for a precise statement). We now proceed to the proof of Theorem 2.

2 Proof of the result

The proof essentially follows the lines of the proof to be found in [3], where the case xα <
LM(logM)2 had been overlooked. We write X = Y (R) + Z(R), where Y (R), Z(R) are two
independent, infinitely divisible random variables whose Lévy measures are the Lévy measure
of X truncated, above and below respectively, at R > 0. We have

P (f(X)− Ef(X) ≥ x) ≤ P (f(Y (R))− Ef(X) ≥ x) + P (Z(R) 6= 0). (5)
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Since Z(R) is a compound Poisson process, it is easy to check that

P (Z(R) 6= 0) ≤
L

αRα
. (6)

On the other hand,

P (f(Y (R))− Ef(X) ≥ x) ≤ P (f(Y (R))− Ef(Y (R)) ≥ x′)

with
x′ = x− |Ef(X)− Ef(Y (R))|.

Thus we have to compare Ef(X) and Ef(Y (R)). For large R, these two quantities are very
close, since

|Ef(X)− Ef(Y (R))| ≤
LR1−α

α− 1
. (7)

Given x, we choose R so that

R = x−
LR1−α

α− 1
, (8)

which entails that x′ ≤ R. Therefore we can write

P (f(Y (R))− Ef(X) ≥ x) ≤ P (f(Y (R))− Ef(Y (R)) ≥ R),

Let b be the real such that xα = bLM . Let b′ be such that Rα = b′LM , which, according to
(8), entails

(b′LM)1/α = (bLM)1/α −
L

α− 1
(b′LM)(1−α)/α

or, equivalently,

b′
(

1 +
1

(α− 1)Mb′

)α

= b. (9)

When M is large, b′ can be made arbitrarily close to b. To estimate quantities of the type
P (f(Y (R))−Ef(Y (R)) ≥ y), we use Theorem 1 in [2], which states that

P (f(Y (R))− Ef(Y (R)) ≥ y) ≤ exp

(

−

∫ y

0

h−1
R (s)ds

)

, (10)

where h−1
R is the inverse of the function

hR(s) =

∫

‖u‖≤R

‖u‖(es‖u‖ − 1)ν(du).

Using the fact that for s ∈ (0, R),

esy − 1 ≤ sy +
esR − 1− sR

R2
y2,

we get the following upper bound for hR(s):

hR(s) ≤

(

MLR2−α

3− α

)

s+

(

LR1−α

3− α

)

(esR − 1). (11)
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See [3] for details of computations. The idea is to compare the two terms in the right-hand
side of (11). Typically, for small s, the first term is dominant while for large s, the second
term is dominant.

Let us first prove (i). Fix ε, a′ > 0 and a < 1. If δ, s, R > 0 are three reals satisfying the
inequality

esR − 1

sR
≤ δM, (12)

then
(

LR1−α

3− α

)

(esR − 1) ≤

(

δLMR2−α

3− α

)

s

and so

hR(s) ≤

(

(1 + δ)LMR2−α

3− α

)

s.

As a consequence, if y is such that the real s = s(y) defined by

s(y) =
(3− α)y

(1 + δ)LMR2−α

satisfies (12), then

h−1
R (y) ≥

(3− α)y

(1 + δ)LMR2−α
. (13)

It is clear that if s(y) satisfies (12), then for every 0 < y′ < y, s(y′) also satisfies (12) with the
same reals δ and R. Therefore one can integrate (13) and one has:

∫ y

0

h−1
R (t)dt ≥

(3− α)y2

2(1 + δ)LMR2−α
(14)

whenever s(y) satisfies (12). If y has the form yα = ALM/(3− α) with A/(3− α) < a logM
and if we take R = y, Condition (12) becomes

(1 + δ)[exp(A/(1 + δ))− 1]

A
≤ δM.

For M sufficiently large, this holds whenever

(1 + δ)eA

A
≤ δM. (15)

Set

δ = δ(A) =
eA

AM − eA
.

Given a′ > 0, if M is large enough, δ(A) > 0 for every A such that a′/2 < A < logM , and
thus (15) is fulfilled. In that case, since we take R = y, (14) becomes

∫ R

0

h−1
R (t)dt ≥

A

2(1 + δ)
.
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Using the expression of δ,

exp

(

−

∫ R

0

h−1
R (t)dt

)

≤ e−A/2 exp

(

eA

2M

)

.

Put b′ = A/(3− α), so that Rα = b′LM . Then the last inequality becomes

exp

(

−

∫ R

0

h−1
R (t)dt

)

≤ e−b
′/2 exp

(

eb
′/(3−α)

2M
+

b′

2M(3− α)

)

. (16)

For M large enough, this quantity is bounded by (1 + ε/4)e−b
′/2. To sum up, given ε > 0

and a′ > 0, if M is large enough, then for every b′ satisfying a′/2 < b′ < logM , writing
Rα = b′LM , we have

P ((f(Y (R))− Ef(Y (R)) ≥ R) ≤ (1 + ε/4)e−b
′/2. (17)

Remark that given a′ > 0 and a < 1, if a′ < b < a logM , then taking b′ as defined by (9), we
have a′/2 < b′ < logM for M large enough and we can apply (17). Hence if x has the form
xα = bLM with a′ < b < a logM , setting Rα = b′LM , we have for M large enough,

P ((f(Y (R))− Ef(Y (R)) ≥ R) ≤ (1 + ε/4)e−b
′/2 ≤ (1 + ε/2)e−b/2.

This provides an upper bound for the first term of the right-hand side of (5).
To bound the second term of the right-hand side of (5), recall (6) and remark that choosing
Rα = b′LM ,

L

αRα
=

1

b′M
.

Given a′ > 0 and a < 1, if b satisfies a′ < b < a logM , then for M large enough, using again
(9),

1

b′M
<

ε

2
e−b/2.

This concludes the proof of (i).

To prove (ii), we shall decompose the integral (10). Fix a > 2, take x of the form xα =
bLM logM with b ≥ a and let R = (b′LM logM)1/α with b′ given by (9). First let

u0 =
(1− ε)LM logM

(3− α)Rα−1
.

Then for M large enough, the same arguments as for (14) give

∫ u0

0

h−1
R (t)dt ≥

(3− α)u2
0

2(1 + ε′)LMR2−α
≥

(1− ε′′) logM

2b′
. (18)

On the other hand, for M large enough, if sR ≥ logM + log logM ,

esR − 1

sR
≥

M

1 + ε
.
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Hence using (11), we have

h−1
R (u) ≥

1

R
log

(

1 +
(3− α)u

(2 + ε)LR1−α

)

(19)

for every u > u1, where

u1 =
(2 + ε)LM logM

(3− α)Rα−1
.

Now let R = (b′LM logM)1/α with b′ given by (9). Then for M sufficiently large, R > u1. In
that case, we can integrate (19) and this gives

∫ R

u1

h−1
R (t)dt ≥

[(

1−
1

cR

)

log(1 + cR)− 1

]

−

[(

u1

R
−

1

cR

)

log(1 + cu1)−
u1

R

]

where we denote

c =
(3− α)Rα−1

(2 + ε)L
.

For M large enough, this leads to

exp

(

−

∫ R

u1

h−1
R (t)dt

)

≤
(2 + ε′)eL

Rα
exp

(

(2 + ε′)[log(M logM)− 1]

b′

)

. (20)

Finally, since h−1
R is increasing,

∫ u1

u0

h−1
R (t)dt ≥ (u1 − u0)h

−1
R (u0) ≥

(1− ε) logM

b′

Together with (18),(20), (6) and (9), this yields (ii).
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