MEASURE CONCENTRATION FOR STABLE LAWS WITH INDEX CLOSE TO 2

PHILIPPE MARCHAL

DMA, ENS, 45 Rue d'Ulm, 75005 Paris, France
email: marchal@dma.ens.fr
Submitted 10 December 2004, accepted in final form 25 January 2005
AMS 2000 Subject classification: 60E07
Keywords: Concentration of measure, stable distribution

Abstract

We give upper bounds for the probability $\mathbb{P}(|f(X)-E f(X)|>x)$, where X is a stable random variable with index close to 2 and f is a Lipschitz function. While the optimal upper bound is known to be of order $1 / x^{\alpha}$ for large x, we establish, for smaller x, an upper bound of order $\exp \left(-x^{\alpha} / 2\right)$, which relates the result to the gaussian concentration.

1 Statement of the result

Let X be an α-stable random variable on $\mathbb{R}^{d}, 0<\alpha<2$, with Lévy measure ν given by

$$
\begin{equation*}
\nu(B)=\int_{S^{d-1}} \lambda(d \xi) \int_{0}^{+\infty} \mathbf{1}_{B}(r \xi) \frac{d r}{r^{1+\alpha}}, \tag{1}
\end{equation*}
$$

for any Borel set $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$. Here λ, which is called the spherical component of ν, is a finite positive measure on S^{d-1}, the unit sphere of \mathbb{R}^{d} (see [5]). The following concentration result is established in [3]:

Theorem 1 ([3]) Let X be an α-stable random variable, $\alpha>3 / 2$, with Lévy measure given by (1). Set $L=\lambda\left(S^{d-1}\right)$ and $M=1 /(2-\alpha)$. Then if $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a Lipschitz function such that $\|f\|_{\text {Lip }} \leq 1$,

$$
\begin{equation*}
P(f(X)-E f(X) \geq x) \leq \frac{\left(1+8 e^{2}\right) L}{x^{\alpha}} \tag{2}
\end{equation*}
$$

for every x satisfying

$$
x^{\alpha} \geq 4 L M \log M \log (1+2 M \log M)
$$

For α close to 2 , this roughly tells us that the natural (and optimal, up to a multiplicative constant) upper bound L / x^{α} holds for x^{α} of order $L M(\log M)^{2}$. On the other hand, suppose that X is a 1-dimensional, stable random variable and let $Y^{(1)}$ be the infinitely divisible vector whose Lévy measure is the Lévy measure of X truncated at 1 . Then it is easy to check that $\operatorname{var}\left(Y^{(1)}\right)=L M$. This clearly indicates that one cannot hope to obtain any interesting
inequality if x^{2} is much smaller than $L M$. In fact, when x^{α} is of order $L M$, another result in [3] gives an upper bound of order $c L M / x^{\alpha}$. However, comparing this with the bound $c L / x^{\alpha}$ of Theorem 1, we see that there is an important discrepancy when M is large, and so it is natural to investigate the case when x^{α} lies in the range $\left[L M, L M(\log M)^{2}\right]$ for large M. Here is our result:

Theorem 2 Using the same notations as in Theorem 1, we have:
(i) Let $a<1$ and $a^{\prime}, \varepsilon>0$. Then if M is sufficiently large, for every x of the form $x^{\alpha}=b L M$ with $a^{\prime}<b<a \log M$,

$$
\begin{equation*}
P(f(X)-E f(X) \geq x) \leq(1+\varepsilon) e^{-b / 2} \tag{3}
\end{equation*}
$$

(ii) Let $a>2, \varepsilon>0$. Then if M is sufficiently large, for every x such that $x^{\alpha}>a L M \log M$,

$$
P(f(X)-E f(X) \geq x) \leq\left[\frac{1}{\alpha}+(2+\varepsilon) \exp \left(1+\frac{(1+\varepsilon) L M(\log M)^{2}}{2 x^{\alpha}}\right)\right] \frac{L}{x^{\alpha}}
$$

As a consequence of (i), let $X^{(\alpha)}$ be the stable law whose Lévy measure ν is the uniform measure on S^{d-1} with total mass $1 / M$. Then since $L M=1$, (3) can be rewritten as

$$
\begin{equation*}
P\left(f\left(X^{(\alpha)}\right)-E f\left(X^{(\alpha)}\right) \geq x\right) \leq(1+\varepsilon) e^{-x^{\alpha} / 2} \tag{4}
\end{equation*}
$$

for x smaller than $(\log M)^{1 / \alpha}$. When $\alpha \rightarrow 2, X^{(\alpha)}$ converges in distribution to a standard gaussian variable X^{\prime}, for which we have the following classical bound $[1,6]$, valid for all $x>0$:

$$
P\left(f\left(X^{\prime}\right)-E f\left(X^{\prime}\right) \geq x\right) \leq e^{-x^{2} / 2}
$$

So we see that (4) recovers the result for the gaussian concentration.
Remark that (ii) slightly improves Theorem 1 when the index α is close to 2 and x^{α} is of order $L M(\log M)^{2}$.
To some extent, the existence of two regimes (i) and (ii), depending on the order of magnitude of x with regard to $(L M \log M)^{1 / \alpha}$, is reminiscent of the famous Talagrand inequality:

$$
P(f(U)-E f(U) \geq x) \leq \exp \left(-\inf \left(x / a, x^{2} / b\right)\right)
$$

where U is an infinitely divisible random variable with Lévy measure given by

$$
\nu\left(d x_{1} \ldots d x_{k}\right)=2^{-k} e^{-\left(\left|x_{1}\right|+\ldots+\left|x_{k}\right|\right)} d x_{1} \ldots d x_{k}
$$

and f is a Lipschitz function, a and b being related to the L^{1} and L^{2} norm of f, respectively (see [7] for a precise statement). We now proceed to the proof of Theorem 2.

2 Proof of the result

The proof essentially follows the lines of the proof to be found in [3], where the case $x^{\alpha}<$ $L M(\log M)^{2}$ had been overlooked. We write $X=Y^{(R)}+Z^{(R)}$, where $Y^{(R)}, Z^{(R)}$ are two independent, infinitely divisible random variables whose Lévy measures are the Lévy measure of X truncated, above and below respectively, at $R>0$. We have

$$
\begin{equation*}
P(f(X)-E f(X) \geq x) \leq P\left(f\left(Y^{(R)}\right)-E f(X) \geq x\right)+P\left(Z^{(R)} \neq 0\right) \tag{5}
\end{equation*}
$$

Since $Z^{(R)}$ is a compound Poisson process, it is easy to check that

$$
\begin{equation*}
P\left(Z^{(R)} \neq 0\right) \leq \frac{L}{\alpha R^{\alpha}} \tag{6}
\end{equation*}
$$

On the other hand,

$$
P\left(f\left(Y^{(R)}\right)-E f(X) \geq x\right) \leq P\left(f\left(Y^{(R)}\right)-E f\left(Y^{(R)}\right) \geq x^{\prime}\right)
$$

with

$$
x^{\prime}=x-\left|E f(X)-E f\left(Y^{(R)}\right)\right| .
$$

Thus we have to compare $E f(X)$ and $E f\left(Y^{(R)}\right)$. For large R, these two quantities are very close, since

$$
\begin{equation*}
\left|E f(X)-E f\left(Y^{(R)}\right)\right| \leq \frac{L R^{1-\alpha}}{\alpha-1} \tag{7}
\end{equation*}
$$

Given x, we choose R so that

$$
\begin{equation*}
R=x-\frac{L R^{1-\alpha}}{\alpha-1} \tag{8}
\end{equation*}
$$

which entails that $x^{\prime} \leq R$. Therefore we can write

$$
P\left(f\left(Y^{(R)}\right)-E f(X) \geq x\right) \leq P\left(f\left(Y^{(R)}\right)-E f\left(Y^{(R)}\right) \geq R\right)
$$

Let b be the real such that $x^{\alpha}=b L M$. Let b^{\prime} be such that $R^{\alpha}=b^{\prime} L M$, which, according to (8), entails

$$
\left(b^{\prime} L M\right)^{1 / \alpha}=(b L M)^{1 / \alpha}-\frac{L}{\alpha-1}\left(b^{\prime} L M\right)^{(1-\alpha) / \alpha}
$$

or, equivalently,

$$
\begin{equation*}
b^{\prime}\left(1+\frac{1}{(\alpha-1) M b^{\prime}}\right)^{\alpha}=b \tag{9}
\end{equation*}
$$

When M is large, b^{\prime} can be made arbitrarily close to b. To estimate quantities of the type $P\left(f\left(Y^{(R)}\right)-E f\left(Y^{(R)}\right) \geq y\right)$, we use Theorem 1 in [2], which states that

$$
\begin{equation*}
P\left(f\left(Y^{(R)}\right)-E f\left(Y^{(R)}\right) \geq y\right) \leq \exp \left(-\int_{0}^{y} h_{R}^{-1}(s) d s\right) \tag{10}
\end{equation*}
$$

where h_{R}^{-1} is the inverse of the function

$$
h_{R}(s)=\int_{\|u\| \leq R}\|u\|\left(e^{s\|u\|}-1\right) \nu(d u)
$$

Using the fact that for $s \in(0, R)$,

$$
e^{s y}-1 \leq s y+\frac{e^{s R}-1-s R}{R^{2}} y^{2}
$$

we get the following upper bound for $h_{R}(s)$:

$$
\begin{equation*}
h_{R}(s) \leq\left(\frac{M L R^{2-\alpha}}{3-\alpha}\right) s+\left(\frac{L R^{1-\alpha}}{3-\alpha}\right)\left(e^{s R}-1\right) \tag{11}
\end{equation*}
$$

See [3] for details of computations. The idea is to compare the two terms in the right-hand side of (11). Typically, for small s, the first term is dominant while for large s, the second term is dominant.

Let us first prove (i). Fix $\varepsilon, a^{\prime}>0$ and $a<1$. If $\delta, s, R>0$ are three reals satisfying the inequality

$$
\begin{equation*}
\frac{e^{s R}-1}{s R} \leq \delta M \tag{12}
\end{equation*}
$$

then

$$
\left(\frac{L R^{1-\alpha}}{3-\alpha}\right)\left(e^{s R}-1\right) \leq\left(\frac{\delta L M R^{2-\alpha}}{3-\alpha}\right) s
$$

and so

$$
h_{R}(s) \leq\left(\frac{(1+\delta) L M R^{2-\alpha}}{3-\alpha}\right) s
$$

As a consequence, if y is such that the real $s=s(y)$ defined by

$$
s(y)=\frac{(3-\alpha) y}{(1+\delta) L M R^{2-\alpha}}
$$

satisfies (12), then

$$
\begin{equation*}
h_{R}^{-1}(y) \geq \frac{(3-\alpha) y}{(1+\delta) L M R^{2-\alpha}} \tag{13}
\end{equation*}
$$

It is clear that if $s(y)$ satisfies (12), then for every $0<y^{\prime}<y, s\left(y^{\prime}\right)$ also satisfies (12) with the same reals δ and R. Therefore one can integrate (13) and one has:

$$
\begin{equation*}
\int_{0}^{y} h_{R}^{-1}(t) d t \geq \frac{(3-\alpha) y^{2}}{2(1+\delta) L M R^{2-\alpha}} \tag{14}
\end{equation*}
$$

whenever $s(y)$ satisfies (12). If y has the form $y^{\alpha}=A L M /(3-\alpha)$ with $A /(3-\alpha)<a \log M$ and if we take $R=y$, Condition (12) becomes

$$
\frac{(1+\delta)[\exp (A /(1+\delta))-1]}{A} \leq \delta M
$$

For M sufficiently large, this holds whenever

$$
\begin{equation*}
\frac{(1+\delta) e^{A}}{A} \leq \delta M \tag{15}
\end{equation*}
$$

Set

$$
\delta=\delta(A)=\frac{e^{A}}{A M-e^{A}}
$$

Given $a^{\prime}>0$, if M is large enough, $\delta(A)>0$ for every A such that $a^{\prime} / 2<A<\log M$, and thus (15) is fulfilled. In that case, since we take $R=y$, (14) becomes

$$
\int_{0}^{R} h_{R}^{-1}(t) d t \geq \frac{A}{2(1+\delta)}
$$

Using the expression of δ,

$$
\exp \left(-\int_{0}^{R} h_{R}^{-1}(t) d t\right) \leq e^{-A / 2} \exp \left(\frac{e^{A}}{2 M}\right)
$$

Put $b^{\prime}=A /(3-\alpha)$, so that $R^{\alpha}=b^{\prime} L M$. Then the last inequality becomes

$$
\begin{equation*}
\exp \left(-\int_{0}^{R} h_{R}^{-1}(t) d t\right) \leq e^{-b^{\prime} / 2} \exp \left(\frac{e^{b^{\prime} /(3-\alpha)}}{2 M}+\frac{b^{\prime}}{2 M(3-\alpha)}\right) \tag{16}
\end{equation*}
$$

For M large enough, this quantity is bounded by $(1+\varepsilon / 4) e^{-b^{\prime} / 2}$. To sum up, given $\varepsilon>0$ and $a^{\prime}>0$, if M is large enough, then for every b^{\prime} satisfying $a^{\prime} / 2<b^{\prime}<\log M$, writing $R^{\alpha}=b^{\prime} L M$, we have

$$
\begin{equation*}
P\left(\left(f\left(Y^{(R)}\right)-E f\left(Y^{(R)}\right) \geq R\right) \leq(1+\varepsilon / 4) e^{-b^{\prime} / 2}\right. \tag{17}
\end{equation*}
$$

Remark that given $a^{\prime}>0$ and $a<1$, if $a^{\prime}<b<a \log M$, then taking b^{\prime} as defined by (9), we have $a^{\prime} / 2<b^{\prime}<\log M$ for M large enough and we can apply (17). Hence if x has the form $x^{\alpha}=b L M$ with $a^{\prime}<b<a \log M$, setting $R^{\alpha}=b^{\prime} L M$, we have for M large enough,

$$
P\left(\left(f\left(Y^{(R)}\right)-E f\left(Y^{(R)}\right) \geq R\right) \leq(1+\varepsilon / 4) e^{-b^{\prime} / 2} \leq(1+\varepsilon / 2) e^{-b / 2}\right.
$$

This provides an upper bound for the first term of the right-hand side of (5).
To bound the second term of the right-hand side of (5), recall (6) and remark that choosing $R^{\alpha}=b^{\prime} L M$,

$$
\frac{L}{\alpha R^{\alpha}}=\frac{1}{b^{\prime} M}
$$

Given $a^{\prime}>0$ and $a<1$, if b satisfies $a^{\prime}<b<a \log M$, then for M large enough, using again (9),

$$
\frac{1}{b^{\prime} M}<\frac{\varepsilon}{2} e^{-b / 2}
$$

This concludes the proof of (i).
To prove (ii), we shall decompose the integral (10). Fix $a>2$, take x of the form $x^{\alpha}=$ $b L M \log M$ with $b \geq a$ and let $R=\left(b^{\prime} L M \log M\right)^{1 / \alpha}$ with b^{\prime} given by (9). First let

$$
u_{0}=\frac{(1-\varepsilon) L M \log M}{(3-\alpha) R^{\alpha-1}}
$$

Then for M large enough, the same arguments as for (14) give

$$
\begin{equation*}
\int_{0}^{u_{0}} h_{R}^{-1}(t) d t \geq \frac{(3-\alpha) u_{0}^{2}}{2\left(1+\varepsilon^{\prime}\right) L M R^{2-\alpha}} \geq \frac{\left(1-\varepsilon^{\prime \prime}\right) \log M}{2 b^{\prime}} \tag{18}
\end{equation*}
$$

On the other hand, for M large enough, if $s R \geq \log M+\log \log M$,

$$
\frac{e^{s R}-1}{s R} \geq \frac{M}{1+\varepsilon}
$$

Hence using (11), we have

$$
\begin{equation*}
h_{R}^{-1}(u) \geq \frac{1}{R} \log \left(1+\frac{(3-\alpha) u}{(2+\varepsilon) L R^{1-\alpha}}\right) \tag{19}
\end{equation*}
$$

for every $u>u_{1}$, where

$$
u_{1}=\frac{(2+\varepsilon) L M \log M}{(3-\alpha) R^{\alpha-1}}
$$

Now let $R=\left(b^{\prime} L M \log M\right)^{1 / \alpha}$ with b^{\prime} given by (9). Then for M sufficiently large, $R>u_{1}$. In that case, we can integrate (19) and this gives

$$
\int_{u_{1}}^{R} h_{R}^{-1}(t) d t \geq\left[\left(1-\frac{1}{c R}\right) \log (1+c R)-1\right]-\left[\left(\frac{u_{1}}{R}-\frac{1}{c R}\right) \log \left(1+c u_{1}\right)-\frac{u_{1}}{R}\right]
$$

where we denote

$$
c=\frac{(3-\alpha) R^{\alpha-1}}{(2+\varepsilon) L}
$$

For M large enough, this leads to

$$
\begin{equation*}
\exp \left(-\int_{u_{1}}^{R} h_{R}^{-1}(t) d t\right) \leq \frac{\left(2+\varepsilon^{\prime}\right) e L}{R^{\alpha}} \exp \left(\frac{\left(2+\varepsilon^{\prime}\right)[\log (M \log M)-1]}{b^{\prime}}\right) \tag{20}
\end{equation*}
$$

Finally, since h_{R}^{-1} is increasing,

$$
\int_{u_{0}}^{u_{1}} h_{R}^{-1}(t) d t \geq\left(u_{1}-u_{0}\right) h_{R}^{-1}\left(u_{0}\right) \geq \frac{(1-\varepsilon) \log M}{b^{\prime}}
$$

Together with (18),(20), (6) and (9), this yields (ii).
Acknowledgments I thank Christian Houdré for interesting discussions.

References

[1] C. Borell, The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975), 207-216.
[2] C. Houdré, Remarks on deviation inequalities for functions of infinitely divisible random vectors. Ann. Proba. 30 (2002), 1223-1237.
[3] C. Houdré, P. Marchal, On the Concentration of Measure Phenomenon for Stable and Related Random Vectors. Ann. Probab. 32 (2004) 1496-1508.
[4] C. Houdré, P. Reynaud, Concentration for infinitely divisible vectors with independent components. Preprint.
[5] K-I. Sato, em Lévy processes and infinitely divisible distributions. Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, 68 Cambridge University Press, Cambridge, 1999.
[6] V.N. Sudakov and B.S. Tsirel'son, Extremal properties of half-spaces for spherically invariant measures. Zap. Nauch. Sem. LOMI 41 (1974), 14-24. English translation in: J. Soviet Math. 9 (1978), 9-18.
[7] M. Talagrand, A new isoperimetric inequality for product measure, and the concentration of measure phenomenon. Israel Seminar, Lecture notes in math. 1469 (1991) 91-124.

