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Abstract

The purpose of this work is to study some possible application of FKG inequality to the
Brownian motion and to Stochastic Differential Equations. We introduce a special ordering on
the Wiener space and prove the FKG inequality with respect to this ordering. Then we apply
this result on the solutions Xt of a stochastic differential equation with a positive coefficient
σ, we prove that these solutions Xt are increasing with respect to the ordering, and finally we
deduce a correlation inequality between the solution of different stochastic equations.

Introduction

The FKG inequality is a correlation inequality for monotone functions. It is named after
Fortuine, Ginibre and Kasteleyn, who gave a rigorous formulation and established sufficient
condition for its validity [3]. In the following years a lot of works were inspired by this inequal-
ity, new inequalities generalizing FKG were discovered and a great deal of applications were
found, like in the field of statistical mechanics, which it was born for, or in different fields: for
example the FKG inequality for the optimal transportation problems [2], or the applications
of FKG inequality to cellular automata [7]. In [3] Fortuine, Kasteleyn and Ginibre found some
sufficient condition to build spaces where the inequality (1) holds . This immediately permit-
ted the application of this inequality to the rigorous analysis of percolation and ferromagnetic
models. Many generalizations followed: Holley [5] introduced an inequality on convex domina-
tions of measures, Preston [8] passed from discrete to continuous spin models, Kamae, Krengel
and O’Brien [6] made a work on partially ordered Polish spaces and Ahlswede and Daykin [1]
found a brilliant generalization of Holley’s work [5] introducing a combinative inequality. This
work aims at proving the FKG inequality for the Wiener space with a special ordering on the
increments. Then we apply this FKG inequality to prove (theorem 7) a correlation inequality
between the solutions of two stochastic equations.
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1 Preliminaries

Let us start recalling the definition of FKG space. Let from now on (Ω,F ,P,≥) be a partially
ordered probability space, where ≥ is an order relation on the set Ω. A function f : Ω→ R is
said to be increasing or ≥increasing if for all ω2 ≥ ω1, we have f(ω2) ≥ f(ω1). A set A ∈ F
is said to be increasing if for all ω2 ≥ ω1, ω1 ∈ A implies ω2 ∈ A. That is the same of saying
an event is increasing if its indicator function IA is so.

Definition 1.1 (Ω,F ,P,≥) is said to satisfy the FKG inequality if for all increasing functions
f g in L2(Ω), the inequality

E[fg] ≥ E[f ]E[g] (1)

holds.

Proposition 1 Let (Ω,F ,P,≥) be a partially ordered probability space, then it satisfies the
FKG inequality if and only if for all A,B ∈ F increasing sets, the inequality

P(A ∩B) ≥ P(A)P(B) (2)

is verified.

Definition 1.2 Let (E, E ,≥) be a partially ordered measurable space, let X : Ω→ E be a r.v.
and let µ = X(P) be its law. The r.v. X is said to satisfy FKG if the space (E, E , µ,≥) does.

1.1 FKG and the increasing functions

A first way to prove that the space satisfy FKG is to show that it is the increasing image of
an FKG space. Let (Ω1,F1,P1,≥1) and (Ω2,F2,P2,≥2) be two partially ordered spaces.

Proposition 2 Let f : Ω1 → Ω2 be measurable and increasing, and let P2 = f(P1). If FKG
holds for (Ω1,F1,P1,≥1) then FKG holds for
(Ω2,F2,P2,≥2).

Proof. Let A2, B2 be two increasing events in F2 and let us define A1 := f−1(A2),
B1 := f−1(B2). A1 and B1 are increasing events in F1. Let us check that A1 is increasing,
if ω1, ω2 ∈ Ω1, ω2 ≥ ω1, ω1 ∈ A1, then f(ω1) ∈ A2, f(ω2) ≥ f(ω1); since A2 is increasing,
f(ω2) ∈ A2, and therefore ω2 ∈ A1. A1 and B1 increasing implies that they satisfy the
inequality P1(A1∩B1) ≥ P1(A1)P1(B1) and since P2 = f(P1) then it also holds: P2(A2∩B2) ≥
P2(A2)P2(B2). ¤

1.2 FKG inequality on product spaces

Another way of building FKG spaces from FKG spaces is that of making their product. Let
(Ωi,Fi,Pi,≥i)i∈Γ be a family of partially ordered probability spaces, and let us define the
space (Ω,F ,P,≥) in this way:

Ω :=
∏

i∈Γ

(Ωi) F :=
⊗

i∈Γ

(Fi) P :=
⊗

i∈Γ

(Pi) ≥:=
⊗

i∈Γ

(≥i).

With the last definition we mean that for all u, v ∈ Ω

u ≥ v ⇐⇒ (∀i ∈ Γ ui ≥i vi).
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From now on we will denote this product in this way:

(Ω,F ,P,≥) =
∏

i∈Γ

(Ωi,Fi,Pi,≥i)

Theorem 3 Let (Ω,F ,P,≥) =
∏

i∈Γ(Ωi,Fi,Pi,≥i). Then (Ω,F ,P,≥) satisfies FKG if and
only if every space (Ωi,Fi,Pi,≥i) does so.

Proof. See appendix. ¤

This theorem allows to tie the FKG spaces of classic literature together. In this way we easily
originate examples of FKG spaces as it is showed in the next section.

Examples

Remark 1.1 Every totally ordered probability space satisfies FKG.

Proof. Let (Ω,A,P,≥) be totally ordered and let A,B ∈ A be two increasing events, then
either A ⊆ B or B ⊆ A; therefore P(A ∩B) ≥ P(A)P(B). ¤

Example 1 Every probability measures µ on R satisfies the FKG inequality. Therefore if f

and g are increasing and integrable the following inequality holds:
∫

R
fg dµ ≥

∫

R
f dµ

∫

R
g dµ

Example 2 Every real random variable satisfies FKG and, by theorem 3, so does their prod-
uct.

2 FKG inequality and Brownian motion

In this section the FKG inequality is proved for the standard Brownian motion (Wt)t∈[0,T ]
on the canonical Wiener space (Ω,A,P) endowed with a special partial order. Here Ω =
C0([0, T ];R) is the space of continuous function vanishing at zero, A = B(Ω) is the Borel
σ − algebra induced by the uniform convergence topology and P is the Wiener measure.
Moreover, Wt denotes the canonical process, Wt(ω) = ω(t). The first thing we must do now is
to introduce an ordering on (Ω,A,P). The right choice of such an ordering is very important
and it can be useful to recall the following remark.

Remark 2.1 Let ≥1 , ≥2 be two ordering relation on Ω and let ≥2 be finer than ≥1,
(
that

is (ω1 ≤1 ω2) implies (ω1 ≤2 ω2) ∀ω1, ω2 ∈ Ω
)
. Then, if FKG works for (Ω,A,P,≥1) it

also works for (Ω,A,P,≥2) . Moreover, if f is increasing for ≥2 (≥2
increasing), then it is

increasing also for ≥1. Summarizing, on the space (Ω,A,P,≥1) there are more increasing
functions and it is more difficult to prove the FKG inequality.

This means that a too fine ordering could lead to a too weak statement, and a too weak
ordering could lead to a space that doesn’t satisfy FKG anymore. In this work we choose the
natural order for additive processes based on path increments.

Definition 2.1 Given ω1, ω2 ∈ Ω, we say that ω1 ≤ ω2 if and only if for all
0 ≤ t1 ≤ t2 ≤ T we have Wt2(ω1)−Wt1(ω1) ≤Wt2(ω2)−Wt1(ω2).
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This ordering is less fine than the ordering induced by the direct comparison of the trajectories
(namely ω1 ≤ ω2 if Wt1(ω1) ≤ Wt2(ω2) for every t ∈ [0, T ]), and for remark 2.1 we obtain
a stronger statement. Moreover the choice of this ordering is necessary for the purposes of
section 3.

Theorem 4 For the Wiener space (Ω,A,P,≥) with the ordering ≥ of definition 2.1, the FKG
inequality holds.

Proof. The idea of the proof is to gradually proceed towards the σ-algebra A. We shall
verify (2) at first on a suitable sub-algebra B and then we will proceed with density arguments
on all A.
Let n be an integer n ≥ 2. Let H = {t1, t2, . . . tn} be a partition with t0 = 0 < t1 < t2 <

. . . < tn = T . Let Xi := Wti
−Wti−1

be the i th increment, and XH := (Xi)i∈{1,...,n}. Let
finally AH ⊂ A the sub-σ-algebra generated by XH and let ≥H be the ordering induced by
XH(that is ω1 ≤H ω2 if and only if Xi(ω1) ≤ Xi(ω2) for all i ∈ {1, . . . , n} ). Then, as it was
showed in example 2, XH satisfies FKG and also for (Ω,AH ,P,≥H) the FKG inequality holds.
We also have ω1 ≤ ω2 implies ω1 ≤H ω2 and then, ∀A ∈ A, if A is ≥H

increasing then A is

≥increasing. Generally the converse is not true. But as it is showed in proposition 11 the
following lemma holds:

Lemma 5 The following conditions are equivalent:

(i) A ∈ AH and A is ≥increasing.

(ii) A ∈ A and A is ≥H
increasing.

Let B =
⋃

H AH .
Let A,B ∈ B be increasing for the ordering ≥ . Then A,B ∈ B implies the existence of a finite
set H ⊂ [0, T ] such that A,B ∈ AH .
For lemma 5 A,B are ≥H

increasing and then the inequality P(A
⋂

B) ≥ P(A)P(B) holds. In
this way we proved the inequality for the elements of B.
In order to complete the proof we have to show that it is possible to approximate increasing
events of A with increasing events of B. This is a less trivial fact and it is done by the following
lemma:

Lemma 6 ∀ε > 0 and ∀A ∈ A increasing ∃B ∈ B increasing such that P(A M B) ≤ ε .

Proof of Lemma 6 :
B is an algebra and a basis of A, then B is dense in A that means: ∀ε > 0 ∀A ∈ A ∃B ∈ B
such that P(A M B) ≤ ε . Now we want to show that if A is increasing then it is possible to
approximate A with increasing events of B. Let us fix now ε > 0 and A ∈ A increasing:
then, from what we said before, we can choose a partition 0 = t0 < t1 < · · · < tn = T with
H = {t0, t1, . . . , tn} such that ∃C ∈ AH with P(A M C) ≤ ε .
Let E ⊂ Ω be the set of applications from [0, T ] to R that are continuous, vanishing at zero
and linear on every interval [ti−1, ti].
Let F ⊂ Ω be the set of applications from [0, T ] to R continuous and vanishing at ti for all
i ∈ {0, 1, . . . , n}.
The set E and F are two linear subspaces of Ω , Ω = E ⊕ F and every element of Ω can be
written in an unique way as the sum of an element of E and one of F . We can define two
maps L : Ω→ E and Y : Ω→ F such that ∀ω ∈ Ω we have W (ω) = L(ω) + Y (ω).
Let now E and F be the traces A on E and F : we can easily verify that the maps L and Y are
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random variables on (Ω,A,P) taking values in (E, E) and (F,F), with L−1(E) = AH and L

,Y independent random variables [9]. Let P1 = L(P) and P2 = Y (P) . Then the application

(L, Y ) : (Ω,A,P)→ (E × F, E ⊗ F ,P1 ⊗ P2)

is bijective, bi-measurable and it preserves the measure.

Let now ϕ : Ω→ [0, 1] be the application ϕ(ω) = P2
(
Y
(
A ∩ L−1(L(ω))

))
.

If ω = e+ f with e ∈ E and f ∈ F then

ϕ(ω) =

∫

F

IA(e, g)dP2(g) .

This expression shows that ϕ is a version of the conditional expectation of IA respect to AH .
Let B := {ϕ ≥ 1

2}. Then B ∈ AH and B is the best approximation of A in AH . That is,

∀B̃ ∈ AH we have P(A M B) ≤ P(A M B̃). Indeed,

P(A M B) = E
[
|IA − IB |

]
= E

[
|ϕ− IB |

]

P(A M B̃) = E
[
|IA − IB̃ |

]
= E

[
|ϕ− IB̃ |

]

and by the definition of ϕ we have |ϕ− IB | ≤ |ϕ− IB̃ | and finally

P(A M B) ≤ P(A M B̃)

Now we only have to show that if A is increasing then ϕ is increasing. Let ω1 ≤ ω2 be two
trajectory with ω1 = e1 + f1, ω2 = e2 + f2, ei ∈ E, fi ∈ F .

ϕ(ω1) =

∫

F

IA(e1, g)dP2(g) ϕ(ω2) =

∫

F

IA(e2, g)dP2(g)

ω1 ≤ ω2 implies e1 ≤ e2 and e1 + g ≤ e2 + g for all g ∈ F . This means IA(e1, g) ≤ IA(e2, g)
for all g ∈ F and finally

ϕ(ω1) ≤ ϕ(ω2)

ϕ increasing implies B increasing and this finishes the proof of the lemma and of the theorem.
¤

3 FKG inequality for stochastic differential

equations.

In this section we prove that the solution Xt of a stochastic equation with quite general
coefficients is a random increasing variable on the space (Ω,A,P,≥). In this way we may
use the FKG inequality for Brownian motion to show a correlation inequality for the random
variables Xt and Ys, solutions of two different equation, evaluated at different times.
Let (Ω,A,P,≥) be the Wiener space, with the ordering of definition 2.1. Let Xt, Yt be the
solution of the stochastic equations

{
dXt = b(Xt)dt+ σ(Xt)dWt

X0 = x0
(3)

{
dYt = b̃(Yt)dt+ σ̃(Yt)dWt

Y0 = x0
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Theorem 7 Let b, b̃ be Lipschitz continuous.Let σ, σ̃ be differentiable with Lipschitz derivative.
Assume there exist two positive constants ε,M such that ε ≤ σ ≤ M , ε ≤ σ̃ ≤ M . Then, ∀
t, s ≥ 0, the following inequality holds:

E[Xt · Ys] ≥ E[Xt]E[Ys] (4)

This result is a direct conseguence of the FKG inequality for the space (Ω,A,P,≥) and the
following lemma, which we believe is of conceptual interest in itself and may find other appli-
cations.

Lemma 8 Let b be Lipschitz continuous, let σ be differentiable with Lipschitz derivative. As-
sume there exist two positive constants ε, M such that ε ≤ σ ≤ M . Then there exists a
stochastic process (Xt)t∈[0,T ] on (Ω,A,P), with Xt(ω) defined for all ω ∈ Ω, such that;

(i) Xt is a solution of (3)

(ii) for every t ∈ [0, T ], Xt is an increasing function on (Ω,A,P,≥).

Remark 3.1 Under the imposed assumptions, equation(3) have a unique solution. However,
solutions are usually defined up to null sets. Here we need a solution defined on the whole
space Ω.

3.1 Proof of lemma 8

The idea of the proof is to obtain a simpler differential equation with an increasing change of
variable from Xt to Zt. Let

F (x) =

∫ x

0

1

σ(t)
dt,

and G = F−1. By the above assumption on σ, the function F and G are C2(R,R),increasing,
bijective and Lipschitz continuous, G′(z) = σ(G(z)), G′′(z) = σ(G(z)) · σ′(G(z)) . Let us
define:

b̂(Z) :=
b(G(Z))

σ(G(Z))
−

1

2
σ′(G(Z))

By the assumptions on b and σ we obtain b̂ locally Lipschitz continuous. Let z0 = F (x0) and
let Z be the solution of the following equation:

Z(t) = z0 +

∫ t

0

b̂(Z(s))ds+Wt (5)

If L is a common Lipschitz constant for b, σ′ and G. Then

|̂b(z)| ≤
|b(0)|

ε
+

1

2
|σ′(0)|+

L2

ε
z +

1

2
L2z

Let k1 =
|b(0)|

ε
+ 1

2 |σ
′(0)| and k2 =

L2

ε
+ 1

2L
2, then

|̂b(z)| ≤ k1 + k2z ∀z ∈ R

By proposition 10 the integral equation (5) have one and only one solution through R. More-
over by the comparison theorem 9 we can deduce that the random variable Z(t) (fixed t) is
increasing in the means of definition 2.1. If we define Xt : Ω → R, Xt = G(Zt) then Xt is
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increasing on (Ω,A,P,≥). It remain to be proof that the random variable Xt satisfies the
stochastic equation (3).
By the Itô’s formula

dG(Zt) = G′(Zt)d(Zt) +
1

2
G′′(Zt)dt

dXt = σ(Xt)d(Zt) +
1

2
σ(Xt)σ

′(Xt)dt

dXt = b(Xt)dt−
1

2
σ(Xt)σ

′(Xt)dt+ σ(Xt)dWt +
1

2
σ(Xt)σ

′(Xt)dt

dXt = b(Xt)dt+ σ(Xt)dWt

this completes the proof of the lemma.

Theorem 9 Let us consider the integral equations:

(Z1)(t) := z0 +

∫ t

0

b1(Z1(s))ds+W 1
t

(Z2)(t) := z0 +

∫ t

0

b2(Z2(s))ds+W 2
t

Where W 1, W 2 are continuous functions and b1, b2 are locally Lipschitz functions. Let us
suppose the existence of the solutions in an interval [0, T ]. If we assume the ”comparison”
hypotheses:
• b2(Z) ≥ b1(Z) ∀Z ∈ R
• W2 −W1 weakly increasing
Then for all t ∈ [0, T ] we have the inequality

(Z2)(t) ≥ (Z1)(t)

Proof. See appendix. ¤

Proposition 10 Let Wt be continuous.Let b̂ be locally Lipschitz. If there exist two positive
constant k1 and k2 such that |̂b(z)| ≤ k1 + k2z ∀z ∈ R, then the integral equation:

(Z)(t) := z0 +

∫ t

0

b̂(Z(s))ds+Wt

has one and only one solution through R.

4 Appendix

Product spaces

Proof. of theorem 3
We will proceed by induction on the cardinality of Γ, proving firstly the finite case, then the
enumerable one and finally the generic one.
Finite case:
Let n be the cardinality of Γ. Let us begin with n = 2.
Let A,B be increasing events, let Ω = Ω1 × Ω2, f := IA , g := IB . Let us define f1(x) :=
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E2[f(x, ·)] and g1(x) := E2[g(x, ·)]. It is easy to check that f1 and g1 are increasing with
respect to ≥1 .Then

E[f ]E[g] = E1[f1]E1[g1] ≤ E1[f1g1] = E1
[
E2[f ]E2[g]

]
≤ E1

[
E2[fg]

]
= E[fg]

Therefore P(A)P(B) ≤ P(A ∩ B) and this verifies the hypotheses of proposition 1. For n ≥ 2
we have

Ω =
∏

1≤i≤n

(Ωi) =
∏

1≤i≤n−1

(Ωi) × Ωn

This completes the proof in the finite case.
Enumerable case:
Let us suppose Γ = N. Let A,B ∈ F be two increasing events. Let f = IA , g = IB be
the indicator functions. Let us define (Ω,F ,P,≥) =

∏
i∈N(Ωi,Fi,Pi,≥i), (Ω̃n, F̃n, P̃n, ≥̃n) :=∏n

i=1(Ωi,Fi,Pi,≥i) and

(Ωn,Fn,Pn,≥n) :=
∏

i>n(Ωi,Fi,Pi,≥i).

Let pn : Ω→ Ω̃n be the projection on the first n coordinates, and pn : Ω→ Ωn the projection

on the other ones. If we define fn, gn : Ω̃n → R in this way: fn(x̃) := Pn(pn(p
−1
n (x̃) ∩ A)) ,

gn(x̃) := Pn(pn(p
−1
n (x̃)∩B)) then it easily follows that fn and gn are increasing, bounded and

they satisfy the correlation inequality

E[fngn] ≥ E[fn]E[gn] (6)

By the Lévy’s Upward Theorem we have fn → IA and gn → IB in L1 and a.s.

E[IAIB ] ≥ E[IA]E[IB ]

P(A ∩B) ≥ P(A)P(B)

This verifies the hypothesis of proposition 1 and completes the proof in the enumerable case.
Generic case:
For all J ⊂ Γ, let (ΩJ ,FJ ,PJ ,≥J ) :=

∏
i∈J (Ωi,Fi,Pi,≥i) and let pJ be the natural projection

from Ω to ΩJ . For all A,B ∈ F increasing events, it exists J ⊂ Γ such that J is enumerable,
A,B ∈ FJ . It follows that PJ(pJ (A) ∩ pJ(B)) ≥ PJ (pJ(A))PJ (pJ(B)) and finally

P(A ∩B) ≥ P(A)P(B)

¤

4.1 Lemma 5

With the notation of Lemma 5 the following proposition holds.

Proposition 11 Let A ∈ AH . Then A is ≥increasing if and only if A is ≥H
increasing.

Proof.

To prove that A ≥H
increasing implies A ≥increasing it is sufficient to remark that ≥H is

finer than ≥.
The proof of A ≥increasing implies A ≥H

increasing is a bit more difficult. We know that(
ω1 ≤ ω2 , ω1 ∈ A

)
implies ω2 ∈ A and we have to show

(
ω1 ≤H ω2 , ω1 ∈ A

)
implies
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ω2 ∈ A .
Let us suppose ω1 ≤H ω2 and ω2 ∈ A. Let us define pi := Wti

(ω2) − Wti
(ω1) for all i ∈

{0, 1, . . . , n}. By the definition 2.1 we have Wti−1
(ω2) −Wti−1

(ω1) ≤ Wti
(ω2) −Wti

(ω1) and
so 0 = p0 ≤ p1 ≤ · · · ≤ pn. Let now f from [0, T ] to R weakly increasing, continuous and
such that f(ti) = pi for all i ∈ {0, . . . , n} then f(t) + Wt(ω1) is continuous in t. Therefore it
exists ω3 ∈ Ω such that Wt(ω3) = f(t) +Wt(ω1) for all t ∈ [0, T ]. From the definition of f it
results ω3 ≥ ω1 and then ω3 ∈ A. ω3 coincides with ω2 on H (that is Wti

(ω3) = Wti
(ω2) for

all ti ∈ H) and then also ω2 ∈ A. ¤

Remark 4.1 Let A ∈ A and A be ≥H
increasing. Then, A ∈ AH .

Proof. It is sufficient to notice that A = P−1n (Pn(A)). With the projection. Pn :=
(Wt1 , . . . ,Wtn

).
¤

Comparison Theorem

Proof. of theorem 9
Suppose by absurd that there exists some t > 0 such that (Z2)(t) < (Z1)(t). Let t0 = sup{t <
t | (Z2)(t) = (Z1)(t)}. And so (Z1)(t) > (Z2)(t) ∀t ∈ (t0, t]. Let L be a Lipschitz constant for
b2(Z

2
t ) in [t0, t]. And let τ a constant such that t0 < τ < t and τ < 1

L
.

Making the difference Z1 − Z2, for all t ∈ (t0, τ ] we have:

Z1(t)− Z2(t) =

∫ t

t0

[
b1(Z1(s))− b2(Z2(s))

]
ds+ (W 1

t −W 1
t0
)− (W 2

t −W 2
t0
)

By comparison hypothesis we have:

Z1(t)− Z2(t) ≤

∫ t

t0

[
b2(Z1(s))− b2(Z2(s))

]
ds

By the lipschitz condition on b2,

Z1(t)− Z2(t) ≤ τL sup
s∈[t0,τ ]

{∣∣Z1(s)− Z2(s)
∣∣
}

then
sup

s∈[t0,τ ]

{∣∣Z1(s)− Z2(s)
∣∣
}
≤ τL sup

s∈[t0,τ ]

{∣∣Z1(s)− Z2(s)
∣∣
}

but τL < 1 implies sups∈[t0,τ ]

{∣∣Z1(s)−Z2(s)
∣∣
}
= 0 that contradicts the hypothesis (Z1)(t) >

(Z2)(t) ∀t ∈ (0, S]. ¤
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