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Abstract: Nonparametric maximum likelihood estimators (MLEs) in in-
verse problems often have non-normal limit distributions, like Chernoff’s
distribution. However, if one considers smooth functionals of the model,
with corresponding functionals of the MLE, one gets normal limit distribu-
tions and faster rates of convergence. We demonstrate this for a model for
the incubation time of a disease. The usual approach in the latter models
is to use parametric distributions, like Weibull and gamma distributions,
which leads to inconsistent estimators. Smoothed bootstrap methods are
discussed for constructing confidence intervals.
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1. Introduction

We consider the following model, used for estimating the distribution of the in-
cubation time of a disease. There is an infection time U , uniformly distributed
on an interval [0, E], where E (“exposure time”) has an absolutely continuous
distribution function FE on an interval [0,M2], and where U is uniform on
[0, E], conditionally on E. Moreover there is an incubation time V with an ab-
solutely continuous distribution F0 on an interval [0,M1] and a time for getting
symptomatic S, where S = U + V . We assume that U and V are independent,
conditionally on E. Our observations consist of the pairs of exposure times and
times of getting symptomatic

(Ei, Si), i = 1, . . . , n.

The model is for example considered in [22], [5], [3] and [8].
We define the (convolution) density qF of (Ei, Si) by

qF (e, s) = e−1{F (s) − F (s− e)}

= e−1
∫ s

u=(s−e)+
dF (u), e > 0, s ∈ [0,M ], (1.1)
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w.r.t. μ, which is the product of the measure dFE of the exposure time E and
Lebesgue measure on [0,M ], where M = M1 + M2 is the upper bound for the
time S of getting symptomatic. We define the underlying measure Q0 for (Ei, Si)
by

dQ0(e, s) = qF (e, s) ds dFE(e), s ∈ [0,M ], e ∈ (0,M2]. (1.2)

For estimating the distribution function F0 of the incubation time, usually
parametric distributions are used, like the Weibull, log-normal or gamma dis-
tribution. However, in [8] the nonparametric maximum likelihood estimator is
used. The maximum likelihood estimator F̂n maximizes the function

�(F ) = n−1
n∑

i=1
log {F (Si) − F (Si −Ei)} (1.3)

over all distribution functions F on R which satisfy F (x) = 0, x ≤ 0, see [8].
The monotonicity and boundedness of F (between zero and 1) ensures that this
maximization problem has a solution.

Although the model is rather different, the algorithmic problem of computing
the MLE has similarities with the problem of computing the MLE in the so-
called interval censoring, case 2, model. In the interval censoring, case 2, model
the log likelihood is of the form

�(F ) =
n∑

i=1
{Δi1 logF (Ui) + Δi2 log{F (Vi) − F (Ui)} + Δi3 log{1 − F (Vi)}} ,

(1.4)

where Ui < Vi are observation times and we only have information on whether
our hidden variable of interest, with distribution function F , is to the left of Ui

(Δi1 = 1), between Ui and Vi (Δi2 = 1), or to the right of Vi (Δi3 = 1), see [12]
and [15].

For the incubation time model we have a formally similar way of writing the
log likelihood, as can be seen in the following way. First of all, we can introduce,
as in [8], the indicator Δi1, defined by

Δi1 = {Si ≤ Ei}. (1.5)

If Δi1 = 1, then Si ≤ Ei, leading to a term logF (Si) in the log likelihood. We
can also introduce a second and third indicator Δi2, and Δi3, which depend
on whether Si ≤ maxj(Sj − Ej) or Si > maxj(Sj − Ej). Note that if Si >
maxj(Sj −Ej), the distribution function F maximizing (1.3) will take the value
1 at Si, since there is no term log{F (Sj) − F (Sj − Ej)} with Sj − Ej ≥ Si. So
there is no impediment to giving F (Si) its maximal value, which is 1.

Hence, defining this time

Δi2 = {Ei < Si ≤ max
j:Sj>Ej

(Sj − Ej)}, (1.6)
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and

Δi3 = {Ei < Si, Si > max
j:Sj>Ej

(Sj − Ej)}, (1.7)

we can write the log likelihood in the incubation time model in the form

�(F ) =
n∑

i=1

[
Δi1 logF (Si)+Δi2 log{F (Si) − F (Si − Ei)}

+ Δi3 log{1 − F (Si − Ei)}
]
. (1.8)

with the Δij ’s defined by (1.5) to (1.7), using a preliminary reduction of the
maximization problem that was also used in [15] in the interval censoring, case
2, problem. Note, however, that the indicators Δi2 and Δi3 have a very different
meaning in the interval censoring model.

Remark 1.1. Note that if Si > M1, where M1 is the (unknown) upper bound
for the length of the incubation time, we must have:

Si > max
j:Sj>Ej

(Sj −Ej)

since maxj:Sj>Ej (Sj − Ej) is a lower bound for M1. So a distribution function
F , maximizing the log likelihood, will assign the value 1 to F (Si) if Si > M1.

The limit distribution of the nonparametric MLE of the incubation time dis-
tribution has not been derived before, but because of the (at least algorithmic)
similarity of its computation to the computation of the nonparametric MLE in
the interval censoring problem, one would expect that similar techniques could
be used in its derivation. The algorithmic similarity was indeed used in [8], but
the limit distribution remained an open problem.

It seems that these facts are not generally known in medical statistics. As
an example, it is claimed in Appendix D of the recent paper [2] that the non-
parametric MLE of the incubation distribution function does not have

√
n con-

vergence and that the central limit theorem does not hold, with a reference in
a note to [1]. But [1] is a paper on Manski’s maximum score estimator and
some closely related estimators, where one does not have to deal with the spe-
cific problems one has to deal with in the present case. We do not see how the
rate of convergence of the nonparametric MLE for the incubation time distri-
bution can be deduced from it, let alone its asymptotic distribution. Theory for
Manski’s score estimator was already developed in 1990 in [20].

In fact, different rates of convergence can be expected, depending on the
angle from which one approaches the problem. If one views the problem as the
problem of estimating a fixed finite number of parameters, the rate is

√
n and

asymptotic normality holds (see [10]). If one uses the continuous model, as we
do in the present paper, the rate is cube root n, but only under a separation
condition for the distribution of the exposure time, specified in Theorem 3.1. In
this case, the asymptotic distribution is given in Theorem 4.1. If this separation
condition does not hold, the rate is still unknown.
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The limit distribution of the MLE for the algorithmically similar interval
censoring, case 2, problem was derived in [6], in the so-called strictly separated
case, where the length of the observation intervals has a strictly positive lower
bound (without the separation condition, the nonparametric MLE is expected
to have the faster rate (n logn)1/3, but this still has not been proved, see [14]).
The result seems to be little known. In the present paper, we prove the limit
result using similar, rather complicated methods. Till now, there are no tools
available for proving this type of limit results in another way.

We give the result on the convergence of the rescaled MLE to Chernoff’s limit
distribution in Section 4, under a condition that seems somewhat similar to the
strict separation hypothesis in the interval censoring problem. As a preparation
to our limit result, we first characterize the MLE as the derivative of the least
convex minorant of a self-induced cusum diagram in section 2.

The cusum diagram is an often used tool in the theory of isotonic regression
(because the distribution function is monotone, our estimation problem is an
isotonic regression problem), but the peculiar feature of the cusum diagrams
used here is that they contain the solution F̂n (the MLE) itself in their definition.
It is a so-called “‘self-induced cusum diagram”. The necessary and sufficient
conditions in the characterization of the MLE in this way are given in section 2.
We illustrate the (iterative) algorithm for computing the MLE on a data set on
COVID-19, also analyzed in [8]. Algorithms of this type (the iterative convex
minorant algorithms) were proved to converge in [19]. Another algorithm, the
so-called support reduction algorithm, is discussed in [10]

The characterization of section 2 is used to prove consistency of the MLE in
section 3. The convergence to Chernoff’s distribution is then given in section 4,
where also some numerical results on its variance are given.

Then, in section 5 we define the Smoothed Maximum Likelihood Estimator
(SMLE) F̃nh(t) at points t away from the boundary by

F̃nh(t) =
∫

IKh(t− x) dF̂n(x), IKh(x) = IK(x/h), (1.9)

where IK is an integrated kernel, defined by

IK(x) =
∫ x

−∞
K(y) dy, (1.10)

and K is a symmetric kernel of the usual kind, used in density estimation. Near
the boundary we use the Schuster-type boundary correction, also used in Section
11.3 of [12] in the definition of the SMLE. We assume that K has support [−1, 1].

It is shown that the SMLE has a normal limit distribution and has a faster
convergence than the nonparametric MLE itself (rate n2/5 instead of n1/3). In
spite of the fact that its variance is implicitly defined as the solution of an inte-
gral equation, we can compute bootstrap confidence intervals for the distribution
function via the SMLE, where we do not have to assume that the (asymptotic)
variance is known. In this section we also give a method for determining the
asymptotically optimal bandwidth automatically (see subsection 5.1).
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It has several advantages to base the confidence intervals on the SMLE instead
of the MLE. It follows from recently developed theory (see, e.g., [23]) that direct
bootstrap confidence intervals, based on the MLE, will be inconsistent. One can
also base bootstrap confidence intervals on the MLE itself, using the SMLE
intermediately to center the bootstrap intervals, as is done in [23] for the interval
censoring model. But these intervals converge at a lower speed again and have
the unpleasant property of having jumps at the locations of the jumps of the
MLE, which is a kind of artefact of the method. Since, using the method of
[23], one needs the SMLE anyway for making the bootstrap confidence intervals
consistent, it seems preferable to also base the confidence intervals on the SMLE
itself (as is done in the present paper), and not on the MLE.

In sections 5 to 7 we show that the estimation methods based on the non-
parametric MLE and SMLE are competitive with the parametric models, even
if the parametric assumptions are satisfied, and that the inconsistency that is
inherent in the use of the latter methods is in this way avoided. Moreover, one
is discharged from the duty of introducing several of these parametric methods,
since there is no sound reason to choose one of them.

Our computations are reproducible by using the R scripts in [7]. An altogether
different approach of the estimation problems is given in [10].

2. Characterization of the nonparametric maximum likelihood
estimator (MLE) for the incubation time distribution

First, just as in [8], we reduce the problem to the problem of maximizing on the
cone {y ∈ Rm

+ : y = (y1, . . . , ym), 0 ≤ y1 ≤ · · · ≤ ym}, where the yj represent
the values F (Si) and F (Si − Ei) and where m is suitably chosen (see [8]).

Since, again just as in [8], we want to reduce the problem to the problem
of maximizing inside the cone, enabling us to differentiate w.r.t. the variables
yi, we define F (Si) = 1 if Si > maxj:Sj>Ej (Sj − Ej), and F (Si − Ei) = 0 if
Si−Ei < minj Sn. Note that other choices of F at these points would make the
log likelihood smaller. For convenience of notation, we define

mn = max
j:Sj>Ej

(Sj −Ej). (2.1)

Then, for a distribution function F on R+, satisfying these conditions, we
define the process

Wn,F (t)

=
∫ {s ≤ t ∧ e}

F (s) dQn(e, s) −
∫ {0 < s− e ≤ t, t < s ≤ mn}

F (s) − F (s− e) dQn(e, s)

+
∫ {s ≤ t ∧mn, s > e}

F (s) − F (s− e) dQn(e, s) −
∫ {s− e ≤ t, s > e ∨mn}

1 − F (s− e) dQn(e, s).

(2.2)

where we define 0/0 = 0, and where Qn is the empirical distribution of (E1, S1),
. . . , (En, Sn). Note that the MLE is only determined at the points Si1{Si≤Ei}
and (Si −Ei)1{Si>Ei} and is zero at 0.
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We restrict the distribution functions, occurring in the problem of maximizing
the likelihood to the following set.

Definition 2.1. Let Fn be the set of discrete distribution functions F , which
only have mass at the points Si or (Si −Ei)1{Si>Ei} and satisfy

F (Si) = 1 if Si > max
j:Sj>Ej

(Sj −Ej), (2.3)

and

F (Si − Ei) = 0 if Si − Ei < min
j

Sj . (2.4)

Now, let T1 < · · · < Tm be the points Si or Si − Ei such that Si not of type
(2.3) and Si − Ei is not of type (2.4). Then 0 < F (Ti) < 1 for i = 1, . . . ,m, if
the log likelihood for F is finite, and we can define:

Y = {y ∈ (0, 1)m : y = (y1, . . . , ym) = (F (T1), . . . , F (Tm), F ∈ Fn}.

The log likelihood for F ∈ Fn, divided by n, can be written

�n(F ) =
∫

log{F (s) − F (s− e)} dQn(s, e)

=
∫
s≤e

logF (s) dQn(e, s) +
∫
e<s≤mn

log{F (s) − F (s− e)} dQn(e, s)

+
∫
s>e∨mn

log{1 − F (s− e)} dQn(e, s).

(2.5)

The corresponding function of y = (y1, . . . , ym) = (F (T1), . . . , F (Tm)) is de-
noted by φn(y):

φn(y) = φn(y1, . . . , ym) = φn(F (T1), . . . , F (Tm)) = �n(F ). (2.6)

We have the following lemma.

Lemma 2.1. Let Wn,F be defined by (2.2) and let φn be defined by (2.6).
Moreover, let

y = (F (T1, . . . , F (Tm)),

where T1 < · · · < Tm are the points Si and (Si − Ei)1{Si>Ei} which are not of
type (2.3) or (2.4), arranged in strictly increasing order Then

∂

∂yj
φn(y) = ΔWn,F (Tj), j = 1, . . . ,m, (2.7)

where ΔWn,F (Tj) is the increment of the process Wn,F at Tj.
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Proof. If Tj corresponds to a value Si such that Si ≤ Ei, the corresponding
term in (2.5) is of the form logF (Si) and differentiation of (2.6) w.r.t. F (Si)
gives the following contribution to the partial derivative ∂

∂yj
φn(y):

∑
k

{Sk ≤ Ek, Sk = Si}
nF (Si)

,

where we make a summation over the k to allow for possible ties at Si.
If Tj corresponds to a point Si − Ei such that Tj = Si − Ei > 0 and Tj <

Si ≤ mn, we deal with a term

log{F (Si) − F (Si −Ei)}

in (2.5) and differentiation of φn(y) w.r.t. F (Si −Ei) gives a contribution

−
∑
k

{Tj ∨ Ek < Sk ≤ mn, Sk −Ek = Si −Ei}
n{F (Sk) − F (Sk −Ek)}

,

where we make again a summation over k to allow for possible ties at Si.
If Tj corresponds to a point Si such that Tj = Si > Ei and Si ≤ mn, we deal

with the argument F (Si) of the term

log{F (Si) − F (Si −Ei)}

in (2.5) and differentiation w.r.t. F (Si) gives a term

∑
k

{Ek < Sk ≤ mn, Sk = Si}
n{F (Sk) − F (Sk − Ek)}

,

where we make again a summation over k to allow for possible ties at Si.
Finally, if Tj corresponds to a point Si −Ei such that Si > mn ∨Ei, we deal

with a term

log{1 − F (Si − Ei)}

and differentiation and differentiation of φn(y) w.r.t. F (Si −Ei) gives a contri-
bution

−
∑
k

{Sk > mn, Sk −Ek = Si −Ei}
n{1 − F (Sk −Ek)}

,

So we get:

∂

∂yj
φn(y) = ΔWn,F (Tj), j = 1, . . . ,m.

The following lemma characterizes the MLE.
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Lemma 2.2. Let the class of distribution functions Fn be defined by Defini-
tion 2.1. Then F̂n ∈ Fn maximizes (1.3) over F ∈ Fn if and only if

(i) ∫
u∈[t,∞)

dWn,F̂n
(u) ≤ 0, t ≥ 0, (2.8)

(ii) ∫
F̂n(t) dWn,F̂n

(t) = 0. (2.9)

where Wn,Fn is defined by (2.2). Moreover, F̂n ∈ Fn is uniquely determined by
(2.8) and (2.9).

Proof. Suppose (2.8) and (2.9) are satisfied. Letting y = (F (T1, . . . , F (Tm))
and x = (F̂n(T1), . . . , F̂n(Tm)), we get from the concavity of the logarithmic
function:

�n(F ) − �n(F̂n) ≤ 〈∇φn(x),y − x〉

=
∫
{F (t) − F̂n(t)} dWnF̂n

(t) =
∫

F (t) dWnF̂n
(t),

using (ii) in the last step. But∫
F (t) dWnF̂n

(t) =
∫

0≤u≤t

dF (u) dWnF̂n
(t)

=
∫ {∫

t∈[u,∞)
dWnF̂n

(t)
}

dF (t) ≤ 0,

using (i) in the last inequality.
Conversely, if F̂n maximizes the likelihood and

y = (F̂n(T1), . . . , F̂n(Tm)),

we have

lim
ε↓0

ε−1 {φn(y1, . . . , yi + ε, . . . , ym + ε) − φn(y1, . . . , ym)}

=
∫
u∈[Ti,∞)

dWn,F̂n
(u) ≤ 0,

for i = 1, . . . ,m, and hence∫
u∈[t,∞)

dWn,F̂n
(u) ≤ 0, t ≥ 0,
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and similarly

lim
ε↓0

ε−1 {φn(y1 + εy1, . . . , ym + εym) − φn(y1, . . . , ym)} =
∫

F̂n(t) dWn,F̂n
(t)

= 0.

The uniqueness can be proved aong the same lines as in the proof of Proposition
1.3 in [15]. We omit the details.

A picture of the point process {(Ti,Wn,F̂n
(Ti)), i = 1, 2, . . . } in a simulation

of the incubation time distribution, for Ti running through the points Si and
(Si−Ei)+ between the minimum of the Si and the maximum of the (Si−Ei)+.
is given in Figure 1 for sample size n = 100. The process Wn,F̂n

touches zero at
points just to the left of points of mass of F̂n.

Fig 1. The point process {(Ti,Wn,F̂n
(Ti)), i = 1, 2, . . . } for points Ti, running through points

Si and Si − Ei between the minimum of the Si and the maximum of the Si − Ei. Sample
size n = 100. The data correspond to a truncated Weibull distribution for the incubation time
distribution, used in simulations of the incubation time distribution. The points are connected
by line segments.

We define the process Vn by

Vn(t) =
∫
u∈[0,t]

F̂n(u) dGn(u) + Wn,F̂n
(t), (2.10)

where Gn = Gn,F̂n
is defined by (2.13) for F = F̂n. Thus F̂n is obtained by

taking the left-continuous slope of the “self-induced” cusum diagram, defined
by (0, 0) and points

(Gn(t), Vn(t)) , t ≥ 0. (2.11)

As explained in [8], one can compute the MLE by the iterative convex mino-
rant algorithm, where one computes iteratively the greatest convex minorant of
the cusum diagram with points (0, 0) and points(

Gn,F (t),
∫
u∈[0,t]

F (u) dGn,F (u) + Wn,F (t)
)
, (2.12)
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where the “weight process” Gn,F is defined by

Gn,F (t) =
∫
s≤t

{s ≤ t ∧ e}
F (s)2 dQn +

∫
0<s−e≤t

{0 < s− e ≤ t, t < s ≤ mn}
{F (s) − F (s− e)}2 dQn

+
∫
s∨e≤t

{s ≤ t ∧mn, s > e}
{F (s) − F (s− e)}2 dQn

+
∫
s−e≤t, s>mn

{s− e ≤ t, s > e ∨mn}
{1 − F (s− e)}2 dQn, (2.13)

where F is the temporary estimate of the distribution function at an iteration.
The MLE F̂n corresponds to a stationary point of this algorithm and is given by
the left-continuous slope of the greatest convex minorant of the cusum diagram,
see Figure 2. See [8] for further remarks on this algorithm. The algorithm is
implemented in the R scripts in [7].

Fig 2. The cusum diagram {(Gn(Ti), Vn(Ti)), i = 1, 2, . . . }, where Ti runs through the ordered
points (Si−Ei)+ and Si and Vn is defined by (2.10), together with its greatest convex minorant
(red curve). Sample size n = 100.

The steps in the iterative algorithm are modified by a line search algorithm,
see section 7.3 of [12] and in particular the description of this modified iterative
convex minorant algorithm on p. 173. The modified iterative convex minorant
algorithm is guaranteed to converge by Theorem 7.3 of [12], see also [19]. The
modified version is used in the R scripts acccompanying this paper [7].

Example 2.1. The first time the methods just described were used for the
estimation of the incubation time distribution for Covid-19 was in the analysis
of real data on set of 88 travelers from Wuhan in [8]. The data set is included in
[8] and extracted from the supplementary material of [3]. In this case we have:

φn(y) =
∑

0<j≤m

N0i log yj +
∑

0<i<j≤m

Nij log(yj − yi) +
∑
i≤m

Ni,m+1 log(1 − yi),

where m = 6, φn is defined by (2.5), and the matrix (Nij), 0 ≤ i < j ≤ m + 1
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is given by:

1 3 4 0 0 2 0
2 1 0 0 0 9

0 1 1 0 4
1 0 2 3

1 0 6
1 3

3

The corresponding points T1, . . . , T6 are given by Ti = i + 2 and the MLE is
given in Figure 3. For comparison the maximum likelihood estimator, assuming
that the incubation time distribution is a Weibull distribution, is also given in
this picture. The nonparametric MLE F̂n was denoted by Ĝn in [8].

Fig 3. The nonparametric MLE F̂n of the incubation time distribution function (blue), and
the MLE using the Weibull distribution (red, dashed), for the 88 Wuhan travelers.

The result can be reproduced by running the R script analysis_ICM.R in [7].
Exactly the same result is given by the support reduction algorithm, given in
[10]. We note that because of the discretization effect, we estimate in fact the
integrals ∫ i+1

i

F0(t) dt, i = 0, 1, . . .

instead of the distribution function itself (also in the parametric models), see
Section 8 and [10].

3. Consistency of the MLE

We have the following result.

Theorem 3.1. Let the incubation time distribution function F0 have a strictly
positive continuous density f0 on (0,M1), for some M1 > 0. Furthermore, let
FE be a distribution function on [0,M2], M2 > M1/2, which is 0 on [0, ε] for
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some ε ∈ [0, (M1 ∧ M2)/2) and has a continuous strictly positive derivative
fE on [ε,M2]. Let F̂n ∈ Fn be the nonparametric MLE, where Fn is the set
of distribution functions defined in Definition 2.1. Then F̂n converges almost
surely to F0 on [0,M1] in the supremum metric.

There are a lot of different ways to prove consistency, but we feel a preference
for the elegant method in [18], which is used in the proof below.

Proof. We use the same method as in section 4.2 of the second part of the book
[15]. Let ψ(F ) be defined by

ψ(F ) =
∫

log{F (s) − F (s− e)} dQn(e, s),

for distribution functions F on R, which satisfy F (x) = 0, x ≤ 0. Then we get:

lim
ε↓0

ε−1
{
ψ
(
(1 − ε)F̂n + εF0

)
− ψ
(
F̂n

)}
≤ 0,

since F̂n is the MLE. The limit exists because of the concavity of ψ. Evaluating
this limit, we get: ∫

F0(s) − F0(s− e)
F̂n(s) − F̂n(s− e)

dQn(e, s) ≤ 1.

Proceeding as in section 4.2 of the second part of the book [15], we get from
this, if F is a limit point for F̂n (using Helly’s compactness theorem):∫

e−1 {F0(s) − F0(s− e)}2

F (s) − F (s− e) ds dFE(e) ≤ 1. (3.1)

We want to show that the minimum over F on the left is equal to 1, and that
this can only be attained if F = F0. Note that by Remark 1.1, F̂n(s) = 1, if
s ≥ M1, and hence also F (s) = 1, if s ≥ M1. This implies∫

e−1{F (s) − F (s− e)} ds dFE(e) = 1. (3.2)

We therefore have:∫
e−1
{
{F0(s) − F0(s− e)}2

F (s) − F (s− e) + {F (s) − F (s− e)
}

ds dFE(e)

=
∫
s≤e

e−1
{
F0(s)2

F (s) + F (s)
}

ds dFE(e)

+
∫
e<s≤M1

e−1
{
{F0(s) − F0(s− e)}2

F (s) − F (s− e) + {F (s) − F (s− e)
}

ds dFE(e)

+
∫
s>M1∨e

e−1
{
{1 − F0(s− e)}2

1 − F (s− e) + 1 − F (s− e)
}

ds dFE(e)

≤ 2. (3.3)
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The function

(x, y) �→ {F0(s) − F0(s− e)}2

y − x
+ y − x

is minimized if x = F0(s− e) and y = F0(s) (also if F0(s− e) = 0 or F0(s) = 1).
If F would not be equal to F0, it would be different from F0 on an interval,
using the monotonicity of F and F0 and the continuity of F0, and then the left
side of (3.3) would be strictly larger than 2. Hence, by (3.2), the left side of (3.1)
would be strictly larger than 1, a contradiction.

4. Asymptotic distribution of the MLE in the model for the
incubation time

We have the following result for the MLE in the model for the incubation time.

Theorem 4.1. Let the conditions of Theorem 3.1 be satisfied and let, more-
over, fE have a bounded derivative on the interval (ε,M2). Let F̂n ∈ Fn be the
nonparametric MLE, where the set of distribution functions Fn is defined in
Definition 2.1, and let F0 be the distribution function of the incubation time.
Then we have at a point t0 ∈ (0,M1):

n1/3{F̂n(t0) − F0(t0)}/(4f0(t0)/cE)1/3 d−→ argmin
{
W (t) + t2

}
, (4.1)

where W is two-sided Brownian motion on R, originating from zero and where
the constant cE is given by:

cE =
∫

e−1
[

1
F0(t0) − F0(t0 − e) + 1

F0(t0 + e) − F0(t0)

]
dFE(e), (4.2)

The result shows that the limit distribution is given by Chernoff’s distribu-
tion. The jump in difficulty of the proof in going from the corresponding result
for the current status model (not discussed in this paper) to more general cases
of interval censoring models and to the model for the incubation time distribu-
tion is considerable. One expects in fact that Chernoff’s distribution will often
occur as (a universal) limit distribution in these contexts, but proving this might
be very hard.

The proof of Theorem 4.1 is given in the Appendix, section 9.3. For the
interval censoring, case 2, model the limit distribution of the MLE, under the
so-called strict separation condition, was derived in [6]. The strict separation
condition in the interval censoring, case 2, model seems somewhat comparable
to the condition that Ei has no mass on an interval [0, ε] in the present model.
That the exposure time (as observed!) has a strictly positive lower bound does
not seem such an unreasonable assumption.

At several places of the proof in section 9.3 of the appendix, we use arguments
improving on the arguments in [6], and the proof of the limit result for the
interval censoring model in [6] could be improved similarly. But we will not go
into these matters in this paper.
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It is of interest to investigate whether the nonparametric MLE has sample
variances that resemble the asymptotic variance of Theorem 4.1. To this end we
computed the variances over 1000 simulations of the MLE F̂n(t) at t = 6, if the
underlying distribution function is the truncated Weibull distribution function
Fα,β , defined by

Fα,β(x) def=

⎧⎨
⎩

0 , x < 0,
{1 − exp(−βx−α)} / {1 − exp(−M1x

−α)} , x ∈ [0,M1],
1 , x > M1,

(4.3)

where we choose M1 = 20. We chose α = 3.03514 and β = 0.0026195, which
were the values of the estimates in the data on the Wuhan travelers, discussed
in [8] and section 5 of the present paper, if one assumes that F0 is a truncated
Weibull distribution. The distribution function FE of the exposure time was
taken to be the uniform distribution on the interval [1, 30].

Table 1

n2/3 times the variances of F̂n(6) for 1000 simulations for the model, where FE is uniform
on [1, 30] and F0 is a truncated Weibull distribution on [0, 20]. The limit value of Theorem

4.1 is denoted. by ∞.
n 100 500 1000 5000 10, 000 ∞

n2/3· variance 0.38990 0.36071 0.32329 0.28816 0.27188 0.27489

The asymptotic variance, given by Theorem 4.1, was computed using the
software package Mathematica, where the asymptotic variance σ2 of the location
of the minimum of W (t) + t2, t ∈ R, was taken from [16], see Table 4 of [16],
where the value σ2 = 0.26355964 is given.

5. Confidence intervals for the distribution function

We now construct pointwise confidence intervals for the distribution function
on the basis of the SMLE (smoothed maximum likelihood estimator), defined
by (1.9). We have the following result.

Theorem 5.1. Let the conditions of Theorem 4.1 be satisfied and let hn be a
bandwidth such that hn ∼ cn−1/5, as n → ∞, for some c > 0. Moreover, let the
density f0 be differentiable at t ∈ (0,M1), and let Kh be defined by

Kh(u) = h−1K(u/h). (5.1)

for the symmetric kernel K which is the derivative of IK, defined by (1.10).
Finally, let the SMLE F̃nh be defined by (1.9). Then

n2/5 {F̃n,hn(t) − F0(t)
} d−→ N(μ, σ2),

where

μ = 1
2c

2f ′
0(t)
∫

u2K(u) du. (5.2)
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Moreover, if Q0 is the probability measure of (Ei, Si),

σ2 = lim
n→∞

n−1/5‖θn,t,F0‖2
Q0

= lim
n→∞

n−1/5
∫

θn,t,F0(e, s)2 dQ0(e, s), (5.3)

where

θn,t,F0(s, e) = φn,t,F0(s) − φn,t,F0(s− e)
F0(s) − F0(s− e) ,

and the function φn,t,F0 solves the integral equation∫
e>0

e−1
[

φ(x + e) − φ(x)
F0(x + e) − F0(x) − φ(x) − φ(x− e)

F0(x) − F0(x− e)

]
dFE(e)

= −Khn(t− x), x ∈ (0,M1). (5.4)

The proof is given in Section 9.4. We here give an outline of the proof. We
consider: ∫

IKh(t− u) d
(
F̂n − F0

)
(u) = −

∫
θF̂n

(e, s) dQ0(e, s), (5.5)

where

θF̂n
(e, s) =

φF̂n
(s) − φF̂n

(s− e)
F̂n(s) − F̂n(s− e)

,

and where φF̂n
solves the integral equation∫

e>0
e−1
[

φ(v + e) − φ(v)
F̂n(v + e) − F̂n(v)

− φ(v) − φ(v − e)
F̂n(v) − F̂n(v − e)

]
dFE(e)

= −Khn(t− v), v ∈ (0,M1), (5.6)

replacing F0 by F̂n in (5.4). Note that φF̂n
has both discrete and absolutely

continuous parts. We do not have an explicit expression for φF̂n
or φn,t,F0 , but

can compute it numerically, see [7].
Let Qn the empirical measure of (E1, S1), . . . , (En, Sn). The proof of the

result can then be continued by proving

−
∫

θF̂n
(e, s) dQ0

=
∫

θF̂n
(e, s) d

(
Qn −Q0

)
+ op

(
n−2/5

)
=
∫

θn,t,F0(e, s) d
(
Qn −Q0

)
+ op

(
n−2/5

)
,

where we have a representation of
∫
IKh(t − u) d

(
F̂n − F0

)
(u) in terms of an

integral in the observation space
∫
θn,t,F0 d(Qn − Q0) in the last line, see Sec-

tion 9.4.
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Using Theorem 5.1, we can construct confidence intervals, using the boot-
strap, where we keep the exposure times Ei fixed. Our bootstrap sample consists
of:

(E1, S
∗
1 ), . . . , (En, S

∗
n),

where

S∗
i = U∗

i + V ∗
i , (5.7)

and where U∗
i is uniform on [0, Ei] and V ∗

i is generated from the SMLE of the
incubation time with a bandwidth h0 of order n−1/9. The oversmoothing is used
to deal with the bias (see below) and was introduced in [17] in the context of
nonparametric regression analysis.

The random variables V ∗
i are generated by first generating a random variable

V ∗
i1 from the discrete distribution, corresponding to the nonparametric maxi-

mum likelihood estimator F̂n, and adding a random variable h0V
∗
i,2, where V ∗

i,2
is obtained by rejection sampling from the triweight kernel K, defined by

K(x) = 35
32
(
1 − x2)3 1[−1,1](x), x ∈ R, (5.8)

and where h0 � n−1/9. The 95% bootstrap confidence intervals are given by(
F̃nh(t) −Q∗

0.975(t), F̃nh(t) −Q∗
0.025(t)

)
, (5.9)

where Q∗
0.025(t) and Q∗

0.975(t) are the 2.5th and 97.5th percentiles of the values
of

F̃ ∗
nh(t) − F̃nh0(t)

for 1000 (bootstrap) samples of (5.7), and where F̃ ∗
nh is the SMLE with band-

width h, corresponding to the MLE F̂ ∗
n computed for a bootstrap sample of size

n.

Example 5.1. We consider smoothed bootstrap confidence intervals for a set
of n = 500 observations, based on the SMLE. For Figure 4 all 1000 values
F̃ ∗
nh(t) − F̃n,h0(t), and the percentiles Q∗

0.025(t) and Q∗
0.975(t) were determined.

Here and in the examples in the sequel we use the triweight kernel, defined by
(5.8), and IK is defined by

IK(x) =
∫ x

−∞
K(u) du, x ∈ R. (5.10)

The incubation distribution was generated by the Weibull distribution also
used in the parametric models:

Fα,β(x) def=
{

0 , x < 0,
1 − exp(−βx−α), , x ≥ 0, (5.11)

where α = 3.03514 and β = 0.0026195. So, strictly speaking, the assumptions
of Theorem 4.1 are not satisfied, but the tail of this Weibull distribution is so
thin that the model is close to the model (4.3).
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Fig 4. Smoothed bootstrap confidence intervals for a set of n = 500 observations, based on the
SMLE. The red curve is the Weibull distribution function Fα,β , defined by (5.11), from which
the incubation time distribution is generated. The blue curve is the SMLE. The distribution
of the exposure times Ei is uniform on [1, 30]. The bandwidths are h = 3 and h0 = 7.

The following result shows that we can expect the SMLE’s computed on the
basis of the bootstrap samples to behave asymptotically in the same way as the
original SMLE’s.

Theorem 5.2. Let the conditions of Theorem 5.1 be satisfied. Moreover, let
h ∼ cn−1/5 and h0 ∼ c0n

−1/9, for some positive constants c and c0. Then, at
t ∈ (0,M1),

n2/5 {F̃ ∗
nh(t) − F̃nh0(t)

} D−→ N(μ, σ2),

given (E1, S1), . . . , (En, Sn), almost surely along sequences (E1, S1), (E2, S2), . . . ,
where μ and σ2 are defined by (5.2) and (5.3).

The proof of this result follows the lines of the proof of Theorem 5.1 in Sec-
tion 9.4, apart from the fact that in this case the distribution function generating
the (bootstrap) incubation times is F̃nh0 (instead of F0), which converges al-
most surely to F0 and that therefore Lindeberg-Feller conditions are used for the
central limit theorem because of the varying underlying measure. This matter
is discussed in the context of a nonparametric regression model in [13].

Note that the centering constant μ arises from the difference∫
Kh(t− u) F̃nh0(u) du− F̃nh0(t) ∼ 1

2h
2F̃ ′′

nh0
(t) ∼ 1

2h
2F ′′

0 (t),

and that we need here that h0 tends to zero slower than n−1/5, see section 5.1
below.

5.1. Bandwidth selection

We propose a bootstrap method to find an approximately MSE optimal band-
width for estimating F0(t) at a point t ∈ (0,M1). The MSE we want to minimize
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as a function of h is given by:

MSEh(t) = E
{
F̃nh(t) − F0(t)

}2
. (5.12)

The analogous bootstrap quantity (using oversmoothing, in the sense that h0 �
n−1/9) is given by:

MSE∗
h(t) = E

{{
F̃ ∗
nh(t) − F̃nh0(t)

}2 ∣∣∣ (E1, S1), . . . , (En, Sn)
}
, (5.13)

where h0 is called a “pilot” bandwidth. We shall show that (5.13) is asymp-
totically independent of the constant c0 in the pilot bandwidth h0 if we take
h0 = c0n

−1/9.
Using integration by parts, we can write

F̃ ∗
nh(t) − F̃nh0(t) =

∫
Kh(t− x)

{
F̂ ∗
n(x) − F̃nh0(x)

}
dx

+
∫

Kh(t− x) F̃nh0(x) dx− F̃nh0(t).

We have (MSE is variance + squared bias):

MSE∗
h(t)

∼ E

{{∫
Kh(t− x)

{
F̂ ∗
n(x) − F̃nh0(x)

}
dx

}2 ∣∣∣ (E1, S1), . . . , (En, Sn)
}

+
{∫

Kh(t− x) F̃nh0(x) dx− F̃nh0(t)
}2

. (5.14)

For the second term on the right we get:∫
Kh(t− x) F̃nh0(x) dx− F̃nh0(t) = 1

2h
2F̃ ′′

nh0
(t)
∫

u2K(u) du + op
(
h2) ,

so

E

{{∫
Kh(t− x) F̃nh0(x) dx− F̃nh0(t)

}2 ∣∣∣ (E1, S1), . . . , (En, Sn)
}

= 1
4h

4F̃ ′′
nh0

(t)2
{∫

u2K(u) du
}2

+ op
(
h4) .

We have the following result.

Lemma 5.1. Let the conditions of Theorem 5.1 be satisfied. Moreover, let h0 =
hn,0 ∼ c0n

−1/9, as n → ∞. Then

F̃ ′′
nh0

(t) p−→ f ′
0(t), n → ∞.

For reasons of space we omit the proof here. More details on this type of
lemma can be found in [13] in the context of monotone regression.
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Remark 5.1. Note that this convergence result does not hold if the pilot band-
width h0 is of order n−1/5. For this reason the method suggested in [23], where
the pilot bandwidth is chosen of order n−1/5 will not work, since in that case the
variance of F̃ ′′

nh0
(t) will not tend to zero. Another way out is to use subsampling,

as used in [11], but choosing the right subsample size is a rather hard problem.
Since the first order behavior of the first term of (5.14) also only depends

on h and n and not on h0, the dependence on the constant c0 in the pilot
bandwidth disappears in first order, as n → ∞, which indicates robustness of
this bandwidth choice procedure. In fact, n4/5 times the first term of (5.14)
tends to the limit variance (5.3) and n4/5 times the second term of (5.14) tends
to the squared bias μ2, where μ is defined by (5.2), irrespective of the constant
c0 in the pilot bandwidth h0 = c0n

−1/9.

Instead of minimizing (5.13) we minimize a Monte Carlo approximation of a
modified version of (5.13):

B−1
B∑
i=1

m∑
j=1

{
F̃ ∗,i
nh (tj) − F̃nh0(tj)

}2
, (5.15)

where the F̃ ∗,i
nh (tj), i = 1, . . . , B, tj , . . . ,m are the estimates in B bootstrap

samples on a grid of equidstant points tj . The script for this procedure is given
by the R script bandwidth_choice_df.R on [7]. A picture of the bootstrap MSE
(5.15) as a function of h for the data of Figure 4 is shown in Figure 5.

Fig 5. The bootstrap MSE for the data in Figure 4.

5.2. Comparison of SMLE with parametric models

To make a comparison between the behavior of the SMLE and the parametric
models, we simulated the model with the incubation time, given by (5.11), where
α = 3.03514 and β = 0.0026195. We generated 1000 samples of size n = 500
and computed the box plots for the estimates of the SMLE and the Weibull and
log-normal distribution function at t = 6. The bandwidth for the SMLE was
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h = 3, which is close to the value in subsection 5.1, minimizing the integrated
MSE for the example, considered there. The distribution of the exposure times
Ei is uniform on [1, 30].

Figure 6 illustrates that the SMLE is very much on target, but only has a
slightly larger variance than the Weibull estimate, which is the right parametric
estimate in this case. The log-normal estimate is totally off, as can also be seen
from this figure.

Fig 6. Box plot of estimates of Fα,β(6), where Fα,β is defined by (5.11), with α = 3.03514 and
β = 0.0026195, for the SMLE and Weibull and log-normal maximum likelihood estimators
for 1000 samples of size n = 500. The incubation time data are generated from Fα,β . The red
line denotes the value of the true Fα,β(6). The SMLE has bandwidth h = 3.

We also generated 1000 samples of size n = 500 from the log-normal distribu-
tion and computed the box plots for the estimates of the SMLE and the Weibull
and log-normal distribution function at t = 6. We generated random vari-
ables from the log-normal distribution via the R command rlnorm(1, meanlog
=1.763329, sdlog = 0.3728888), see [7]. The distribution of the exposure
times Ei is again uniform on [1, 30].

It is seen from Figure 7 that this time the Weibull estimates are totally
off, but that the SMLE behaves again reasonably. The SMLE will indeed be
consistent in both cases, as a consequence of Theorem 3.1, in contrast with the
parametric estimates.

To compute confidence intervals for the parametric models, we compute an
estimate of the asymptotic variance of the estimates Fα,β(x), where Fα,β(x) is
either a Weibull distribution function or a log-normal distribution function. To
this end we first compute the observed Fisher information for the parameters α
and β under the parametric assumption. So we compute

I(α̂n, β̂n) = −
(

∂2

∂α2
∂2

∂α∂β
∂2

∂α∂β
∂2

∂β2

)
�(Fα,β)

∣∣∣
(α,β)=(α̂nβ̂n)

,
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Fig 7. Box plot of estimates of Gα,β(6), where Gα,β is the log-normal distribution, with
location an scale paramters α and β, specified in the text, for the SMLE and Weibull and
log-normal maximum likelihood estimators for 1000 samples of size n = 500. The incubation
time data are generated from Gα,β . The red line denotes the value of the true Gα,β(6). The
SMLE has bandwidth h = 3.

where

�(Fα,β) = n−1
n∑

i=1
log {Fα,β(Si) − Fα,β(Si − Ei)}

This gives as estimate of the asymptotic covariance matrix of (α̂n, β̂n):

Sn =
(

Sn,11 Sn,12
Sn,12 Sn,22

)
def= I(α̂n, β̂n)−1

The variance of
√
n
{
Fα̂n,β̂n

(x) − Fα,β(x)
}

is now estimated by

σ̂n(x)2 =Sn,11

(
∂

∂α
Fα,β(x)

∣∣
(α,β)=(α̂nβ̂n)

)2
+ Sn,22

(
∂

∂β
Fα,β(x)

∣∣
(α,β)=(α̂nβ̂n)

)2

+ 2Sn,12
∂

∂α
Fα,β(x)

∣∣
(α,β)=(α̂nβ̂n)

∂

∂β
Fα,β(x)

∣∣
(α,β)=(α̂nβ̂n),

and hence we can use as 95% confidence intervals of Fα̂n,β̂n
(x):

[
Fα̂n,β̂n

(x) − 1.96 σ̂n(x)/
√
n, Fα̂n,β̂n

(x) + 1.96 σ̂n(x)/
√
n
]
,

using the asymptotic normality of (α̂n, β̂n) and the differentiability of Fα,β(x)
w.r.t. α and β. We compare this with the 95% bootstrap confidence intervals
for the SMLE, given by (5.9).

To this end we generated 1000 samples of size n = 500 from the Weibull and
the log-normal distributions, respectively, and computed the confidence interval
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Fig 8. Confidence intervals for a sample of size n = 500 from the Weibull distribution (5.11).
(a) SMLE, (b) Weibull and (c) log-normal intervals. The blue curve is the estimate and the
red curve the real Weibull distribution function.

Fig 9. Coverages for 1000 samples of size n = 500 from the distribution (5.11). (a) SMLE,
(b) Weibull and (c) log-normal coverages. The dashed red line segment is at level 0.95.

Fig 10. Confidence intervals for a sample of size n = 500 from the log-normal distribution
with parameters α = 1.76333 and β = 0.37288. (a) SMLE, (b) Weibull and (c) log-normal
intervals. The blue curve is the estimate and the red curve the real log-normal distribution
function.

at 99 equidistant points on the interval (0, 15). Examples of the estimates are
shown in Figures 8 and 10.

We plottted the coverages of the SMLE, Weibull estimate and log-normal
estimate in Figures 9 and 11. It is clear that the SMLE gives good coverages for
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Fig 11. Coverages for 1000 samples of size n = 500 from the log-normal distribution of Figure
10. (a) SMLE, (b) Weibull and (c) log-normal coverages. The dashed red line segment is at
level 0.95.

both underlying distributions, but that the parametric estimates only do well
if the data are generated from the same type of distribution, as was already
suggested by Figures 6 and 7. The coverages were computed by simply counting
the number of times the intervals contained the correct value of the distribution
function for all points of the grid and plotting the relative fraction of times it
was inside the interval. We only plotted the results in the range 3 to 10 (days),
since the distribution functions are either to close to zero or to 1 outside this
interval, so that all estimates become unreliable outside this range.

We finally also computed the lengths of the intervals as a function of the
location where they are computed. We simply took the means over the 1000
samples that were drawn. It is clear that the widths of the parametric intervals
are very similar in the two situations, but that the widths of the intervals of
the SMLE behave somewhat differently. It is also clear that the intervals of the
SMLE are generally the largest ones, as expected, but also that the differences
are not very large.

All results in this section can be reproduced by the R scripts in the directory
bootstrap of the repository incubationtime in [7].

6. Estimation of quantiles and comparison with parametric methods

We now illustrate the difference between the nonparametric approach and the
approach using distributions like the Weibull, log-normal, etc. for the incubation
time distribution. This is shown for the problem of estimating the 95th percentile
of the distribution. To this end we generated 1000 samples of size n = 500
and also size n = 1000, using the same Weibull distribution to generate the
incubation time distribution as we used in Section 5 for constructing confidence
intervals. This example is also given (for sample size n = 500) in [9].

In the Weibull approach to the problem, we maximize for α, β > 0:
n∑

i=1
log {Fα,β(Si) − Fα,β(Si − Ei)} , (6.1)
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Fig 12. Widths of the confidence intervals for the 100 points of the grid. The red curves
give the widths for the SMLE, the blue curves the widths for the Weibull estimates, and the
dashed black curve the widths for the log-normal estimates. (a) Results for the samples from
the Weibull distribution. (b) Results for the samples from the log-normal distribution.

where Fα,β is defined by (5.11). This gives a maximum likelihood estimate Fα̂,β̂

of the distribution function, where (α̂, β̂) maximizes (6.1) over (α, β). The esti-
mate of the 95th percentile is then defined by F−1

α̂,β̂
(0.95), where F−1

α̂,β̂
denotes

the inverse function.
In the log-normal approach to the problem, we maximize for α ∈ R and

β > 0:
n∑

i=1
log {Gα,β(Si) −Gα,β(Si −Ei)} , (6.2)

where Gα,β is defined by

Gα,β(x) = Φ ((log x− α)/β) , (6.3)

for x > 0 (zero otherwise), where β > 0 and Φ is the standard normal distribu-
tion function. The estimate of the percentile is then given by G−1

α̂,β̂
(0.95), where

(α̂, β̂) maximizes (6.2) over (α, β).
In the nonparametric maximum likelihood approach we simply maximize

n∑
i=1

log {F (Si) − F (Si −Ei)} ,

over all distribution functions F . This give the nonparametric MLE F̂n, from
which we compute the SMLE F̃n,hn(t) =

∫
IKh(t−y) dF̂n(y) and the estimate of

the 95th percentile F̃−1
n,hn

(0.95). The bandwidth h was chosen to be h = 6n−1/5.
Note that, using the delta method, we find:

n2/5
{
F̃−1
n,hn

(0.95) − F−1
α,β(0.95)

}
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= −n2/5
{
F̃n,hn(F−1

α,β(0.95)) − 0.95)
} /

fα,β

(
F−1
α,β(0.95)

)
+ op(1),

where fα,β is the Weibull density, corresponding to the distribution function
Fα,β , defined by (5.11).

The results of this simulation for 1000 samples of size n = 500 are shown in
the box plot Figure 13.

Fig 13. Box plot of 95th percentile estimates for the nonparametric, Weibull and log-normal
maximum likelihood estimators for 1000 samples of size n = 500. The incubation time data
are generated from a Weibull distribution. The red line denotes the value of the true percentile.

The black line segments in the boxes are at the position of the median. Finally,
the red line denotes the value of F−1

α,β(0.95) ≈ 10.17716, where (α, β) are the
parameters of the Weibull distribution. R scripts for all methods are given in
the directory “simulations” of [7].

It can be seen that, since the incubation time data were generated from a
Weibull distribution, the estimates of the quantiles assuming this distribution
have indeed the smallest variation. But the nonparametric estimates, not making
the assumption that the distribution is of the Weibull type, are also pretty good,
whereas the estimates, assuming a log-normal distribution are completely off
(in fact, these estimate are inconsistent). The SMLE adapts to the underlying
distribution and provides consistent estimates, using the consistency of the MLE
itself, derived in Section 3 and the consistency of the SMLE, which can be
deduced from this.

One sees that the uncertainty about what interest us, is not much larger
when one only uses the nonparametric SMLE than when one assumes that the
incubation time distribution is Weibull (which is the correct distribution in this
simulation setting), but much larger when one assumes log-normal. While there
is absolutely no scientific (medical) reason to “believe” Weibull, or to “believe”
log-normal. They lead to completely different statistical inferences, hence could
lead to completely different policy recommendations.
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7. Other smooth functionals

The first moment is the prototype of a smooth functional, The asymptotic nor-
mality and

√
n convergence of the estimate∫

x dF̂n(x)

where F̂n is the nonparametric MLE was given for the current status model in
[15], Theorem 5.5 of Part 2. The asymptotic variance is given by

σ2 =
∫

F0(t){1 − F0(t)}
g(t) dt,

where g is the density of the observation times and F0 the distribution function
of the hidden estimate.

Similar results for more general cases of interval censoring are given in Chap-
ter 10 of [12], but in those cases the expression for the asymptotic varaiance is
coming from the solution of an integral equation and no longer explicit as in the
case of the current status model. A similar situation holds for the model for the
incubation time distribution.

We have the following asymptotic normality result for the estimate of the first
moment, based on the nonparametric MLE F̂n for the incubation time model,
if the support of the incubation time distribution is [0,M1]:

√
n

{∫
x dF̂n(x) −

∫
x dF0(x)

}
D−→ N(0, σ2), (7.1)

where N(0, σ2) is a normal distribution with mean zero and variance

σ2 = −
∫ M1

0
φF0(x) dx.

and φF0 is also the solution of the following equation in φ:∫
e>0

e−1
[

φ(v + e) − φ(v)
F0(v + e) − F0(v)

− φ(v) − φ(v − e)
F0(v) − F0(v − e)

]
dFE(e) = 1, v ∈ [0,M1].

(7.2)
The distribution function FE of the exposure time was again chosen to be the
uniform distribution function on [1, 30].

The derivation of this result is given in the Appendix. The inconsistency
of the estimate based on the log normal model is again clearly seen from the
boxplot Figure 14. However, if we would have generated the incubation time
distribution from a log normal distribution, the estimate based on the Weibull
distribution would be inconsistent, so Figure 14 cannot be interpreted as showing
the superiority of the Weibull distribution.

Examples of the behavior of the density estimate

f̂nh(t) =
∫

Kh(t− y) dF̂n(y),

which converges at rate n2/7, where h ∼ cn−1/7, c > 0, are given in [8].
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Fig 14. Box plot of estimation of the first moment of the incubation distribution for the
nonparametric, Weibull and log-normal maximum likelihood estimators for 1000 samples of
size n = 5000. The incubation time data are generated from a Weibull distribution. The red
line denotes the value of the actual real first moment.

8. Conclusion

We proved that the nonparametric MLE in a model for the incubation time
distribution converges in distribution, after standardization, to Chernoff’s dis-
tribution. The rate of convergence is cube root n, if n is the sample size, under
a separation condition for the exposure time. We also discussed (locally) dif-
ferentiable functionals of the model, estimated by corresponding functionals of
the nonparametric MLE, which converge after standardization to a normal dis-
tribution at faster rates, where the constants are given by the solution of an
integral equation.

This provides an alternative for the parametric models that are usually ap-
plied in this context, estimating the incubaton time distribution by, e.g., Weibull,
gamma or log-normal distributions. If the parametric model is not right (there
is in fact no scientific or medical reason to choose for Weibull, gamma, Erlang,
log-normal. etc., and one sees for this reason usually these distribution applied
at the same time), the estimates are inconsistent if the chosen model does not
hold, as we demonstrate in Sections 5 to 7.

As shown in Section 7, for parameters like the first moment, we do not have
to choose a bandwidth parameter, while the behavior of the estimate based on
the nonparametric MLE is competitive to the parametric estimates in this case,
even if the model for the parametric estimate is right.

A major difficulty in this field is that we cannot obtain observations of the
type we would like, because we have to deal with discrete observations of the
times of getting symptomatic, rounded to days. And in the so-called doubly
censored model the times of getting symptomatic are only known to belong to
a certain interval of days. This situation is discussed in [10]. In this case the
nonparametric MLE is an estimate of an integral over the distribution function



1944 P. Groeneboom

of the incubation time (and not of the distribution function itself) and one
has ordinary square root n convergence and asymptotic normality for these
estimates, as is shown in [10].

R scripts for computing the estimates are given in [7].

9. Appendix

9.1. Integral equations

As explained in the Appendix of [8], the theory of the estimation of smooth
functionals in the model is based on certain integral equations. For the incu-
bation time model an extra indicator Δi was introduced to indicate whether
Si ≤ Ei.

But introducing such an indicator is not necessary. So we define the score
function θ without these idicators and get as definition for the score function:

θ(e, s) = E {a(X)|(E,S) = (e, s)} =
∫
a(x) dF (x)

F (s) − F (s− e) ,

(compare to (A.1) in [8]). This is the conditional expectation of a(X) in the
“hidden” space of the variable of interest (the incubation time), given our ob-
servation (E,S). Note that we changed the notation somewhat w.r.t. [8], and
denote the distribution function of the incubation time by F instead of G.

Defining

φ(t) =
∫
x∈[0,t]

a(x) dF (x),

we get the following representation for the score function, conditioned on X = x:

E{θ(E,S)|X = x} =
∫
e∈[0,M2]

e−1

{∫
s∈(x,x+e]

φ(s) − φ(s− e)
F (s) − F (s− e) ds

}
dFE(e).

(9.1)

Note that in [8] the distribution function FE was taken to be uniform, just as
an example, but that we do not assume that here.

Differentating (9.1) w.r.t. x, we get the following integral equation, with on
the right the derivative of the functional we want to estimate, denoted by ψ:∫

e−1
[
φ(x + e) − φ(x)
F (x + e) − F (x) − φ(x) − φ(x− e)

F (x) − F (x− e)

]
dFE(e)

= − φ(x)
1 − F (x)

∫
e≥M1−x

e−1 dFE(e) − φ(x)
F (x)

∫
e≥x

e−1 dFE(e)

+
∫

e−1
[
φ(x + e) − φ(x)
F (x + e) − F (x)1{e<M1−x} −

φ(x) − φ(x− e)
F (x) − F (x− e)1{e<x}

]
dFE(e)

= ψ(x), x ∈ [0,M1]. (9.2)
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This is called a Fredholm integral equation of the second kind. Here and in the
sequel, we assume that distribution functions are right-continuous.

We assume that FE satisfies the following condition:

(F1) FE is a distribution function on [0,M2], M2 > M1/2, which is 0 on [0, ε] for
some ε ∈ (0, (M1∧M2)/2) and has a continuous strictly positive derivative
fE on [ε,M2]. The distribution function is defined to be 1 on [M2,∞).

We define the class of distribution functions F in the following way.

(F2) F consists of the distribution functions F on [0,M1] with only a finite
number of jumps, contained in (0,M1), and satisfying

F (u) − F (t) ≥ c > 0, if u− t ≥ ε and t, u ∈ [0,M1]. (9.3)

where ε > 0 is defined as in Definition (F1). The distribution functions
are extended to [0,∞) by defining it to be equal to 1 on [M1,∞).

Note that the MLE satisfies the conditions of (F2) for sufficiently large n,
by the conditions of Theorem 4.1 (in particular the fact that the density f0 is
strictly positive on (0,M1)) and the consistency of the MLE (Theorem 3.1).

Lemma 9.1. Let FE be a distribution function on [0,M1], satisfying condition
(F1) and let F ∈ F , where F is defined in (F2). Moreover, let, F ∈ F satisfy:

{1 − F (t)}
∫
e≥t

e−1 dFE(e) + F (t)
∫
e≥M1−t

e−1 dFE(e) ≥ c > 0 (9.4)

for some c > 0 and each t ∈ [0,M1].
Finally, let ψ : [0,M1] → R be a bounded right-continuous function with

left-limits (cadlag) on [0,M1]. Then the equation (9.2) has a unique solution in
φ : [0,M1] → R.

Proof. Consider, for t ∈ [0,M1], the homogeneous equation

φ(t)
{
{1 − F (t)}

∫
e≥t

e−1 dFE(e) + F (t)
∫
e≥M1−t

e−1 dFE(e)
}

= F (t){1 − F (t)}

·
∫

e−1
[
φ(t + e) − φ(t)
F (t + e) − F (t)1{e<M1−t} −

φ(t) − φ(t− e)
F (t) − F (t− e)1{e<t}

]
dFE(e).

(9.5)

Since F (0) = 0 and F (M1) = 1, the solution has to be zero at t = 0 and t = M1.
Suppose there exists a point t ∈ (0,M1) such that φ(t) > 0 for a solution φ. If
the maximum of φ is reached at the point s ∈ (0,M1), we get that the right-
hand side of (9.5) is nonpositive at t = s, whereas the left-hand side is > 0, a
contradiction. Note that we use condition (9.4).

If the supremum is not attained, we take the limit from the left and get
that the limit on the left is strictly positive, whereas the limit on the right in
nonpositive, which leads again to a contradiction.
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Fig 15. The solution of (9.2) if F0 is uniform on [0, 20] and FE is uniform on [1, 30].

A similar argument holds if there exists a point t such that φ(t) < 0. It now
follows from Theorem 3.4 in [21] that the integral equation has a unique solution
(see also Lemma 10.1 on p. 294 of [12]).

Example 9.1. We consider the example ψ ≡ 1, FE is the uniform distribution
on [1, 30] and F0 is uniform on [0, 20]. In that case all conditions of Lemma 9.1
are satisfied. One could think of an exposure time of at most 30 days and at
least one day in the incubation time model. It is shown in Section 9.5 that

√
n

{∫
x dF̂n(x) −

∫
x dF0(x)

}
D−→ N(0, σ2),

where

σ2 = −
∫ M1

0
φF0(x) dx,

where φF0 solves (9.2) for ψ ≡ 1 and F = F0, where we choose in the present
example F0 to be the uniform distribution on [0,M1]. We can solve equation
(9.2) approximately by a matrix equation, see [7].

Example 9.2. If ψ = 1[0,a), where a ∈ (0,M1), ψ is not continuous on [0,M1],
but still satisfies the conditions of the lemma. In this case the solution has a
jump at a, as is shown in Figure 16 for a = 10.

This corresponds to the functional

x �→ Ψa,F (x) = ga(x) −
∫

ga(x) dF (x),

where the function ga is given by

ga(x) = x1[0,a)(x) + a 1[a,M1](x), x ∈ [0,M1].
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Fig 16. The solution for ψ = 1[0,10) if F0 is uniform on [0, 20] and FE is uniform on [1, 30].

Note that ga is continuous, a fact that is absolutely essential in the smooth
functional theory.

Integration by parts gives:∫
ga(x) dF0(x) = aF0(a−) −

∫ a

0
F0(x) dx + a{1 − F0(a)} =

∫ a

0
{1 − F0(x)} dx.

Hence we get generally:∫
Ψa,F (x) d

(
F − F0

)
(x) = −

∫
Ψa,F (x) dF0(x) = −

∫ a

0
{F (x) − F0(x)} dx

So in studying expressions like
∫ a
0 {F̂n(x)−F0(x)} dx, for a ∈ (0,M1], where F̂n

is the nonparametric MLE and F0 the underlying distribution function, and in
showing things like

√
n sup

a∈[0,M1]

∣∣∣∣
∫ a

0
{F̂n(x) − F0(x)} dx

∣∣∣∣ = Op(1),

we need a functional of this type in the proof of the limit result for the MLE in
the incubation time model.

9.2. Properties of the solution of the integral equation (9.2)

The integral equation (9.2) has the same structure as the integral equations for
the interval censoring, case 2, model. This equation is given by (10.33) on p.
292 of [12].

Let, for F ∈ F , the function dF be defined by

dF (t) = {1 − F (t)}
∫
e≥t

e−1 dFE(e) + F (t)
∫
e≥M1−t

e−1 dFE(e). t ∈ [0,M1].

(9.6)
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We have:

inf
t∈[0,M1]

dF (t)

≥ min
{(

1 − F (1
2M1)

) ∫
e≥1

2M1

e−1 dFE(e), F (1
2M1)

∫
e≥ 1

2M1

e−1 dFE(e)
}
.

(9.7)

So, if min{F (1
2M1), 1 − F (1

2M1)} ≥ c > 0, for all F ∈ F and a constant c > 0,
we get dF (t) ≥ c′ > 0 for another constant c′ > 0 and all t ∈ [0,M1] and F ∈ F ,
provided ∫

e≥1
2M1

e−1 dFE(e) > 0,

which follows from our condition (F1) on FE .
Since ε < 1

2M1, the condition

inf
F∈F

min{F (1
2M1), 1 − F (1

2M1)} ≥ c > 0 (9.8)

is implied by condition (9.3). This means that we can prove that soluions of
the integral equation are uniformly bounded for F ∈ F . We get the folloiwing
result.

Lemma 9.2. Let FE be a distribution function on [0,M2], satisfying condition
(F1) and let the class of distribution function F be defined by (F2). Let ψ :
[0,M1] → R be a bounded right-continuous function with left-limits (cadlag)
on [0,M1]. Then the solutions φF of equation (9.2) are uniformly bounded in
F ∈ F .

Proof. The equation can be written

φ(t)
= dF (t)−1ψ(t) + dF (t)−1F (t){1 − F (t)}

·
∫

e−1
[
φ(t + e) − φ(t)
F (t + e) − F (t)1{e<M1−t} −

φ(t) − φ(t− e)
F (t) − F (t− e)1{e<t}

]
dFE(e).

(9.9)

where dF is defined by (9.6). Since dF (t)−1ψ(t) is clearly uniformly bounded,
using (9.7), (9.8) and the boundedness of ψ, we only have to consider the second
term on the right-hand side of (9.9). But for this term we use the same type
of argument again that we used in the proof of Lemma 9.1. If the solution φF

attains its supremum at s ∈ [0,M1], this term is nonpositive at s. Otherwise we
take the limit from the left. So the upper bound is bounded by

dF (s)−1ψ(s) + dF (s)−1F (s){1 − F (s)}

or its limit from the left at s if the supremum is not attained.
The same type of argument applies to the lower bound.
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Analogously to the interval censoring model, we have to consider the function
ξF , defined by

ξF (x) = φF (x)
F (x){1 − F (x)} , x ∈ (0,M1),

where φF solves (9.2) and where we define 0/0 = 0. The function ξF satisfies a
similar integral equation as the function φF . This is seen in the following way.

We have:

φF (y) − φF (x) = {ξF (y) − ξF (x)}F (y){1 − F (y)}
+ ξF (x)

[
F (y){1 − F (y)} − F (x){1 − F (x)}

]
.

Moreover, if F (y) > F (x),

F (y){1 − F (y)} − F (x){1 − F (x)
F (y) − F (x) = 1 − F (x) − F (y).

So we find, wrting φ = φF and ξ = ξF :∫
e<M1−t

e−1 φ(t + e) − φ(t)
F (t + e) − F (t) dFE(e)

=
∫
e<M1−t

e−1 ξ(t + e) − ξ(t)
F (t + e) − F (t) F (t + e){1 − F (t + e)}dFE(e)

+ ξ(t)
∫
e<M1−t

e−1 {1 − F (t + e) − F (t)} dFE(e)

In a similar way we find:∫
e<t

e−1 φ(t) − φ(t− e)
F (t) − F (t− e) dFE(e)

=
∫
e<t

e−1 ξ(t) − ξ(t− e)
F (t) − F (t− e) F (t− e){1 − F (t− e)}dFE(e)

+ ξ(t)
∫
e<t

e−1 {1 − F (t) − F (t− e)} dFE(e).

So we find that ξF solves the equation

c(t)ξ(t) = {dF (t)F (t){1 − F (t)}−1
ψ(t)

+
∫
e<M1−t

e−1 ξ(t + e) − ξ(t)
F (t + e) − F (t) F (t + e){1 − F (t + e)}dFE(e)

−
∫
e<t

e−1 ξ(t) − ξ(t− e)
F (t) − F (t− e) F (t− e){1 − F (t− e)}dFE(e)

in ξ, where c(t) is defined by:

c(t) = 1 +
∫
e<t

e−1 {1 − F (t) − F (t− e)} dFE(e)

−
∫
e<M1−t

e−1 {1 − F (t + e) − F (t)} dFE(e)
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= 1 +
∫
e<t∧(M1−t)

e−1 {F (t + e) − F (t− e)} dFE(e)

+
∫
t≤e<M1−t

e−1 {1 − F (t)} dFE(e) +
∫
M1−t≤e<t

e−1 F (t) dFE(e).

So the equations have the same properties as the integral equations in the
interval censoring, case 2, model and we get in particular the following lemma
(Lemma 10.5 on p. 297 of [12]).

Lemma 9.3. Let F be the class of distribution functions on [0,M1] that are
either absolutely continuous, with a continuous density staying away from zero
on [0,M1], or a piecewise constant distribution function with a finite number of
jumps, satisfying assumption (F2). Let ψ be continuous, with a bounded deriva-
tive except at an at most countable number of points, where right and left limits
exist. Then:

(i) The derivative of φF at the points of continuity is bounded, uniformly over
F ∈ F and the points of continuity, implying

|φF (y) − φF (x)| ≤ K1 |y − x|
if y and x are in the same interval between jumps. K1 is independent of
F and x. The same holds when φF is replaced by ξF .

(ii) At the discontinuity points x of F ,

|φF (x) − φF (x−)| ≤ K2 |F (x) − F (x−)| + K3|k(x) − k(x−)|,
and

ξF (x) − ξF (x−)| ≤ K2 |F (x) − F (x−)| + K3|k(x) − k(x−)|,
with K2 > 0 and K3 > 0 independent of x and F .

The proof follows the steps of the proof of Lemma 10.5 on p. 297 of [12] and
is therefore omitted. Note however, that we have to extend this lemma, because
we want to treat discontinuous functions ψ such as 1[0,a] on the right-hand side
of the integral equation.

We will need the following extension, analogous to Corollary 4.2 in [6].

Corollary 9.1. Let F be the class of distribution functions on [0,M1] that are
either absolutely continuous, with a continuous density staying away from zero
on (0,M1), or a piecewise constant distribution function with a finite number of
jumps, satisfying assumption (F2). Let ψ be a bounded right-continuous function
with art most a finite set of discontinuities D, with a bounded derivative except
at an at most finite number of points, where right and left limits exist. Then:

(i) The derivative of φF at the points of continuity is bounded, uniformly over
F ∈ F and the points of continuity, implying

|φF (y) − φF (x)| ≤ K1 |y − x|
if y and x are in the same interval between jumps. K1 is independent of
F and x. The same holds when φF is replaced by ξF .
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(ii) At the discontinuity points x of F or ψ:

|φF (x) − φF (x−)| ≤ K2|F (x) − F (x−) + K3|ψ(x) − ψ(x−)|

and similarly

|ξF (x) − ξF (x−)| ≤ K2|F (x) − F (x−) + K3|ψ(x) − ψ(x−)|

where K2 and K3 are positive constants independent of x and F .

The proof follows from the preceding results in the same way as the proofs
of Lemma 4.3 and Corollary 4.2 in [6] follows from the correponding results on
the integral equation there.

9.3. Proof of Theorem 4

A fundamental tool in our proof is the so-called “switch relation”, see, e.g.,
Section 3.8 in [12]. We define, for a ∈ (0, 1)

Un(a) = argmin{t ∈ [0,∞) : Vn(t) − aGn(t)},

where Vn is defined by (3.7) and Gn = Gn,F̂n
is defined by (3.6) for F = F̂n.

Then we have the so-called switch relation:

F̂n(t) ≥ a ⇐⇒ Gn(t) ≥ Gn(Un(a)) ⇐⇒ t ≥ Un(a).

see, e.g., (3.35) and Figure 3.7 in Section 3.8 of [12].
We have:

P

{
n1/3

{
F̂n(t0) − F0(t0)

}
≥ x
}

= P

{
n1/3

{
Un(a0 + n−1/3x) − t0

}
≤ 0
}
,

where a0 = F0(t0). Using the property that the argmin function does not change
if we add constants to the object function, we get:

Un(a0 + n−1/3x) = argmin
{
t ∈ [0,∞) : Vn(t) −

(
a0 + n−1/3x

)
Gn(t)

}
= argmin

{
t ∈ [0,∞) : Vn(t) − Vn(t0) −

(
a0 + n−1/3x

){
Gn(t) −Gn(t0)

}}

= argmin
{
t0 + n−1/3t ≥ 0 :

∫
u∈(t0,t0+n−1/3t]

F̂n(u) dGn(u)

+ Wn,F̂n
(t0 + n−1/3t)

−Wn,F̂n
(t0) − n−1/3x

{
Gn(t0 + n−1/3t) −Gn(t0)

}}
,

where ∫
u∈(t,v]

F̂n(u) dGn(u) = −
∫
u∈[v,t)

F̂n(u) dGn(u), if v < t.
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Remark 9.1. Note that by the assumptions on FE and F0 we may assume
that F̂n(s)− F̂n(s− e) stays away from zero for n sufficiently large if e ≥ ε and
s− e ≥ 0.

Let m = maxj(Sj − Ej)+, and let Xn be defined as in Lemma 9.4 below.
Then, letting δ1 = 1{s≤e}, δ2 = 1{e<s≤M1} and δ3 = 1 − δ1 − δ2.

Wn,F̂n
(t0 + n−1/3t) −Wn,F̂n

(t0)

= Xn(t) +
∫
t0<s≤t0+n−1/3t

δ1

F̂n(s)
dQ0(e, s)

−
∫
t0<s−e≤t0+n−1/3t

δ2

F̂n(s) − F̂n(s− e)
dQ0(e, s)

+
∫
t0<s≤t0+n−1/3t

δ2

F̂n(s) − F̂n(s− e)
dQ0(e, s)

−
∫
t0<s−e≤t0+n−1/3t

δ3

1 − F̂n(s− e)
dQ0(e, s)

= Xn(t) +
∫
t0<s≤(t0+n−1/3t)∧m, s≤e

e−1 F0(s)
F̂n(s)

ds dFE(e)

−
∫
t0<s−e≤t0+n−1/3t, e<s≤m

e−1 F0(s) − F0(s− e)
F̂n(s) − F̂n(s− e)

ds dFE(e)

+
∫
t0<s≤t0+n−1/3t, e<s≤m

e−1 F0(s) − F0(s− e)
F̂n(s) − F̂n(s− e)

ds dFE(e)

−
∫
t0<s−e≤t0+n−1/3t, s>m

e−1 1 − F0(s− e)
1 − F̂n(s− e)

ds dFE(e).

By a change of variables, we can write the last expression in the form:

Xn(t) +
∫
t0<s≤(t0+n−1/3t)∧m

e−1 F0(s)
F̂n(s)

ds dFE(e)

−
∫
t0<s≤t0+n−1/3t, s+e≤m

e−1 F0(s + e) − F0(s)
F̂n(s + e) − F̂n(s)

ds dFE(e)

+
∫
t0<s≤t0+n−1/3t, e<s≤m

e−1 F0(s) − F0(s− e)
F̂n(s) − F̂n(s− e)

ds dFE(e)

−
∫
t0<s≤t0+n−1/3t, s+e>m

e−1 1 − F0(s)
1 − F̂n(s)

ds dFE(e),

For future reference, we define

Yn(t) =
∫
t0<s≤(t0+n−1/3t)∧m

e−1 F0(s)
F̂n(s)

ds dFE(e)

−
∫
t0<s≤t0+n−1/3t, s+e≤m

e−1 F0(s + e) − F0(s)
F̂n(s + e) − F̂n(s)

ds dFE(e)
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+
∫
t0<s≤t0+n−1/3t, e<s≤m

e−1 F0(s) − F0(s− e)
F̂n(s) − F̂n(s− e)

ds dFE(e)

−
∫
t0<s≤t0+n−1/3t, s+e>m

e−1 1 − F0(s)
1 − F̂n(s)

ds dFE(e), (9.10)

We have the following lemma.

Lemma 9.4. Let, under the conditions of Theorem 4, the process Xn be defined
by:

Xn(t) =
∫
t0<s≤t0+n−1/3t

δ1

F̂n(s)
d(Qn −Q0)(e, s)

−
∫
t0<s−e≤t0+n−1/3t

δ2

F̂n(s) − F̂n(s− e)
d(Qn −Q0)(e, s)

+
∫
t0<s≤t0+n−1/3t

δ2

F̂n(s) − F̂n(s− e)
d(Qn −Q0)(e, s)

−
∫
t0<s−e≤t0+n−1/3t

δ3

1 − F̂n(s− e)
d(Qn −Q0)(e, s),

where δ1 = 1{s≤e}, δ2 = 1{e<s≤M1} and δ3 = 1 − δ1 − δ2. Let t0 be an inte-
rior point of the support of f0. Then n2/3Xn converges in distribution, in the
Skorohod topology, to the process

t �→ √
cEW (t), t ∈ R,

where cE and W are the same as in Theorem 4.

Proof of Lemma 9.4. This follows from the convergence to the same limit pro-
cess of

Xn(t) =
∫
t0<s≤t0+n−1/3t

δ1
F0(s)

d(Qn −Q0)(e, s)

−
∫
t0<s−e≤t0+n−1/3t

δ2
F0(s) − F0(s− e) d(Qn −Q0)(e, s)

+
∫
t0<s≤t0+n−1/3t

δ2
F0(0) − F0(s− e) d(Qn −Q0)(e, s)

−
∫
t0<s−e≤t0+n−1/3t

δ3
1 − F0(s− e) d(Qn −Q0)(e, s), (9.11)

and the consistency of F̂n together with the entropy with bracketing for the
L2-norm of the functions

(e, s) �→ 1
F (s) − F (s− e) , s ∈ [t0 − n−1/3M, t0 + n−1/3M ], e ≥ ε,

for M > 0 and distribution functions F such that {F (s)−F (s−e)}1{e≥ε} stays
away from zero for s in the relevant interval (see, e.g., p. 59 of [12]).
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Note that we get for the variance of (9.11):

var
(
Xn(t)

)
∼ n−1

∫
t0<s≤t0+n−1/3t

δ1
F0(s)2

dQ0(e, s)

+ n−1
∫
t0−e<s≤t0−e+n−1/3t

δ2{
F0(s) − F0(s− e)

}2 dQ0(e, s)

+ n−1
∫
t0<s≤t0+n−1/3t

δ2{
F0(s) − F0(s− e)

}2 dQ0(e, s)

+ n−1
∫
t0−e<s≤t0−e+n−1/3t

δ3{
1 − F0(s− e)

}2 dQ0(e, s)

= n−1
∫
t0<s≤t0+n−1/3t, s≤M1∧e

e−1 1
F0(s)

ds dFE(e)

+ n−1
∫
t0<s≤t0+n−1/3t, s+e≤M1

e−1 1
F0(s + e) − F0(s)

ds dFE(e)

+ n−1
∫
t0<s≤t0+n−1/3t, e<s≤M1

e−1 1
F0(s) − F0(s− e) ds dFE(e)

+ n−1
∫
t0<s≤t0+n−1/3t, s+e>M1

e−1 1
1 − F0(s)

ds dFE(e)

∼ n−4/3t

∫
e−1 1

F0(t0) − F0(t0 − e) dFE(e)

+ n−4/3t

∫
e−1 1

F0(t0 + e) − F0(t0)
dFE(e).

We will also need the following rate result for the L2-distance.

Lemma 9.5. Let the conditions of Theorem 4 be satisfied.. Then

‖F̂n − F0‖ = Op

(
n−1/3

)
. (9.12)

Proof. We define the (convolution) density qF by (1.1) and follow the exposition
in [24], Example 7.4.4. The condition that the exposure time E stays away from
zero is comparable to the condition (7.41) on p. 116 of [24] that the intervals
[U, V ] have a length which stays away from zero. In this case we find that the
squared Hellinger distance satisfies:

h(qF̂n
, qF0)2 = 1

2

∫ {√
qF̂n

−√
qF0

}2
ds dFE(e)

= 1
2

∫
e∈[ε,M2]

e−1
∫
s∈[0,M1+M2]

{√
F̂n(s) − F̂n(s− e)

−
√
F0(s) − F0(s− e)

}2
ds dFE(e)

= Op

(
n−2/3

)
,
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see (7.42) in [24].
We can write the next to last term above in the form (using Fubini’s theorem

and a change of variables):

1
2

∫
s≤M1+M2

{√
F̂n(s) −

√
F0(s)

}2 ∫
e≥s

e−1 dFE(e) ds

+ 1
2

∫
s≤M1+M2

{√
1 − F̂n(s) −

√
1 − F0(s)

}2 ∫
e≥M1−s

e−1 dFE(e) ds

+ 1
2

∫
s≤M1+M2

{√
F̂n(s + e) − F̂n(s)

−
√

F0(s + e) − F0(s)
}2 ∫

e<M1−s

e−1 dFE(e) ds

+ 1
2

∫
s≤M1+M2

{√
F̂n(s) − F̂n(s− e)

−
√

F0(s) − F0(s− e)
}2 ∫

e<t

e−1 dFE(e) ds.

So we get in particular

1
2

∫
s≤M1+M2

{√
F̂n(s) −

√
F0(s)

}2 ∫
e≥s

e−1 dFE(e) ds

+ 1
2

∫
s≤M1+M2

{√
1 − F̂n(s) −

√
1 − F0(s)

}2 ∫
e≥M1−s

e−1 dFE(e) ds

= Op

(
n−2/3

)
,

implying

1
2

∫
s≤M1+M2

{√
F̂n(s) −

√
F0(s)

}2

ds

+ 1
2

∫
s≤M1+M2

{√
1 − F̂n(s) −

√
1 − F0(s)

}2

ds

= Op

(
n−2/3

)
,

by our assumptions on FE . The relation

(a− b)2 =
{√

a−
√
b
}2 {√

a +
√
b
}2

≤ 2
{√

a−
√
b
}2

, a, b ∈ [0, 1],

now gives the result.

The following lemma. corresponding to Lemma 4,4 on p. 146 of [6] is crucial
in our proof.



1956 P. Groeneboom

Fig 17. The solution φt,F̂n
for t = 10 and n = 104, if F0 is uniform on [0, 20], and FE is

uniform on [1, 30].

Lemma 9.6. Let the conditions of Theorem 4 be satisfied and let F̂n be the
MLE. Then:

sup
t∈[0,M1]

√
n

∫ t

0

{
F̂n(x) − F0(x)

}
dx = Op (1) .

Proof. Let φt,F̂n
be the solution of the integral eqaution

∫
e−1
[

φ(x + e) − φ(x)
F̂n(x + e) − F̂n(x)

− φ(x) − φ(x− e)
F̂n(x) − F̂n(x− e)

]
dFE(e)=1[0,t)(x), x ∈ [0,M1],

see (9.2) above, and let θt,F̂n
be defined by

θt,F̂n
(e, s, δ1, δ2) = δ1

φt,F̂n
(s)

F̂n(s)
− δ3

φt,F̂n
(s− e)

1 − F̂n(s− e)
+ δ2

φ(s) − φ(s− e)
F̂n(s) − F̂n(s− e)

,

where δ1 = 1{s≤e}, δ2 = 1{e<s≤M1} and δ3 = 1 − δ1 − δ2. A picture of such a
φt,F̂n

is given in Figure 17.
Note the similarity of Figure 17 to Figure 16 above, where F0 instead of F̂n

is used. We have, if φ = φt,F̂n
,

∫ t

0

{
F̂n(x) − F0(x)

}
dx =

∫ M1

x=0
1[0,t)(x)

{
F̂n(x) − F0(x)

}
dx

=
∫ M1

x=0

{
F̂n(x) − F0(x)

}∫ M2

e=0
e−1
[

φ(x + e) − φ(x)
F̂n(x + e) − F̂n(x)

− φ(x) − φ(x− e)
F̂n(x) − F̂n(x− e)

]
dFE(e) dx

= −
∫ M2

e=0
e−1
∫ M1

x=e

{F0(x) − F0(x− e)}{φ(x) − φ(x− e)}
F̂n(x) − F̂n(x− e)

dx dFE(e)
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−
∫ M2

e=0
e−1
∫ e

x=0

F0(x)φ(x)
F̂n(x)

dx dFE(e)

+
∫ M2

e=0
e−1
∫ M1+e

x=M1

{1 − F0(x− e)}φ(x− e)
1 − F̂n(x− e)

dx dFE(e)

= −
∫

θt,F̂n
(e, s, δ1, δ2) dQ0(e, s).

Note that∫ M2

e=0
F̂n(x)

∫ M1

x=0
e−1
[

φ(x + e) − φ(x)
F̂n(x + e) − F̂n(x)

− φ(x) − φ(x− e)
F̂n(x) − F̂n(x− e)

]
dFE(e) dx

=
∫ M2

e=0
e−1
∫ M1

x=e

{φ(x) − φ(x− e)} dx dFE(e) +
∫ M2

e=0
e−1
∫ e

x=0
φ(x) dx dFE(e)

−
∫ M2

e=0
e−1
∫ M1+e

x=M1

φ(x− e) dx dFE(e)

= 0.

Also note that for the argument x + e > M1 we use

F̂n − F0 = 1 − F0 − {1 − F̂n}.

The argument now follows the reasoning of the proof of Lemma 4.4 in [6], where
we use the properties of the solution of the integral equations, discussed in
Section 9.1 above and Lemma 9.5. For example, we change the function φt,F̂n

to a piecewise constant version φ̄t,F̂n
, piecewise constant on the same intervals

as F̂n, except possibly the interval containing t, for example using (4.37) on p.
146 of [6], and define

θ̄t,F̂n
(e, s, δ1, δ2) = δ1

φ̄t,F̂n
(s)

F̂n(s)
− δ3

φ̄t,F̂n
(s− e)

1 − F̂n(s− e)
+ δ2

φ̄(s) − φ̄(s− e)
F̂n(s) − F̂n(s− e)

,

where δ1 = 1{s≤e}, δ2 = 1{e<s≤M1} and δ3 = 1−δ1−δ2. Then, using Lemma 9.5
above, we find:

sup
t∈[0,M1]

∣∣∣∣
∫ {

θ̄t,F̂n
− θt,F̂n

}
dQ0

∣∣∣∣ = Op

(
n−2/3

)
.

Next we get:

sup
t∈[0,M1]

∣∣∣∣
∫

θ̄t,F̂n
dQ0

∣∣∣∣ = sup
t∈[0,M1]

∣∣∣∣
∫

θ̄t,F̂n
d (Q0 −Qn)

∣∣∣∣+ Op

(
n−2/3

)

= Op

(
n−1/2

)
which gives the desired result.
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Corollary 9.2. Let the conditions of Theorem 4 be satisfied and let F̂n be
the MLE. Moreover, let G be a set of right-continuous function with left limits
g : [0,M1] → R which are of uniformly bounded variation. Then:

sup
g∈G

√
n

∣∣∣∣∣
∫ M

0
g(x)
{
F̂n(x) − F0(x)

}
dx

∣∣∣∣∣ = Op(1).

The proof of this corollary follows in the same way as the proof of Corollary 4.3
in [6].

The following rough upper bound will also be useful.

Lemma 9.7. Let the conditions of Theorem 4 be satisfied. Then

sup
x∈[0,M1]

∣∣∣F̂n(x) − F0(x)
∣∣∣ = Op

(
n−1/4

)
.

Proof. The proof is analogous to the proof of Corollary 4.4 in [6].

Lemma 9.8. Let the conditions of Theorem 4 be satisfied, and let the proces
Yn be defined by (9.10). Then, for arbitrary M > 0 and t ∈ [−M,M ]:∫

s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(t0)

}
dGn(s) + Yn(t) = 1

2f0(t0)cEn−2/3t2 + Bn(t)

+ op

(
n−2/3

)
,

(9.13)

where

Bn(t) =
∫

e−1
∫
s∈[t0,t0+n−1/3t)

{
F̂n(s− e) − F0(s− e)
F̂n(s) − F̂n(s− e)

(9.14)

+ F̂n(s + e) − F0(s + e)
F̂n(s + e) − F̂n(s)

}
ds dFE(e).

Proof. Let Yn be defined by (9.10). We can write:

Yn(t) =
∫
t0<s≤t0+n−1/3t

e−1

{
F0(s) − F0(s− e)
F̂n(s) − F̂n(s− e)

(9.15)

− F0(s + e) − F0(s)
F̂n(s + e) − F̂n(s)

}
ds dFE(e),

where F0(s − e) = 0 and F0(s + e) = 1 can occur. The last expression can be
rewritten in the form An(t) + Bn(t), where

An(t) = −
∫
s∈[t0,t0+n−1/3t)

e−1{F̂n(s) − F0(s)
}{ 1

F̂n(s) − F̂n(s− e)

+ 1
F̂n(s + e) − F̂n(s)

}
ds dFE(e),



incubation time distribution 1959

and

Bn(t) =
∫

e−1
∫
s∈[t0,t0+n−1/3t)

{
F̂n(s− e) − F0(s− e)
F̂n(s) − F̂n(s− e)

+ F̂n(s + e) − F0(s + e)
F̂n(s + e) − F̂n(s)

}
ds dFE(e).

We also have:∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(t0)

}
dGn(s)

=
∫
s∈(t0,t0+n−1/3t]

F̂n(s) dGn(s) − F0(t0)
{
Gn(t0 + n−1/3t) −Gn(t0)

}

=
∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(t0)

{F̂n(s) − F̂n(s− e)}2
+ F̂n(s) − F0(t0)

{F̂n(s + e) − F̂n(s)}2

}
dQn

=
∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(s)

{F̂n(s) − F̂n(s− e)}2
+ F̂n(s) − F0(s)

{F̂n(s + e) − F̂n(s)}2

}
dQn

+
∫
s∈(t0,t0+n−1/3t]

{
F0(s) − F0(t0)

{F̂n(s) − F̂n(s− e)}2
+ F0(s) − F0(t0)

{F̂n(s + e) − F̂n(s)}2

}
dQn

=
∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(s)

{F̂n(s) − F̂n(s− e)}2
+ F̂n(s) − F0(s)

{F̂n(s + e) − F̂n(s)}2

}
dQn

+ 1
2cEf0(t0)t2 + op

(
n−2/3

)
= −An(t) + 1

2cEf0(t0)n−2/3t2 + op

(
n−2/3

)
,

where cE is given by (5.2) in Theorem 4. The last equality is seen by writing
∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(s)

{F̂n(s) − F̂n(s− e)}2
+ F̂n(s) − F0(s)

{F̂n(s + e) − F̂n(s)}2

}
dQn

=
∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(s)

{F̂n(s) − F̂n(s− e)}2
+ F̂n(s) − F0(s)
{F̂n(s + e)−F̂n(s)}2

}
d
(
Qn −Q0

)

+
∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(s)

{F̂n(s) − F̂n(s− e)}2
+ F̂n(s) − F0(s)

{F̂n(s + e) − F̂n(s)}2

}
dQ0

= −An(t) + op

(
n−2/3

)
,

using the consistency of F̂n to show that the first term after the next to last
equality is of order op

(
n−2/3) and

∫
s∈(t0,t0+n−1/3t]

{
F̂n(s) − F0(s)

{F̂n(s) − F̂n(s− e)}2
+ F̂n(s) − F0(s)

{F̂n(s + e) − F̂n(s)}2

}
dQ0
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=
∫
s∈(t0,t0+n−1/3t]

e−1

{
{F̂n(s) − F0(s)}{F0(s) − F0(s− e)}

{F̂n(s) − F̂n(s− e)}2

+{F̂n(s) − F0(s)}{F0(s + e) − F0(s)}
{F̂n(s + e) − F̂n(s)}2

}
ds dFE(e)

=
∫
s∈(t0,t0+n−1/3t]

e−1

{
F̂n(s) − F0(s)

F̂n(s) − F̂n(s− e)
+ F̂n(s) − F0(s)

F̂n(s + e) − F̂n(s)

}
ds dFE(e)

+ Op

(
n−5/6

)
,

using Lemma 9.7 in the last step. So the term An(t) drops out and the result
now follows.

The term Bn(t) in Lemma 9.8 is now treated by using differentiable functional
theory. We really have to use smooth functional theory here and cannot use
simple L2-bounds or other tools of that type only to show that Bn(t) is of order
op(n−2/3). One could say that this is the heart of the difficulty of the proof.
We’ll use the following lemma.

Lemma 9.9. Let the conditions of Theorem 4 be satisfied, and let Bn(t) be
defined by (9.14) in Lemma 9.8. Then, for arbitrary M > 0 and t ∈ [−M,M ]:

Bn(t) = Op

(
n−5/6

)
.

Proof. Using Lemma 9.7 again, is is sufficient to show B̃n(t) = Op(n−5/6), where
B̃n(t) is defined by

B̃n(t) =
∫
s∈[t0,t0+n−1/3t)

e−1

{
F̂n(s− e) − F0(s− e)
F0(s) − F0(s− e)

+ F̂n(s + e) − F0(s + e)
F0(s + e) − F0(s)

}
dFE(e) ds.

Let t0 > ε, where ε > 0 is defined as in the conditions of Theorem 4. We can
write∫

e−1 F̂n(s− e) − F0(s− e)
F0(s) − F0(s− e) dFE(e)

=
∫
u<s−ε

(s− u)−1 fE(s− u)
F0(s) − F0(u)

{
F̂n(u) − F0(u)

}
du = Op

(
n−1/2

)
,

uniformly for s ∈ [t0, t0 + n−1/3t) by Corollary 9.2 and the continuity of the
function

s �→ (s− u)−1 fE(s− u)
F0(s) − F0(u)



incubation time distribution 1961

for s ∈ [t0, t0 + n−1/3t), if u stays away from s.
So:∫

s∈[t0,t0+n−1/3t)
e−1 F̂n(s− e) − F0(s− e)

F0(s) − F0(s− e) dFE(e) ds = Op

(
n−5/6

)
.

If t0 ≤ ε, the integration interval for e is either empty or of order n−1//3,
which yields, using supx |F̂n(x) − F0(x)| = Op(n−1/4), in which case:

∫
s∈[t0,t0+n−1/3t)

e−1 F̂n(s− e) − F0(s− e)
F0(s) − F0(s− e) dFE(e) ds = Op

(
n−11/12

)
= Op

(
n−5/6

)
.

Similarly,
∫
s∈[t0,t0+n−1/3t)

e−1 F̂n(s + e) − F0(s + e)
F0(s + e) − F0(s)

dFE(e) ds = Op

(
n−5/6

)
.

We finally need the following “tightness” lemma, which follows from the negli-
gibility of Bn(t) in (9.13) of Lemma 9.8, which, in turn, follows from Lemma 9.9.

Lemma 9.10. Let the conditions of Theorem 4 be satisfied and let a0 ∈ (0, 1).
Then, for each δ > 0 and K1 > 0 a K2 > 0 can be found such that

P

{
sup

x∈[−K1,K1]
n1/3

{
Un

(
a0 + n−1/3x

)
− t0

}
> K2

}
< δ,

and

P

{
inf

x∈[−K1,K1]
n1/3

{
Un

(
a0 + n−1/3x

)
− t0

}
< −K2

}
< ε,

for all large n.

We now have:

n1/3
{
Un(a0 + n−1/3x) − t0

}

= argmin
{
t ≥ −n2/3t0 : n2/3Xn(t) + 1

2cEf0(t0)t2

− n1/3x
{
Gn(t0 + n−1/3t) −Gn(t0)

}
+ op(1)

}

= argmin
{
t ≥ −n2/3t0 : n2/3Xn(t) + 1

2cEf0(t0)t2 − cExt + op(1)
}
,
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which converges in distribution to the argmin of the process

t �→ √
cE W (t) + 1

2cEf0(t0)t2 − cExt, t ∈ R,

where W is two-sided Brownian motion, originating from zero. Theorem 4 now
follows from Brownian scaling.

9.4. Proof of Theorem 5.1

Proof. This time the adjoint equation (see Section 9.6 of this appendix) is (for
F = F̂n):

[A∗b] (x) =
∫
e>0

e−1
∫
s∈(x,x+e)

φ(s) − φ(s− e)
F̂n(s) − F̂n(s− e)

ds dFE(e)

= IK((t− x)/hn) −
∫

IKh((t− y)/hn) dF̂n(y), x ∈ (0,M1).

(9.16)

Differentiating the equation w.r.t. x we get, letting h = hn:∫
e>0

e−1
{

φ(x + e) − φ(x)
F̂n(x + e) − F̂n(x)

− φ(x) − φ(x− e)
F̂n(x) − F̂n(x− e)

}
dFE(e) = −Kh(t− x).

(9.17)

So we get, using integration by parts, if φ = φt,F̂n
solves (9.17) for F = F̂n:

∫
IKh(t− x) d

(
F̂n − F0

)
(x) =

∫ (
F̂n − F0

)
(x)Kh(t− x) dx

=
∫ (

F̂n − F0
)
(x)
∫
e>0

e−1
{

φ(x + e) − φ(x)
F̂n(x + e) − F̂n(x)

− φ(x) − φ(x− e)
F̂n(x) − F̂n(x− e)

}
dFE(e) dx.

Let θt,F̂n
be defined by

θt,F̂n
(e, s) = δ1

φt,F̂n
(s)

F̂n(s)
+ δ2

φt,F̂n
(s) − φt,F̂n

(s− e)
F̂n(s) − F̂n(s− e)

− δ3
φt,F̂n

(s− e)
1 − F̂n(s− e)

,

where δ1 = 1{s≤e}, δ2 = 1{e<s≤M1} and δ3 = 1 − δ1 − δ2. Then, for φ = φt,F̂n
:

∫ M1

x=0
(F̂n − F0)(x)

∫ M2

e=0
e−1
[

φ(x + e) − φ(x)
F̂n(x + e) − F̂n(x)

− φ(x) − φ(x− e)
F̂n(x) − F̂n(x− e)

]
dFE(e) dx

= −
∫ M2

e=0
e−1
∫ M1

x=e

{F0(x) − F0(x− e)}{φ(x) − φ(x− e)}
F̂n(x) − F̂n(x− e)

dx dFE(e)

−
∫ M2

e=0
e−1
∫ e

x=0

F0(x)φ(x)
F̂n(x)

dx dFE(e)
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+
∫ M2

e=0
e−1
∫ M1+e

x=M1

{1 − F0(x− e)}φ(x− e)
1 − F̂n(x− e)

dx dFE(e)

= −
∫

θt,F̂n
(e, s) dQ0(e, s).

Note that we used, noting F̂n − F0 = 1 − F0 − {1 − F̂n} if x + e > M1:∫ M2

e=0
F̂n(x)

∫ M1

x=0
e−1
[

φ(x + e) − φ(x)
F̂n(x + e) − F̂n(x)

− φ(x) − φ(x− e)
F̂n(x) − F̂n(x− e)

]
dFE(e) dx

=
∫ M2

e=0
e−1
∫ M1

x=e

{φ(x) − φ(x− e)} dx dFE(e) +
∫ M2

e=0
e−1
∫ e

x=0
φ(x) dx dFE(e)

−
∫ M2

e=0
e−1
∫ M1+e

x=M1

φ(x− e) dx dFE(e)

= 0.

Hence∫
IKh(t− x) d

(
F̂n − F0

)
(x) = −

∫
θt,F̂n

(e, s, δ1, δ2) dQ0(e, s). (9.18)

Replacing φ by a piecewise constant function φ̄, absolutely continuous w.r.t.
F̂n, in the same way as is done on p. 290 of [12], and defining

θ̄t,F̂n
(e, s) = δ1

φ̄t,F̂n
(s)

F̂n(s)
+ δ2

φ̄t,F̂n
(s) − φ̄t,F̂n

(s− e)
F̂n(s) − F̂n(s− e)

− δ3
φ̄t,F̂n

(s− e)
1 − F̂n(s− e)

,

we find∫ ∣∣∣θt,F̂n
(e, s, δ1, δ2) − θ̄t,F̂n

(e, s, δ1, δ2)
∣∣∣ dQ0(e, s)

� ‖F̂n − F0‖2‖φ− φ̄‖2 = Op

(
h−1
n n−2/3

)
= Op

(
n−7/15

)
= op

(
n−2/5

)
,

using Lemma 9.4 in this appendix and the arguments on p. 333 of [12] (see in
particular (11.49)). Moreover,∫

θ̄t,F̂n
(e, s) dQn(e, s) = 0.

Thus we find:∫
IK(t− v)/hn) d

(
F̂n − F0

)
(v)

=
∫

θ̄t,F̂n
(e, s, δ1, δ2) d

(
Qn −Q0

)
(e, s) + op

(
n−2/5

)
.

Finally,

n2/5
∫

IK(t− v)/hn) d
(
F̂n − F0

)
(v)
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= n2/5
∫

θ̄t,F̂n
d
(
Qn −Q0

)
+ op

(
n−2/5

)
= n2/5

∫
θn,t,F0 d

(
Qn −Q0

)
+ op(1),

where

θn,t,F0(s) = δ1
φn,t,F0(s)
F0(s)

+ δ2
φn,t,F0(s) − φt,F0(s− e)

F0(s) − F0(s− e) − δ3
φn,t,Fn(s− e)
1 − F0(s− e) ,

and φn,t,F0 solve the integral equation (6.5). The asymptotic variance σ2 is
therefore given by

lim
n→∞

n−1/5‖θn,t,F0‖2
Q0

.

The expression (6.3) for μ arises from the expansion of the bias∫
IK(t− y) dF0(y) − F0(t).

9.5. Proof of (8.1)

Proof. We consider the “mean functional”:

F �→
∫
x∈[0,M1]

x dF (x)

The score operator (see section 9.6) is of the form

[Aa] (e, s) = E
[
a(V )|(E,S) = (e, s)

]
=

∫
v≥0, v∈(s−e,s] a(v) dF (v)

F (s) − F (s− e) . (9.19)

The adjoint is given by

[A∗b] (v) = E
[
b(E,S)|V = v

]
=
∫
e>0

e−1
∫
s∈(v,v+e)

b(e, s) ds dFE(e). (9.20)

Defining

φF (u) =
∫
y≤u

a(y) dF (y),

we get the following equation for φF :

[A∗Aa](v) =
∫
e>0

e−1
∫
s∈(v,v+e)

φF (s) − φF (s− e)
F (s) − F (s− e) ds dFE(e)

= v −
∫

x dF (x), v ∈ [0,M1]. (9.21)
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By differentiating w.r.t. v, we find that φF is also the solution of the following
equation in φ:∫

e>0
e−1
[
φ(v + e) − φ(v)
F (v + e) − F (v) − φ(v) − φ(v − e)

F (v) − F (v − e)

]
dFE(e) = 1, v ∈ [0,M1].

(9.22)

The canonical gradient θF is again given by:

θF (e, s) = φF (s) − φF (s− e)
F (s) − F (s− e) = δ1

φF (s)
F (s) + δ2

φF (s) − φF (s− e)
F (s) − F (s− e) − δ3

φF (s− e)
F (s− e) ,

where δ1 = {s ≤ e}, δ2 = {e < s ≤ M1} and δ3 = 1 − δ1 − δ2. The solution
φF is shown in Figure 18 for F = F0, where we chose F0 to have a Weibull
distribution function.

Fig 18. The function φF0 , solving (9.22) for F = F0 (Weibull).

We then get, along the lines of Chapter 10 of [12], the following asymptotic
normality result:

√
n

{∫
x dF̂n(x) −

∫
x dF0(x)

}
D−→ N(0, σ2), (9.23)

where N(0, σ2) is a normal distribution with mean zero and variance

σ2 =
∥∥θ̃F0

∥∥2
Q

= −
∫ M1

0
φF0(x) dx.

In fact, using φ(M1) =
∫
a(x) dF (x) = 0, we get:

∥∥θ̃F0

∥∥2
Q

= 〈Aa, θ̃F0〉2Q = 〈a,A∗θ̃F0〉F0 = 〈a, κ̃F0〉F0 =
∫

a(x)κ̃F0(x) dF0(x)

=
∫ M1

x=0
a(x)

∫ x

0
κ̃′
F0

(u) du dF0(x) =
∫ M1

u=0
κ̃′
F0

(u)
{∫ M1

x=u

a(x) dF0(x)
}

du

=
∫ M1

u=0
κ̃′
F0

(u) {φF0(M1) − φF0(u)} du = −
∫ M1

u=0
φF0(u) du.
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9.6. Score operators and adjoint equations

We need the concept of Hellinger differentiability. Let the unknown distribution
P on (Y ,B) be contained in some class of probability measures P, which is
dominated by a σ-finite measure μ. Let P have density p with respect to μ. We
are interested in estimating some real-valued function Θ(P ) of P .

Let, for some δ > 0, the collection {Pt} with t ∈ (0, δ) be a 1-dimensional
parametric submodel which is smooth in the following sense:

∫ [
t−1(√pt −

√
p) − 1

2a
√
p

]2
dμ → 0 as t ↓ 0, for some a ∈ L2(P )

Such a submodel is called Hellinger differentiable. This property can be seen
as an L2 version of the pointwise differentiability of log pt(x) at t = 0 (with
p0 = p), with the function a playing the role of the so-called score-function
∂
∂t log pt(·)

∣∣
t=0 in classical statistics. For we have,

lim
t↓0

√
pt −

√
p0

t
= 1

2√p0

∂

∂t
pt

∣∣∣∣
t=0

= 1
2

(
∂

∂t
log pt

∣∣∣∣
t=0

)
√
p0 = 1

2a
√
p0

Therefore, a is also called the score function or score. The collection of scores
a obtained by considering all possible one-dimensional Hellinger differentiable
parametric submodels, is a linear space, the tangent space at P , denoted by
T (P ).

In the models for inverse problems, to be considered here, we work with
a so-called hidden space and an observation space. All Hellinger differentiable
submodels that can be formed in the observation space, together with the cor-
responding score functions, are induced by the Hellinger differentiable paths of
densities on the hidden space, according to the following theorem:

Theorem 9.1. Let P � μ be a class of probability measures on the hidden
space (Y ,B). P ∈ P is induced by the random vector Y . Suppose that the path
{Pt} to P satisfies

∫ [
t−1(√pt −

√
p) − 1

2a
√
p

]2
dμ → 0 as t ↓ 0

for some a ∈ L0
2(P ), where the superscript 0 means that

∫
a dP = 0.

Let S : (Y ,B) → (Z, C) be a measurable mapping. Suppose that the induced
measures Qt = PtS

−1 and Q = PS−1 on (Z, C) are absolutely continuous with
respect to μS−1, with densities qt and q. Then the path {Qt} is also Hellinger
differentiable, satisfying

∫ [
t−1(√qt −

√
q) − 1

2a
√
q

]2
dμS−1 → 0 as t ↓ 0

with a(z) = EP (a(Y )|S = z).
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For a proof, see [4]. Note that a ∈ L0
2(Q). The relation between the scores a

in the hidden tangent space T (P ) and the induced scores a is expressed by the
mapping

A : a(·) �→ EP (a(Y )|S = ·). (9.24)

This mapping is called the score operator. It is continuous and linear. Its range
is the induced tangent space, which is contained in L0

2(Q).
Now Θ : P → R is pathwise differentiable at P if for each Hellinger differen-

tiable path {Pt}, with corresponding score a, we have

lim
t↓0

t−1(Θ(Pt) − Θ(P )) = Θ′
P (a),

where
Θ′

P : T (P ) → R

is continuous and linear.
Θ′

P can be written in an inner product form. Since the tangent space T (P )
is a subspace of the Hilbert-space L2(P ), the continuous linear functional Θ′

P

can be extended to a continuous linear functional Θ′
P on L2(P ). By the Riesz

representation theorem, to Θ′
P belongs a unique θP ∈ L2(P ), called the gradient,

satisfying
Θ′

P (h) =< θP , h >P for all h ∈ L2(P ).

One gradient is playing a special role, which is obtained by extending T (P )
to the Hilbert space T (P ). Then, the extension of Θ′

P is unique, yielding the
canonical gradient or efficient influence function θ̃P ∈ T (P ). This canonical
gradient is also obtained by taking the orthogonal projection of any gradient
θP , obtained after extension of Θ′

P , into T (P ). Hence θ̃P is the gradient with
minimal norm among all gradients and we have (Pythagoras):

‖θP ‖2
P = ‖θ̃P ‖2

P + ‖θP − θ̃P ‖2
P .

In our censoring model, differentiability of a functional Θ(Q) along the in-
duced Hellinger differentiable paths in the observation space can be proved by
looking at the structure of the adjoint A∗ of the score operator A according to
theorem 9.2 below, which was first proved in [25] in a more general setting, al-
lowing for Banach space valued functions as estimand. Then the proof is slightly
more elaborate.

Recall that the adjoint of a continuous linear mapping A : G → H, with G
and H Hilbert-spaces, is the unique continuous linear mapping A∗ : H → G
satisfying

< Ag, h >H=< g,A∗h >G ∀g ∈ G, h ∈ H.

The score operator from (9.24) is playing the role of A. Its adjoint can be written
as a conditional expectation as well. If Z ∼ PS−1, then:

[A∗ b](y) = EP (b(Z)|Y = y) a.e.-[P ]
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Theorem 9.2. Let Q = PS−1 be a class of probability measures on the image
space of the measurable transformation S. Suppose the functional Θ : Q → R can
be written as Θ(Q) = K(P ) with K pathwise differentiable at P in the hidden
space, having canonical gradient κ̃.

Then Θ is differentiable at QP ∈ Q along the collection of induced paths in
the observation space obtained via Theorem 9.1 if and only if

κ̃ ∈ R(A∗), (9.25)

where A is the score operator. If (9.25) holds, then the canonical gradient θ̃ of
Θ and κ̃ of K are related by

κ̃ = A∗θ̃.
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