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Abstract: We consider the problem of comparing several samples of stochas-
tic processes with respect to their second-order structure, and describing the
main modes of variation in this second order structure, if present. These
tasks can be seen as an Analysis of Variance (ANOVA) and a Principal
Component Analysis (PCA) of covariance operators, respectively. They
arise naturally in functional data analysis, where several populations are
to be contrasted relative to the nature of their dispersion around their
means, rather than relative to their means themselves. We contribute a
novel approach based on optimal (multi)transport, where each covariance
can be identified with a a centred Gaussian process of corresponding co-
variance. By means of constructing the optimal simultaneous coupling of
these Gaussian processes, we contrast the (linear) maps that achieve it
with the identity with respect to a norm-induced distance. The resulting
test statistic, calibrated by permutation, is seen to distinctly outperform
the state-of-the-art, and to furnish considerable power even under local al-
ternatives. This effect is seen to be genuinely functional, and is related to
the potential for perfect discrimination in infinite dimensions. In the event
of a rejection of the null hypothesis stipulating equality, a geometric inter-
pretation of the transport maps allows us to construct a (tangent space)
PCA revealing the main modes of variation. As a necessary step to devel-
oping our methodology, we prove results on the existence and boundedness
of optimal multitransport maps. These are of independent interest in the
theory of transport of Gaussian processes. The transportation ANOVA and
PCA are illustrated on a variety of simulated and real examples.
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1. Introduction

Let {Xi,1}n1
i=1, . . . , {Xi,K}nK

i=1 be K independent samples of i.i.d. random ele-
ments in a separable Hilbert space H, posessing well-defined means {μj}Kj=1
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and covariances {Σj}Kj=1. We consider the problem of testing the hypothesis

H0 : Σ1 = Σ2 = . . . = ΣK (1)

on the basis of the observations {Xi,j} and, if H0 is rejected, the subsequent
problem of describing the main mode(s) of variation of the K underlying co-
variances.

This problem arises very naturally in functional data analysis, i.e. when H
is taken to be a function space (for instance L2[0, 1] or a reproducing kernel
Hilbert subspace thereof), and one is interested in discerning whether K differ-
ent groups of functions manifest the same type of dispersion relative to their
mean. For instance, the functions could be curves representing DNA minicircles
(Panaretos et al. [30], Kraus and Panaretos [25], and Tavakoli and Panaretos
[42]), where different groups correspond to different base-pair sequences, and one
is interested in probing for a dependence of the mechanical properties on the
base pair sequence; or they could be surfaces representing the log spectrograms
of short spoken words by different speakers (as in Ferraty and Vieu [14]), and
one may wish to see whether there is a difference in several groups of sounds;
yet a further example may be in the analysis of age-dependent wheel-running
activity curves in mice, where one may wish to see whether the level of activity
across age had evolved under several generation selections (Cabassi et al. [6]).
What is common to all these examples is that it is not the mean structure that
is suspected to differ (or at least to capture the most interesting differences);
in that case, the problems would fall under the well studied topic of functional
analysis of variance (see, e.g., Benko et al. [2], Zhang [45], Cuesta-Albertos and
Febrero-Bande [7], Górecki and Smaga [18]). Rather it is the fluctuations around
the means μj , as encapsulated by the operators Σj , in what could be termed a
functional covariance ANOVA.

Early contributions in this direction focus on the two-sample case, as in Benko
et al. [3], Panaretos et al. [30], Fremdt et al. [16]. In particular, Benko et al. [3]
propose a two–sample bootstrap based tests for some aspects of the spectrum
of functional data, Panaretos et al. [30] consider the problem in a two-sample
setting with Gaussian processes, and Fremdt et al. [16] extend to non-Gaussian.
Kraus and Panaretos [25] provide resistant versions of two-sample tests, fo-
cussed on operators related to the covariance. Two-sample testing has been first
extended to the K-sample case by Boente et al. [4], who propose a test based
on the Hilbert–Schmidt distance between the estimated covariance operators
of each population and where the critical values of the test statistics are cali-
brated via a bootstrap procedure. The common theme in these papers is that the
covariances are contrasted with respect to the Hilbert–Schmidt metric, which
corresponds to imbedding covariance operators in a larger linear space, whereas
they are not closed under linear operations. Instead, covariance operators are
trace-class non-negative operators, so rather than being seen as Hilbert–Schmidt
operators, they are better represented as “squares” of such operators. For this
reason, Pigoli et al. [33] considered the use of nonlinear metrics adapted to non-
negative operators in the two-sample setting, generalising some of the work in
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Dryden et al. [11] in finite dimensions. Cabassi et al. [6] extend their metric-
based methodology to the K-sample case. Other contributions for the K-sample
comparison are from Paparoditis and Sapatinas [31], who develop an empirical
bootstrap methodology and prove its consistency when the test statistics is
based on the Hilbert—Schmidt norm, and Kashlak et al. [23], who perform
K-sample comparison via concentration inequalities based methods. Recently,
Hlávka et al. [21] proposed a method to perform functional ANOVA based on
empirical characteristic functionals. When comparing with Anderson [1], Pa-
paroditis and Sapatinas [31] and Kashlak et al. [23], Cabassi et al. [6] report
simulation results illustrating state-of-the-art performance of their method. We
found that this holds true even when comparing against the recent work of
Hlávka et al. [21]. In Hlávka et al. [21], a specific choice of the parameters co-
variance matrix yield similar conclusion to Cabassi et al. [6] when comparing
covariances in a real-data example.

Pigoli et al. [33] paid particular attention to the Procrustes distance, which
generalises a metric used to compare unlabelled shapes into a metric between
covariance operators. Heuristically, the Procrustes metric aims to compare roots
of two operators in the Hilbert-Schmidt distance, a natural choice since covari-
ances are characterised as squares of Hilbert-Schmidt operators. However, there
is an ambiguity as to which precise root one ought to use, and the Procrustes
distance corrects for that by optimising over the square root orbits. Indeed, later
work by Pigoli et al. [34] reports that the Procrustes metric offered the most nat-
ural framework to compare trace-class operators, in that it uses a map from the
space of covariance operators to the linear space of Hilbert-Schmidt operators.
Masarotto et al. [27] carried out a deeper study of the Procrustes metric and
established a fruitful connection with the Wasserstein metric between Gaussian
processes. On the one hand, this allowed them to provide a complete geometrical
description of the space of covariances under the Procrustes metric, including
basic results about Fréchet means; on the other hand, it established intriguing
parallels with the theory of optimal transportation, offering potentially new av-
enues and tools for the analysis of covariance operators (see also the discussion
of Pigoli et al. [34] by Panaretos [29]).

In this paper, we use precisely this novel transportation perspective to in-
troduce a new ANOVA test, and then exploit the corresponding geometry to
construct a tangent space PCA that respects the nature of the covariance oper-
ators, by representing covariance operators as transport maps. Specifically, we
view the testing problem through the lens of optimally multicoupling the Gaus-
sian processes {N(0,Σ1), . . . , N(0,ΣK)}, thus translating the task of testing the
hypothesis H0 in Equation (1) into that of testing whether the optimal multi-
coupling is “trivial”. To do this we first prove that the optimal multicoupling
can always be deterministically1 produced by means of bounded linear transport
maps {tj}, and this regardless of the validity of the null hypothesis. These two
results are of independent interest, and are stated as Theorem 2.2. Then, given
these results, we translate the task of testing the hypothesis in Equation (1)

1Rather than stochastically, by means of a probability measure on HK .
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into the equivalent task of testing the hypothesis

H ′
0 : t1 − I = . . . = tK − I = 0 (2)

for I the identity, and so the hypothesis (2) can now be tested by means of a
norm-based (e.g., operator, Hilbert–Schmidt, or nuclear) test statistic, establish-
ing a direct analogy with classical ANOVA. The Δj = tj −I can heuristically
also be viewed as “roots” of the original covariances, albeit free of any unitary
ambiguity. Though the test is motivated by the 1-to-1 correspondence between
covariances and Gaussian processes, it relies in no way on a Gaussian assump-
tion, and will be valid on any location-scatter family – indeed, it admits an
interpretation purely in terms of the Procrustean geometry on covariances. Our
simulation experiments indicate that the new test dominates state-of-the-art
competitors, with dramatic gains in power, particularly against more challeng-
ing local alternatives. This is also explained by means of theory, and is seen
to be a genuinely functional effect, with connection to the Hajek–Feldman con-
dition. See Section 6 for more details. In terms the computation, the quantity
(K−1 ∑K

j=1 tj −I ) in finite dimension is precisely the negative gradient of the
Fréchet (sum-of-squares) functional Zemel and Panaretos [44, Theorem 1] and
its computation is stable and feasible because it relies on the fast nature of
the steepest descent algorithm in the space of covariances endowed with the
Procrustes metric.

When the mull hypothesis is rejected, it is natural as a second step to wish
to describe the variation manifested by the covariances {Σj}, or indeed obtain
a parsimonious representation thereof. We show how the maps {tj} can then
readily be employed to do just that, via a tangent principal component analysis.
In particular, the Δj = tj −I can be interpreted as the logarithms of the {Σj}
at their Procrustes–Fréchet mean. The corresponding tangent space admits a
Hilbertian structure with respect to a modified Hilbert–Schmidt inner product,
which we use to produce a tangent space fPCA, and then retract the principal
components back onto the covariance space to allow visualisation via geodesics.
To the best of our knowledge, this is the first instance of a functional PCA on
covariance operators that respects their intrinsic geometric features as trace-
class positive operators. We describe the computational steps required to do so
in Section 3, and illustrate the usefulness of the procedure on simulated data
as well as a linguistic data set. All analyses were performed using R Statistical
Software R Core Team [35]. The proposed methodology has been made available
in the R package “fdWasserstein” (Masarotto and Masarotto [26]). The next
paragraph collects the notational conventions employed throughout the paper.
Proofs of our theoretical results are given in Section 6.

2. Methodology

2.1. Basic setting and notation

As stated in the introduction, we will be interested in exploring the variation in
a finite collection of covariances {Σj}Kj=1 on a real separable Hilbert space H,
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equipped with the inner product 〈·, ·〉 : H × H → R, and corresponding norm
‖ · ‖ : H → [0,∞). Since H will in principle be infinite-dimensional, we will need
to review some basic definitions and notation, which can be more subtle.

Given a bounded linear operator A : H → H, we will denote its trace (when
defined) by trA or tr(A), its adjoint by A∗, and its inverse by A−1. The inverse
may not be defined, or defined only on a (dense) subspace of H. The range of
A will be denoted by range(A) = {Av : v ∈ H} whereas the kernel of A will be
denoted by ker(A) = {v ∈ H : Av = 0}. We will say that a (possibly unbounded)
operator A is self-adjoint if 〈Au, v〉 = 〈u,Av〉 for all u, v in the domain of
definition of A; if A happens to also be bounded, then this is equivalent to the
condition that A = A∗.

A non-negative operator is a self-adjoint, possibly unbounded operator A such
that 〈Au, u〉 ≥ 0 for all u in the domain of A. If in addition A is compact, then
there exists a unique non-negative operator whose square equals A, which will be
denoted by either A1/2 or

√
A. The inverse square root (A1/2)−1 is denoted by

A−1/2. For any bounded operator A, A∗A is non-negative. The identity operator
on H will be denoted by I . The operator, Hilbert–Schmidt and trace (nuclear)
norms will respectively be

�
�A

�
�
∞ = sup

‖h‖=1
‖Ah‖,

�
�A

�
�

2 =
√

tr (A∗A),
�
�A

�
�

1 = tr
(√

A∗A
)

and can be ordered from coarser to finer as follows
�
�A

�
�
∞ ≤

�
�A

�
�

2 ≤
�
�A

�
�

1.

When
�
�A

�
�

2 < ∞ we say that A is Hilbert–Schmidt and when
�
�A

�
�

1 < ∞ we
say that A is nuclear or trace-class.

Summarising, in this setting, covariances are linear operators from H into H,
that are self-adjoint, non-negative, and trace-class. As such, a covariance oper-
ator Σ on H can be considered as the “square” of a Hilbert–Schmidt operator:
if

�
�B

�
�

2 < ∞ then B is certainly bounded, and B∗B defines a valid covariance
operator.

It therefore becomes clear that covariance operators are non-linear objects,
and though they can be contrasted by means of any of the three norms

�
� ·

�
�
∞,

�
� ·

�
�

2, or
�
� ·

�
�

1, it may be preferable to find a means of comparison that respects
this non-linear nature. In finite dimensions, this is done by means of some form
of linearisation, i.e. the use of a transformation that substitutes a covariance
pair (Σ1,Σ2) to be considered by an operator that can be contrasted to zero
by means of one of the norms

�
� ·

�
�
r
, r = 1, 2,∞. For instance, in classical two-

sampled covariance tests, two covariances Σ1 and Σ2 have been contrasted by
means of quantities such as

�
�Σ1Σ−1

2 − I
�
�
r

&
�
�2Σ2(Σ1 + Σ2)−1 − I

�
�
r

assuming that the inverses exist (e.g., Roy [40], Kiefer and Schwartz [24], Giri
[17]. In non-Euclidean statistics, covariances (Σ1,Σ2) have been contrasted by
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means of
�
� log(Σ1) − log(Σ2)

�
�
r

&
�
� log(Σ−1/2

2 Σ1Σ−1/2
2 )

�
�
r
,

again, assuming that the inverses exist2 (Dryden et al. [11]).
In infinite dimensions, however, these criteria will generally fail to be well-

defined. For example, the inverse of Σ2 will be unbounded, and there is no
guarantee that Σ1Σ−1

2 will be bounded, except if Σ1 and Σ2 share some spe-
cial relation. Similarly, the logarithm of a covariance operator will typically be
unbounded, and unless there is a specific relation between Σ1 and Σ2, the loga-
rithmic criteria will fail to be well defined. This is one of the main reasons why
much of the literature on covariance operators has focussed on bypassing their
nonlinear nature, and comparing them directly, e.g. by means of

�
�Σ1 − Σ2

�
�

2
(Panaretos et al. [30], Fremdt et al. [16], Boente et al. [4]).

A first step in obtaining linearisations that would yield contrasts respecting
the nature of covariances, while being well-defined in infinite dimensions was
made by Pigoli et al. [33] Since covariances are “squares” of Hilbert–Schmidt op-
erators, they considered contrasting the square roots of in the Hilbert–Schmidt
distance

�
�Σ1/2

1 − Σ1/2
2

�
�

2.

Observing that one could nevertheless choose roots other than the (unique)
positive roots, by means of the fact that Σ1/2

2 U(Σ2U)∗ = Σ2 they arrived at the
Procrustes metric

Π(Σ1,Σ2) = inf
U∗U=I

�
�Σ1/2

1 − Σ1/2
2 U

�
�

2

which lifts the unitary ambiguity by optimising over unitary matrices, and is
well defined in both finite and infinite dimensions. Indeed they use this met-
ric to develop a two-sample test for covariance comparison. Masarotto et al.
[27] further developed several key properties of this metric and its geometry,
interpreting it via the optimal transportation of Gaussian processes as the L2-
Wasserstein distance between two Gaussian measures N(0,Σ1) and N(0,Σ2) on
H,

Π(Σ1,Σ2) = inf
Xi∼N(0,Σi)

E‖X1−X2‖2
2 =

�
�Σ1

�
�

1+
�
�Σ2

�
�

1−2trace
{√

Σ1/2
1 Σ2Σ1/2

1

}
.

The key observation in this paper is that the optimal transport theory developed
in Masarotto et al. [27] can be directly leveraged in order to provide natural
notions of “roots” (or linearisations) that:

• are unequivocally defined without any unitary ambiguity;
• are efficiently computable;
• that offer remarkable power when used in a covariance ANOVA;

2If more covariances {Σi} are to be simultaneously compared, for instance in a covariance
ANOVA, one could use the same contrasts, replacing Σ1 with Σi and Σ2 by the arithmetic
average n−1 ∑

i Σi.



Transportation-based covariance ANOVA and PCA 1893

• can be used in order to obtain a natural PCA, when the equality of co-
variances is rejected.

These are defined via the notion of an optimal multicoupling, and are introduced
in the next Section.

2.2. Optimal multicoupling and transport maps

As already stated, our strategy for testing H0 : Σ1 = · · · = ΣK is to view the
covariance operators through the lens of optimal multicoupling of Gaussian pro-
cesses. Specifically, we observe that the collection of covariances {Σ1, . . . ,ΣK}
can be bijectively identified with a collection of centred Gaussian measures
{N(0,Σ1), . . . , N(0,ΣK)} on the Hilbert space H. Denote these measures as
{γ1, . . . , γK}. Equality of the covariance operators thus holds true, if and only
if the measures {γj} coincide. Viewing the measures {γj} as the marginals of a
joint measure π on HK , one can ask what are the possible forms of π. This set of
possible joint measures π is always non-empty (it always contains the product
measure), and is called the set of multicouplings of {γ1, . . . , γK}. An optimal mul-
ticoupling is a multicoupling π∗ such that the marginals are as tightly coupled
as possible in a pairwise mean-square sense, in that it minimizes the functional

F (π) = 1
2K2

K∑
i,j=1

∫
HK

‖xi − xj‖2π(dx1, . . . , dxK).

Said differently, π∗ is the joint distribution of collection of K Gaussian processes
on H, say (Z1, . . . , ZK), such that Zj ∼ N(0,Σj) marginally for all j ≤ K, while∑

i<j E‖Zi − Zj‖2 is minimized. Existence of finite second moments of Gaus-
sian measures (a consequence of Fernique’s [13] theorem) implies that F (π) is
finite for any multicoupling π. It can be shown that an optimal multicoupling
of Gaussians always exists (Masarotto et al. [27]). We say that such an optimal
multicoupling π∗ is manifested by (deterministic) transport maps if the collec-
tion (Z1, . . . , ZK) ∼ π∗ can be generated by taking a single process Z, and a
collection of deterministic maps tj : H → H such that

(Z1, . . . , ZK) d= (t1(Z), . . . , tK(Z)).

In other words, an optimal multicoupling π∗ is generated by deterministic maps
if it is supported on the graph of a vector-valued function from H to HK . It is
a priori unclear whether a deterministic multicoupling exists in general, and if
it does, whether the maps tj are bounded. but it is not hard to see that it will
exist under the null H0 and that it will be “trivial”:

Lemma 2.1. The equality Σ1 = · · · = ΣK holds true if and only if the (unique)
optimal multicoupling of (γ1, . . . , γK) can be achieved by transport maps satis-
fying t1 = · · · = tK .
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The maps tj are called transport maps because they can be thought of as
“transporting” the (unspecified) law of Z to that of Zj . The lemma suggests
that we can detect departures from the hypothesis {H0 : Σ1 = · · · = ΣK} by
focussing on departures from the hypothesis {H ′

0 : t1 = · · · = tK}. But to
even speak of departures from H ′

0, we must be assured that such maps exist
even under the alternative regime, and this existence is not a priori guaranteed
(see Conjecture 17 and the discussion in Section 12 of [27]). Furthermore, to
quantify the extent of departures from the null, we need to make sure that the
multicoupling maps not only exist, but are bona fide bounded linear operators
over all of H, and can thus be contrasted by appropriate norms.

Our main theoretical result, in the form of the following theorem, shows that
a multicoupling can always be realised by means of bounded deterministic maps,
a result that is of independent interest in optimal transport in its own right.

Theorem 2.2. Let {γ1, . . . , γK} be an arbitrary finite collection of Gaussian
measures on H with mean zero. Then there exists an optimal multicoupling
of {γj}Kj=1 manifested by deterministic transport maps tj : H → H that are
bounded non-negative linear operators satisfying

�
�tj

�
�
∞ ≤ K, for all j ≤ K.

Although the optimal coupling π∗ is typically unique, its representation
in terms of the maps is not. For instance, if π∗ is manifested as the law of
(t1(Z), . . . , tK(Z)), it may also be represented as (2t1(Z/2), . . . , 2tK(Z/2)). It
is natural to take Z ∼ N(0,Σ), where Σ is a centre, i.e., the Fréchet mean of
Σ1, . . . ,ΣK with respect to the Procrustes metric. This choice forces the maps
tj to have mean identity (see (4) below), and in particular they must be the
identity under the null (1), so that (2) holds. Using this convention, the ex-
istence and boundedness result in Theorem 2.2 opens the way for a testing
procedure: the deviations Δj = tj −I are all self-adjoint and bounded, but no
longer restricted to be non-negative. When H0 is valid, Lemma 2.1 implies that
Δj = tj − I = 0 for all j. Under the alternative, at least one Δj is non-zero.
We can thus replace the null hypothesis

H0 : Σ1 = · · · = ΣK

by the equivalent hypothesis

H ′
0 : Δ1 = · · · = ΔK = 0

viewing the Δj as elements of a linear space, and reducing the original testing
problem to a more traditional linear functional ANOVA setting. Since the Δj

are guaranteed to be bounded (Theorem 2.2), they can certainly be contrasted
to 0 using the operator norm. However, one can devise even more powerful
procedures by measuring the size of Δj in a stronger norm, such as the the
Hilbert–Schmidt norm, or even the trace norm. In the finite-dimensional setting
this choice of norm will typically not make much difference, since all norms
are equivalent. But in the infinite-dimensional case, a finer norm will detect
subtle departures from the null. For instance, if K = 2 and Σ2 = δ2Σ1 for some
δ ≥ 0, then one can show that for j = 1, 2,

�
�Δj

�
�
∞ = |1 − δ|/(1 + δ) ≤ 1 while
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�
�Δj

�
�

2 = ∞ unless δ = 1. Similarly, if the Δj are Hilbert–Schmidt but not trace
class, their trace norm will be infinite, promising to furnish high power even
against very local alternatives. This genuinely functional phenomenon is not
unlike the possibility of perfect discrimination of Gaussian processes (Feldman
[12], Hájek [19], Rao and Varadarajan [39]; see Section 6 for a more detailed
discussion). It is demonstrated empirically in our later simulations. If there are
only K = 2 populations, then in view of (4), Δ2 = −Δ1 and the test statistic
is

�
�Δ1

�
�
r
. When comparing more than two covariance operators, the criteria

�
�Δj

�
�
r

will need to be combined into a single criterion (e.g., by taking their
supremum over j or by summation).

How does one concretely construct a deterministic multicoupling {tj}, and
hence the {Δj} in practice? In proving Theorem 2.2 we establish the existence
and boundedness of the maps

tj = Σ−1/2(Σ1/2ΣjΣ1/2)1/2Σ−1/2, j = 1, . . . ,K, (3)

where Σ is a Fréchet mean of {Σj}Kj=1 with respect to the procrustes metric
Π, i.e., a minimiser of the sum-of-squares functional Γ �→

∑K
j=1 Π2(Γ,Σj) over

the space of trace-class covariances. Moreover, the tj are centred around the
identity in that

1
K

K∑
j=1

tj = I . (4)

The Fréchet mean Σ is unique when at least one of the Σj is injective (or more
generally, if the kernel of at least one Σj is contained in the kernels of all other
Σj); see Masarotto et al. [27, Proposition 10]. Its algorithmic construction is
discussed in detail in Section 3.

Once the multicoupling (3) has been constructed, and a norm
�
� ·

�
�
r

(r =
1, 2,∞) has been chosen, the null hypothesis can be tested by measuring a
combined deviation of the Δj from zero using that norm, and calibrating the
typical values of such deviations under the null. This is discussed in the next
subsection. As discussed in Masarotto et al. [27], the optimal multicouping has
an elegant geometrical interpretation in terms of the manifold geometry of the
Procrustes distance — this will later be exploited in Section 2.4 in order to
construct a functional PCA of the covariance operators.

2.3. Transportation-based functional ANOVA of covariances

Assume now that we have K independent groups of functional data {Xij , j =
1, . . . , n, i = 1, . . . ,K}, each having covariance Σi (the procedure can be easily
adapted to different group sizes). Without loss of generality, the data are as-
sumed to be zero mean. Based on the discussion in the previous paragraph, we
can test the equality of covariance operators by means of testing the hypothesis

H ′
0 : t1 − I︸ ︷︷ ︸

=Δ1

= · · · = tK − I︸ ︷︷ ︸
=ΔK

= 0
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where
tj = Σ−1/2(Σ1/2ΣjΣ1/2)1/2Σ−1/2, j = 1, . . . ,K,

and Σ is a Fréchet mean of {Σj}Kj=1 with respect to the procrustes metric Π. At
the level of our sample, we have access to empirical versions of {Σ̂j}, constructed
on the basis of the samples of size n from each group. These could simply
be the empirical covariances within each group (under a complete observation
assumption), or some smoothed estimator (for instance the empirical covariance
of smoothed versions of the {Xij} (Ramsay and Silverman [37]), or PACE-type
estimators (Yao et al. [43])). Whichever the case may be, the Σ̂j are finite
dimensional, of rank q ≤ n. In case a smoothing technique is used, we assume
that it is such that the Σ̂j share a common range, and can thus be represented
as q × q positive matrices, via a common (tensor product) basis. For tidiness,
we use the same notation for Σ̂j and its q × q matrix representation in the
common basis. It is clear that this basis can be chosen so that at least one of
these matrices is of full rank q.

In this case, there exists a unique empirical Fréchet mean Σ̂,

Σ̂ = arg min
Rq×q�Γ�0

K∑
j=1

Π2(Σ̂j ,Γ)

and this can be computed from {Σ̂1, . . . , Σ̂K} using steepest descent (see Sec-
tion 3). This gives rise to empirical versions of the tj ,

t̂j = Σ̂−1/2(Σ̂1/2Σ̂jΣ̂1/2)1/2Σ̂−1/2, j = 1, . . . ,K,

and corresponding empirical deviations from the identity

Δ̂j = t̂j − Iq×q.

The testing procedure is now based on the test statistic

Tr =
K∑
j=1

�
�Δj

�
�

2
r
,

where r ∈ {1, 2,∞} (the performance under the different choices of r is inves-
tigated in the simulation section). We avoid making any concrete parametric
assumptions, and instead calibrate the test statistic by means of permutations.
The typical permuted value will be calculated according to the following steps:

- Reassign the n×K curves {Xi,j} into K groups of equal size. Call these
new groups {X∗

i,j}.
- Construct the empirical covariance Σ̂∗

j for the jth group {X∗
i,j}ni=1, j =

1, . . . ,K.
- Compute empirical Fréchet mean Σ̂∗ of {Σ̂∗

1, . . . , Σ̂∗
K}.
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- Construct t̂∗j = (Σ̂∗)−1/2
√

(Σ̂∗)1/2Σ̂∗
j (Σ̂∗)1/2(Σ̂∗)−1/2 and compute

T ∗
r =

K∑
j=1

�
�t̂∗j − Iq×q

�
�

2
r

=
K∑
j=1

�
�Δ̂∗

j

�
�

2
r
.

Repeating these steps for all possible re-assignments yields the distribution for
the permuted statistics T ∗

r , which can be used to generate a p-value for Tr under
the null hypothesis. As usual, an exact such p-value can become prohibitive for
large K, and in practice we resort to Monte Carlo sampling of permutations.
Note that similar steps allow for the implementation of a bootstrap-type pro-
cedure, simply by randomly permuting indices with replacement. However, we
opt for the permutation approach since the exchangeability of the permutation
labels under H0 guarantees the (near) exactness of the K-sample permutation
test (Pesarin and Salmaso [32]), and we do not pursue the bootstrap approach
further.

Remark 2.3. [The role of Gaussianity] It may be worth highlighting that the
test procedure does not assume the {Xij} to be Gaussian process. Gaussianity
(or lack of it) does not play a role in the calibration of the test, which is done
via permutation. It only serves to motivate the transport-based measure of dis-
similarity that comprises our test statistic, by way of the 1-to-1 correspondence
between covariances and centred Gaussian measures. But once this measure of
dissimilarity has been defined, it can be interpreted in its own right, without
any reference to Gaussian measures.

2.4. Transportation-based functional tangent PCA of covariances

When the null hypothesis of equality between covariances is rejected, the ana-
lyst may wish to explore whether the detected differences are carried by some
interpretable main modes of variation. The transport maps tj (or their empirical
versions) can be used to this aim. When these exist, the differences Δj = tj−I
admit an elegant geometric interpretation as the logarithms of the operators Σj

at the Fréchet mean Σ, under the manifold-like geometry induced by the Pro-
crustes metric Π(·, ·) on the space of (trace-class) covariance operators. Specifi-
cally, Masarotto et al. [27] show that it admits a tangent space with respect to
geometry induced by Π that is characterised as

TanΣ =
{
Q : Q = Q∗,

�
�Σ1/2Q

�
�

2 < ∞
}

where the closure is with respect to the inner product

〈Q1, Q2〉Σ = trace(Q1ΣQ2).

When Σ is injective, this is a bona fide inner product, that is, 〈Q,Q〉 = 0 ⇐⇒
Q = 0. However, the Fréchet mean need not be injective even if all Σj are so,
and it is not clear that the Σj ’s can be lifted to the tangent space. Nevertheless,
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our new result in the form of Theorem 2.2 guarantees that the maps Δj do exist
as bounded self-adjoint operators, and indeed the 1-form

trace(ΔiΣΔj) ≤
�
�Σ1/2Δi

�
�

2
�
�Σ1/2Δj

�
�

2 = Π(Σi,Σ)Π(Σj ,Σ) < ∞

is well-defined, regardless of the injectivity of Σ by means of the formulae for
ti and Π. Consequently, the finite-dimensional span of {Δ1, . . . ,ΔK} admits
a Hilbertian structure when equipped with the inner product 〈·, ·〉Σ, and for
all practical purposes can be used to carry out a PCA3 based on the spectral
decomposition of the non-negative operator

K = 1
K

K∑
j=1

Δj ⊗Σ Δj = 1
K

K∑
j=1

(
tj − I

)
⊗Σ

(
tj − I

)
,

where (A ⊗Σ B)C = 〈B,C〉ΣA. Notice that the latter constitutes precisely the
empirical covariance of the collection {Δj}Kj=1, because

K∑
j=1

Δj = 0,

by Equation (4). Once the principal components are constructed, the main
modes of covariance variation can be visualised by retracting appropriate sub-
spaces of the tangent space back to the space of covariance operators (see also
Fletcher et al. [15] for the study of principal geodesics analysis in a general Rie-
mannian symmetric space). Specifically, if E1 is the eigenoperator associated
with the largest eigenvalue of K , this retraction takes the form

t �→ (I + tE1)Σ(I + tE1), t ∈ [−ε, ε],

which is a geodesic for sufficiently small ε > 0. This principal geodesic is the
visualisation of the main mode of variation of {Σj}Kj=1 near their Fréchet mean
Σ.

A subtlety here is that the PCA is to be carried out on a Hilbert space
endowed with an inner product other than the standard Hilbert–Schmidt inner
product. This different choice of inner product affects both the formal definition
and the computational evaluation of the principal components. The defining
maximisation problem yielding the first principal component is now

arg max
�
�B

�
�

Σ
=1

〈K B,B〉Σ = arg max
�
�Σ1/2A

�
�

2
=1

〈K Σ1/2A,Σ1/2A〉2

= arg max
trace(AΣA)=1

trace(K Σ1/2A2Σ1/2).

3Such a PCA can be interpreted as a tangent space PCA with respect to a Procrustean
metric tensor

〈Q1, Q2〉Γ = trace(Q1ΓQ2), Γ ∈ L =

⎧⎨⎩arg min
Γ�0

K∑
j=1

αjΠ2(Σ̂j ,Γ) : αj > 0 &
K∑

j=1
αj = 1

⎫⎬⎭
over the barycentric locus L of the operators {Σj}Kj=1.
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Nevertheless, this change of inner product poses no essential difficulty, and has
indeed considered before by Silverman [41] in the case of Sobolev inner products,
and generalised by Ocaña et al. [28]. Further details are given in Section 3.

3. Computational implementation

In the next Section we will work with K independent groups of functional data
{Xij , j = 1, . . . ,K, i = 1, . . . , nj}, each group of sample size nj and with
covariance operator Σj , j = 1, . . . ,K. Unless otherwise stated, all curves are
curves are simulated from a multivariate Gaussian process and sampled on an
equispaced grid on Ω = [0, 1]. The sample size and the grid points vary across
applications, therefore, in practice, we only have access to estimated empirical
covariances Σ̂1, . . . , Σ̂K . In our case, Σ̂1, . . . , Σ̂K are obtained from the smoothed
versions of the {Xij} as traditional sample covariance functions, through the
command var.fd in the R package fda (Ramsay and Silverman [36], Ramsay
et al. [38]). If a smoothed version of the {Xij}’s is not available, a PACE-
type estimator can be used (Yao et al. [43]). All the functions needed to apply
transport ANOVA and transport tangent PCA have been made available in the
R package “fdWasserstein” (Masarotto and Masarotto [26]).

3.1. Transport ANOVA

Once estimators Σ̂1, . . . , Σ̂K are at our disposal, our transport ANOVA requires
their Fréchet mean

Σ = arg min
Σ

K∑
j=1

Π2(Σ, Σ̂j)

and the transport maps contrasted with the identity

Δj = tj − I = Σ−1/2(Σ1/2Σ̂jΣ
1/2)1/2Σ−1/2 − I , j = 1, . . . ,K.

When Σ̂j commute (Σ̂jΣ̂i = Σ̂iΣ̂j for all i, j), the Σ has the explicit form

Σ1/2 = K−1
[
Σ̂1/2

1 + · · · + Σ̂1/2
K

]
.

However, there is no reason that these commutativity should hold. For general
covariances, Σ has no closed form formula, but it can be approximated by the
iterative procedure described in [27, Section 8]. It can be interpreted as steepest
descent in the Procrustes space of covariances, and in finite dimensions provably
approximates Σ and Δj to arbitrary precision. It is carried out as follows:

• Let Σ0 : H → H be an injective covariance, serving as the initial point.
• Denote the current iterate at step k as Σk.
• For each j compute the optimal maps from Σk to each of the prescribed

operators Σ̂j : H → H, namely

tΣ̂j

Σk = (Σk)−1/2[(Σk)1/2Σ̂j(Σk)1/2]1/2(Σk)−1/2.
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• Define their average Tk = K−1 ∑K
j=1 tΣ̂j

Σk , which is itself a non-negative
operator on H.

• Set the next iterate to Σk+1 = TkΣkTk.

In practice the algorithm will stop after, say, k iterations, Σk will be our nu-
merical approximation for Σ and tΣ̂j

Σk − I will approximate tj − I .
In terms of the manifold-like geometry of covariances under the Procrustes

metric (see Section 2.4), the algorithm starts with an initial guess of the Fréchet
mean; it then lifts all observations to the tangent space at that initial guess via
the log map, and averages linearly on the tangent space; this linear average is
then retracted onto the manifold via the exponential map, providing the next
guess, and iterates. The quantity Tk − I is precisely the negative gradient of
the Fréchet (sum-of-squares) functional, which is the reason why this is steepest
descent.

The test statistic, a linear combination (or the maximum) of powers of
�
�Δj

�
�

2
2,

is readily computable from the spectral decomposition.

3.2. Transport tangent PCA

Once the empirical Fréchet mean Σ of Σ̂1, . . . , Σ̂K and the Δ̂j ’s are computed
(see the previous section), we can perform functional PCA on the collection
{Σ̂1, . . . , Σ̂K} by their tangent space representation Δ̂1, . . . , Δ̂K (see Section 2.4).
As explained there, there are some subtleties involved in this PCA, since we are
working with a different inner product than the standard Hilbert–Schmidt one.
However, Ocaña et al. [28] proved that PCA with respect to the tangent space
inner product is equivalent to the PCA performed with the Hilbert–Schmidt
inner product on suitably transformed data, thus allowing a framework to in-
terpret standard Euclidean PCA in the Procrustes geometry. More precisely, let
〈·, ·〉HS be the Hilbert–Schmidt inner product and 〈·, ·〉Σ be the Wasserstein one
at the tangent space at Σ̄, that is 〈A,B〉Σ = tr(AΣB). We follow the steps by
Ocaña et al. [28], using that there is a unique operator T characterised by

〈A,B〉Σ = 〈T (A), B〉HS = tr([T (A)]∗B).

which in our case we take to be the multiplication from the right by Σ (so
T (A) = (AΣ1/2)Σ1/2 is trace class and has an adjoint). is computed as the PCA
of [T 1/2(Xi)]ni=1 with Hilbert–Schmidt norm, in the sense that the eigenvalues
(i.e. the variances) remain the same and the eigenfunctions with respect to 〈·, ·〉Σ
are T 1/2 applied to the eigenfunctions with respect to 〈·, ·〉HS . In our specific
case, T 1/2(X ) = X Σ1/2, and the PCA on the tangent space is carried out as
follows:

- Multiply Δj = tj − I from the right by Σ1/2.
- Find the spectral decomposition of the empirical operator K̃ = K−1 ∑Δj

Σ1/2 ⊗ ΔjΣ1/2, defined on the space of Hilbert–Schmidt operators with
respect to the Hilbert–Schmidt norm.
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- Multiply (from the right) the eigenfunctions of K̃ by Σ−1/2 to obtain the
eigenfunctions of K .

4. Numerical experiments

We now demonstrate the efficacy of the proposed methods through a variety
of simulated examples. Simulations are broadly categorized into two subsets:
functional ANOVA and tangent space PCA. We initially explore the behavior
in a scenario where the Fréchet mean is known and the transport-based func-
tional ANOVA test is applied to covariances {Σj = TjΣTj}Kj=1 obtained via
perturbation according to the generative model described in Masarotto et al.
[27, Section 10]. To allow comparability of our method with the existing litera-
ture, we subsequently consider another simulation scenario, directly taken from
Cabassi et al. [6], where the simulated covariance operators are perturbation of
the male and female subjects in the Berkeley growth data set (Jones and Bay-
ley [22]). In both scenarios, generative model and Berkeley data, we compare
the functional ANOVA based on Transport Maps with the permutation test of
Cabassi et al. [6], the concentration inequality method by Kashlak et al. [23] and
the functional ANOVA method based on empirical characteristic functionals of
Hlávka et al. [21]. Cabassi et al. [6] provide result showing that their method
is state-of-the-art, and to the best of our knowledge, no other alternative pro-
cedures besides the ones listed exist. It is evident from Figure 1 and 2 that
our testing method over-powers other methods, reaching nearly perfect power
even in the presence of small differences. After validating the performance of
transport-based functional ANOVA, in Section 4.2 we make use of the genera-
tive model scenario to perform tangent space Principal Component. Finally, in 5
we test the performance of our method on the classic phoneme dataset (Ferraty
and Vieu [14]), which consists of 4509 log-periodograms of 5 different phonemes.
The data is available at https://hastie.su.domains/ElemStatLearn/. Real
data analysis consolidates the strength of our method with respect to the com-
petitors, as it can be seen in Section 5.1. If the null hyphothesis of equality
among covariance operators is rejected, Section 5.2 shows how tangent space
PCA can be a successful tool in understanding dataset variability.

4.1. Simulation experiments

In order to avoid propagation of error, it is convenient to formulate a simulation
setup in which the Fréchet mean is known exactly and does not need to be ap-
proximated (Section 3). It is easy to construct such examples in the commutative
case, but we shall not do so, as this case is overly restrictive and unrealistic. We
thus appeal to the generative model in Masarotto et al. [27, Section 10], which
states that if a collection of nonnegative maps T1, . . . , TK has mean identity,
then any covariance operator Σ is the Fréchet mean of {Σj = TjΣTj}Kj=1, and
the maps tj in (3) must equal Tj (on the closed range of Σ).

https://hastie.su.domains/ElemStatLearn/
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To construct the collection {T1, . . . , TK} we proceed as follows. Let H =
L2[0, 1] and for f, g ∈ H their tensor product f ⊗ g is the operator

(f ⊗ g)(h) = 〈f, h〉g =
(∫ 1

0
f(t)h(t)dt

)
g ∈ H, h ∈ H.

If t is the parameter of the functions, we write f(t)⊗ g(t) to mean f ⊗ g. With
this notation set

Tj = k−1
∞∑

n=1
δ(j)
n sin(2nπt−θ(j))⊗sin(2nπt−θ(j)), j ∈ {1, . . . ,K}, δ(j)

n
iid∼ χ2

k,

(5)
where δ

(j)
n are independent of θ(j), and k > 0. This construction guarantees that

E[Tj ] = E[E[Tj |θ(j)] = I regardless of the distribution of θ(j). The parameter k
controls the concentration of T (j) around the identity; when k is large, the law
of large numbers entails that δ

(j)
n is close to 1. Of course, a given realisation of

T1, . . . , TK will not average precisely to the identity, but will average approxi-
mately to the identity if K and k are not too small. The parameter θi ≥ 0 on the
other hand, serves as indicators on how far we are from commutativity. On this
note, a parametric model can be assumed for the θi. We chose the θi to be sam-
pled from a von Mises distribution with mean 0 and measure of concentration
1/σ, with the degenerate case of σ → ∞ yielding commutativity.

We then generate nj Gaussian curves Xi,j , i ∈ {1, . . . , ni} with mean zero
and covariance Σj = TjΣ̄T �

j , j ∈ {1, . . . ,K}, j ∈ {1, . . . ,K}. Inspired from
Kashlak et al. [23], the “population” Fréchet mean was chosen to be a matrix
with eigenvalue decay rate O(n−4):

Σ̄ = U

[ ∞∑
n=1

n−4 sin(2nπt) ⊗ sin(2nπt)
]
U∗ (6)

where U is a randomly generated orthogonal operator. To simulate a functional
case and have enough information to display the decay of the spectrum, we
chose for the matrices a relative high size of 50 × 50. The power is estimated
from 500 replications. The number of permutations is 200. At each replication,
we generate two optimal maps T1 and T2 via the generative model, and two
corresponding covariances Σ1 = T1ΣT ∗

1 and Σ2 = T2ΣT ∗
2 , with Σ given by

equation (6). For each Σi, i = 1, 2, we sample 40 observations of a Gaussian
process with mean-zero and covariance Σi. The empirical covariance computed
from these observations will yield a replica of Σi. We repeat this as to obtain k1
replicas of Σ1, and k2 replicas of Σ2, for a total of k1 + k2 covariances divided
into two groups of size k1 and k2 respectively. The values of the pair (k1, k2) are
(1,2), (1,3), (1,7) and (4,4). This procedure is repeated for several values of the
Von Mises parameter, namely σ−1 = (0.1, 1, 5, 10).

We compare the power of our procedure with that of the K-sample permu-
tation test in Cabassi et al. [6], Kashlak et al. [23], Hlávka et al. [21]. The idea
in Cabassi et al. [6] is to perform a series of partial 2-sample tests for each pair
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Fig 1. Empirical power of different tests as a function of the dispersion parameter k in (5).

of groups, and combine the pairwise test statistics through the non-parametric
combination algorithm of Pesarin and Salmaso [32]. The pairwise test statistics
are Tij = d(Σi,Σj), where Σi and Σj are the sample covariance operators of the
corresponding groups, and d is a metric on the operators space. The method of
Cabassi et al. [6] is general, as any distance d can be used as test statistic. It is
shown to be more powerful than competing method such as Kashlak et al. [23],
and is implemented in the R-package fdcov (Cabassi and Kashlak [5]). In our
comparisons, we have used the square root distance

�
�Σ1/2

i − Σ1/2
j

�
�

2, which led
to the best performance according to Cabassi et al. [6]. Using the Procrustes dis-
tance instead of the square root distance had similar performance but increased
computational cost. Hlávka et al. [21] propose a a test statistics of Cramér-von
Mises type with the distance of the empirical characteristics functionals (ECFs)∫
|φ1(ω) − φ2(ω)|2dQ(ω), where φi is the ECF of the sample and Q is some

probability measure on the dual space of H. The performance of the proposed
test by Hlávka et al. [21] relies heavily on the choice of the measure Q. We con-
sider a Gaussian measure characterized by the choice of two different covariance
operators: the sample covariance matrix on one hand and an approximation of
the inverse of the pooled sample covariance matrix computed from the first 9
eigenvectors on the other. These two cases appear to be performing the best
in Hlávka et al. [21]. We include both choices in our simulation study because
the first yields overall better performance, but the latter gains power in difficult
cases, like when most operators are equals. After performing the global test, in
case the null hyphothesis H0 is rejected, one can investigate pairwise differences
with post-analysis comparison, as in Cabassi et al. [6], Pesarin and Salmaso [32].

Figure 1 shows the empirical power of all procedures. The x-axis represents
the value of the dispersion parameter k in (5), while the y-axes displays the
empirical power. It is evident from the figure that our procedure over-powers
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that of Cabassi et al. [6], Kashlak et al. [23] as well as of Hlávka et al. [21] for
both variations considered. To better understand Figure 1, it is important to
note that the transport perturbation given by the generative model would not
result in a monotonic effect on the power curve. This is due to the intrinsic
nature of the generative model as we are not sampling curves directly, but we
are constructing transport operators which have a periodic pattern. The effect
of different variances σ of the Von Mises distribution will be affected by such
periodicity. The only predictable effect we could foresee is that for very large k
(i.e. very small variance) the Von Mises random deviates are very concentrated
around 0. This would yield commutativity and, consequently, a very low power.
Figure 1 displays both the periodical nature of the model, as well as the decrease
in power when we approach commutativity.

The success of our test is a genuinely functional phenomenon and indeed,
when the data are truncated, the differences are not so overwhelming. To un-
derstand this better notice that, since χ2

k is an unbounded random variable we
have

�
�Tj

�
�
∞ = ∞ almost surely, and our test based on

�
�Tj − I

�
�

2 = ∞ con-
sequently rejects the null hypothesis. If the series is truncated at a finite level
n0, then

�
�Tj

�
�

1 ∼ k−1χ2
k,n0

and so P (
�
�Tj

�
�

1 > R) decays to zero exponentially
as R and/or k increase; a fortriori the same holds for

�
�Tj

�
�

2 and
�
�Tj

�
�
∞. The

procedure of Cabassi et al. [6] effectively puts very small weights on what hap-
pens at the tails (n large), whereas our procedure is able to detect departures
from the null even when they only occur at very high frequencies. We refer to
Section 6 for more insight on the power of the functional ANOVA test.

One may argue that the generative model setup in (5) artificially favours our
testing procedure, as it guarantees

�
�Δj

�
� = ∞. We therefore consider another

simulation scenario, directly taken from Cabassi et al. [6], in order to compare
the two methods on the same ground. Here n = 20 curves generated from a
mean-zero Gaussian process with suitably chosen covariances are evaluated on
a equipaced grid of 31 points on [0, 1]. Such curves are assumed to come from
K populations, and the covariance operators of each population is obtained via
perturbations of some given, known covariances Σf and Σm. These are computed
with the fda R-package as the covariance operators of the smoothed growth
curves of male and female subjects in the Berkeley growth data set (Jones and
Bayley [22]). [22] The perturbations take two different forms:

1. geodesic perturbations: K1 < K of the groups have covariance operator

Σ(γ) = [Σ1/2
m + γ(Σ1/2

f R− Σ1/2
m )][Σ1/2

m + γ(Σ1/2
f R− Σ1/2

m )]∗

with R the operator minimising the procrustes distance and γ ∈ [0, 5].
The other K2 = K −K1 groups have covariance operator Σm.

2. additive perturbations: K1 < K of the groups have covariance operator
Σ(γ) = (1 + γ)Σm, γ ∈ [0, 5]. The other K2 = K − K1 groups have
covariance operator Σm.

The number of permutation is again 200. The power is estimated from a total of
500 replications. The test-statistics employ the Hilbert-Schmidt norm (r = 2).
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Fig 2. Empirical power of ours and Cabassi et al. [6], Kashlak et al. [23], Hlávka et al. [21]’s
method in the Gaussian case, as a function of the perturbation parameter γ. Left: geodesic
perturbations; right: additive perturbations.

The probabilities of false positive (I type error) are estimated using all the
available replications when γ = 0. Figure 2 compares the power of our transport
test with that of Cabassi et al. [6], Kashlak et al. [23], Hlávka et al. [21] on these
synthetic data. The x-axis gives the value of the γ parameter, while the y-axes
displays the empirical power. It is seen that our method is more powerful in
all scenarios considered. Moreover, in case of geodesic perturbations, we achieve
near perfect power, as opposed to the other tests that have little to nearly
no power, for small values of γ, i.e. against local alternatives. Furthermore,
notice that without knowing the null distribution is not possible to use the
calibration procedure of Kashlak et al. [23], which is too conservative and does
not respect the nominal level of 0.05 under H0. In terms of computational cost,
we have compared the runtime between our procedure, and those of [5] and [21].
Computation of a p-value this setting is around 5 seconds for our method and
that of [5], and around 2 seconds for [21]. Arguably the difference is immaterial
in practice.

To illustrate that the test does not rely in any way on the assumption of
Gaussianity, as explained in Remark 2.3, we run the test in exactly the same
settings as 2 but on t-student processes. As it is visible from the plots, we retain
a higher power even in the non-Gaussian case.

4.2. Tangent space PCA

We validate the PCA framework described in Section 3.2 on a synthetic datasets
which is inspired by the theoretical generative model (5) and which yields N
covariances well separated in K groups. The aim is to see whether PCA is able
to differentiate between the groups. The operators Σ1, . . . ,ΣK are obtained
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Fig 3. Empirical power of ours and Cabassi et al. [6], Kashlak et al. [23], Hlávka et al. [21]’s
method in the Gaussian case, as a function of the perturbation parameter γ. Left: geodesic
perturbations; right: additive perturbations.

as a conjugation perturbation of some known Fréchet mean by the generated
“optimal” maps T1, . . . , TK

Ti =
∑
n

δ(i)
n sin(2nπt− θ(i)) sin(2nπt− θ(i))

where the δ
(j)
n are drawn from a χ2 distribution and θ(i) are sampled from

a von Mises distribution of mean 0 and measure of concentration 1/σ. The
Fréchet mean is chosen to be Σ̄ = UΛU∗ as in Kashlak et al. [23], with U being
a randomly generated unitary operator, and Λ a d × d diagonal matrix with
eigenvalue decay of O(d−4), d being the dimension of the matrices.

As the generative model yields optimal maps which are small perturbations
of the identity, the dimension of the matrices used to approximate the operators
needs to be large, otherwise the estimation errors would overwhelm the intrinsic
variability of the sample. The dimension is chosen to be 200, the measure of
concentration to be 1 and the number of groups K to be K = 3. For each of
the Σj , j = 1, 2, 3, we generate 100 samples of 50 Gaussian curves each. We
then estimate the empirical covariance of these curves, obtaining a sample of
N = 300 covariances. Results of the PCA are shown in Table 1 and Figures 4
and 5. The Figures show that the different groups are clearly identified.

Table 1

Importance of each PC, first experiment with the generative model.
PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 0.5810 0.1545 0.0966 0.0371 0.0276 0.0216
Proportion of Variance 0.8989 0.0635 0.0248 0.0037 0.0020 0.0012
Cumulative Proportion 0.8989 0.9624 0.9873 0.9909 0.9930 0.9942
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Fig 4. PCA scores, first experiment with the generative model. Colours correspond to the
three maps generated from the model.

Fig 5. Eigenvalues screeplot, first experiment with the generative model
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5. Data analysis: phoneme periodograms

In this section, we illustrate our method on the phoneme data set considered
in Hastie et al. [20]. The dataset consists of 4509 log-periodograms of length
256 each, computed from continuous speech frames of 50 male speakers. Each
speech frame is 32msec long, sampled at a rate of 16kHz and represents one of the
following five phoneme: “aa” (as in “dark”, nasal a), “ao” (as in “water”), “iy”
(as in “she”), “sh” (as in “she”), “dcl” (as in “dark”, “british” d). Each phoneme
j gives rise to a covariance operator Σj . We use this sample of K = 5 covariances
to generate K populations of n Gaussian processes, on which inference will be
performed.

5.1. ANOVA

In order to perform ANOVA on the phoneme dataset, we extract the log-
periodograms corresponding to the phonemes “aa”, “ao”, “iy”. We limit the test
to these three phonemes because of their similarity, which makes it harder to dis-
tinguish them and allows for better discrimination among different procedures.
If we include all 5 phonemes, the difference between vowels and consonants
sound is so stark that all tests have very high power.

To sample under H0, we sample 3n log-periodograms for the “iy” phoneme
which are then randomly assigned to three groups, each of size n. To sample
under the alternative H1, we sample n log-periodograms for each phoneme.
We repeat the test for n = 25 and n = 50, and for 500 replications and 200
permutations. Again we compare both with Cabassi et al. [6], Kashlak et al.
[23] and Hlávka et al. [21]. We limit the comparison with Hlávka et al. [21]
to the test statistics using the sample covariance matrix, as it is the scenario
that gives consistently better results. We extend their two-sample testing to
3-samples by considering all pairwise comparisons and using the maximum test
statistics. When interpreting the results, it is important to treat the outputs
carefully, since the procedure of Kashlak et al. [23] was unable to produce a
result in a small number of cases, as the computation of the distance using SVD
failed, while in some cases of Hlávka et al. [21], both the test statistics under
the null and the p-values are identically 0.

Table 2 shows the comparison between the test on smoothed phonema log-
periodograms. Since the different phonemes have different mean functions, ob-
servations must be centered around the sample mean of each group, implying
that the right type I error probability under H0 might not be respected. Regard-
less, the transport test delivers a level very close to the nominal 0.05, especially
when n = 50 (which is still relatively low compared to the 256 points where the
curves are sampled). The tests of Cabassi et al. [6] and Hlávka et al. [21] also
reache an acceptable nominal level under H0. This is not the case for Kashlak
et al. [23] making impossible the comparison. However, Cabassi et al. [6] show
that their test outperforms that of Kashlak et al. [23]. It is worth mentioning
that the test of Hlávka et al. [21] responds very well to variation of the mean,
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Table 2

Comparison of the empirical power of the three different testing methods on the phoneme
dataset, when applied on the phonemes “aa”, “ao” and “iy”.

n Pairwise Concentration Transport Maps ECF-varv
H0 25 0.086 0.000 0.068 0.2

50 0.050 0.000 0.046 0.5
H1 25 0.271 0.300 0.470 0.01

50 0.670 0.944 0.994 0.1

because it takes into account the full distribution thanks to the characteristic
functionals. In the phoneme dataset, the mean log-periodogram captures most
of the variability. Thus, if one was to consider variation with respect to both
first and second moment simultaneously, the method of Hlávka et al. [21] would
show a significant increase in power. However, for the scope of this work, we
are interested specifically in second order variation. When centering with re-
spect to the mean, the test based on the transport maps greatly outperforms
the competing methods under the alternative hypothesis.

5.2. PCA

In this section, we illustrate the use of tangent space PCA of covariance opera-
tors by applying it to the phoneme dataset described in Hastie et al. [20]. The
collection of curves corresponding to each phoneme gives rise to a sample co-
variance operator, for a total of five covariances. The five empirical covariances
are lifted to the tangent space via the log map centered at their Fréchet mean Σ̄.
Successively they are scaled by Σ̄1/2 as explained in section 3.2. Standard PCA
can now be run on these quantities. Figure 6 (left) shows the results of applying
PCA on phoneme data. We see clearly that tangent space PCA captures very
well the difference among the phonemes, as each sillable is isolated in at least
one plot. The colours are as follows: “sh” black, “iy” red, “dcl “green”, “aa”
blue, “ao” cyan, more precisely:

1. The first PC captures (part of) the difference between “aa, ao and iy”
(vowels) and “dcl and sh” (consonants)

2. The second PC captures (part of) the difference between “dcl” and “sh”
(two consonants).

3. The third PC captures (part of) the difference between “aa and ao” and
“iy” (separating the two similar sounding vowels from the third more dif-
ferent one).

4. The fourth PC captures (part of) the difference between “aa” and “ao”
(separating the last two remaining, and very similar, sounds).

5. Since, the order in the y-axes is the order of magnitude of the eigenvalues
the analysis suggests also the importance of the differences between the
operators. As intuition dictates the difference between vowels and conso-
nants is nearly four times more pronounced than the difference between
the sounds “aa” and “ao”.



1910 V. Masarotto et al.

Fig 6. Left: PCA scores, as computed from the phoneme dataset. The colours are as follows:
“sh” black, “iy” red, “dcl “green”, “aa” blue, “ao” cyan. Right: screeplot of eigenvalues,
phoneme dataset

The screeplot (Figure 6, right) shows that four PCs explain the full variance of
the data, which is obvious as we have only five data points. The fourth PC is
quite important and explains 13% of the variance.

In order to test our methodology in a more realistic situation, we artificially
enlarge our sample of covariances by subsampling the original data. Specifically,
from each of the five phonemes we subsample B = 50 of the corresponding
log-periodograms to obtain a new estimator of the covariance operator of that
phoneme. We do this G = 12 times so that in total we have a sample of 5G = 60
covariances, divided into five groups, and the covariances in a group should be
close to each other. We then carry out the PCA on these 60 covariances The
results are showed in Figure 6 (right). Again, we can see that each phonema is
isolated in at least one plot. Figure 7 shows the comparison of the PCA scores
both in Euclidean and in Wasserstein distance. It is seen that the PCA based on
the Procrustes tangent space distance is much more successful in distinguishing
the covariances of different phonemes.

6. Concluding remarks

This paper introduces a framework that allows the comparison of several pop-
ulation of stochastic processes with respect to their covariance structure. We
contributed a new methodology that exploits the theory of optimal (multi)trans-
port and demonstrate how taking such a stand point allows to develop: (a) a
testing procedure which outperforms the state of the art and (b) the first in-
stance of tangent space principal component analysis of covariance operators. A
fundamental ingredient of our approach and the main theoretical contribution
of this paper is the proof that Gaussian measures can always be multicoupled
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Fig 7. PCA of the 60 covariance operators, based on the Procrustes tangent space distance
(left) and the Hilbert–Schmidt distance (right)

through bounded non-negative linear operators. The existence and boundedness
result is elemental to both the testing procedure, and the PCA: the test statis-
tic compares these coupling maps to the identity in norms of various strenghts,
whereas the PCA uses the deviations of these couplings from the identity as a
basis for eigenanalysis.

Specifically concerning the testing procedure, an appealing aspect of the pre-
sented methodology is that it harnesses a genuinely functional effect, in order to
manifest exceptionally powerful performance under wide classes of alternatives
– – alternatives for which previous tests would not perform nearly as well.

The genuinely functional effect arises under alternatives where the optimal
coupling maps are not Hilbert–Schmidt (they are merely guaranteed to be
bounded). At the population level, this corresponds to

�
�Tj−I

�
�

2 = ∞, yielding
very large values of the empirical test statistic.

Such a situation arises when departures from the null happen “across the
whole spectrum” and not just in its bulk. These situations are not a theoretical
curiosity —they can indeed be very common, as the following example will
illustrate.

Consider the two-sample setting, and suppose that Σ1 is the covariance op-
erator of standard Brownian motion on [0, 1], whereas Σ2 = σ2Σ1 is the co-
variance of standard Brownian motion on [0,1] scaled by the positive scalar
σ > 0. These two covariance operators commute with Fréchet mean having co-
variance (1 + σ)2Σ1/4, and corresponding transport maps t1 = [2σ/(1 + σ])]I
and t2 = [2/(1 + σ])]I . Thus Δj are both bounded, but they are not Hilbert–
Schmidt unless σ = 1, leading to

�
�Δ2

�
�
k

= ∞, for any k ≥ 1. The Wasserstein
distance itself, however, equals

�
�Σ1/2

1 −Σ1/2
2

�
�

2 = (1−σ)
�
�Σ1/2

1
�
�

2 = (1−σ)/
√

12
and thus becomes arbitrarily small as σ nears one (recall that in the commu-
tative case, the Wasserstein distance becomes the Hilbert–Schmidt distance of
the corresponding positive roots).
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The functional effect taking place is related to the Hajek–Feldman alternative,
which has been exploited to obtain perfect discrimination of Gaussian process
differing in their mean within an FDA context (see Delaigle and Hall [9]), by
similarly exploiting the fact that a certain norm diverges under the alternative.

To see the connection with our setting, assume Σj =
∑

n λj,nϕn ⊗ ϕn (j =
1, 2) have the same eigenfunctions and thus commute. Then zero-mean Gaus-
sian measures N(0,Σ1) and N(0,Σ2) are equivalent if and only if

∑
n(rn − 1)2

converges, where rn = λ2,n/λ1,n. Indeed, summability implies that rn → 1 so
that Σ1/2

1 and Σ1/2
2 have the same range and

�
�(Σ−1/2

1 Σ1/2
2 )(Σ−1/2

1 Σ1/2
2 )∗ − I

�
�

2 =
∞∑

n=1
(rn − 1)2

is finite, as required (see e.g., Da Prato and Zabczyk [8, Theorem 2.25]). The
Fréchet mean and transport maps are

Σ =
∞∑

n=1

[√
λ1,n +

√
λ1,n

2

]2

ϕn ⊗ ϕn, t1 = 2
1 + √

rn
ϕn ⊗ ϕn,

t2 = 2
1 +

√
r−1
n

ϕn ⊗ ϕn,

and simple algebra shows

�
�Δ1

�
�

2 < ∞ ⇐⇒
∞∑

n=1
(rn − 1)2 ⇐⇒

�
�Δ2

�
�

2 < ∞.

Thus, in the commutative case, the population level test statistic is finite if and
only if the Gaussian measures are equivalent. Whether or not this is the case
depends on how differences persist across the whole spectrum, rather than just
in the bulk.

Proofs of formal statements

Proof of Lemma 2.1. If Σ1 = · · · = ΣK , then the unique optimal multicoupling
is given by the maps tj(z) = z and the process Z ∼ N(0,Σ1). Conversely,
if a multicoupling of (γ1, . . . , γK) is achieved as the law of (t1(Z), . . . , tK(Z))
for some process Z and some maps satisfying t1 = · · · = tK , then γi, the law
of ti(Z), is the same for all i, i.e., γ1 = · · · = γK , and so Σ1 = · · · = ΣK .
Uniqueness of the optimal multicoupling follows from the first sentence in the
proof.

For the proof of Theorem 2.2, we need the following result from Douglas [10].

Lemma A.1. Let 0 ≤ A ≤ B be bounded operators, where A ≤ B means that
B−A is non-negative. Then there exists a bounded operator G with

�
�G

�
�
∞ ≤ 1

such that A1/2 = B1/2G and kerG∗ ⊇ kerB.
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Proof of Theorem 2.2. Let Σ be any Fréchet mean of Σ1, . . . ,ΣK and define
Qi = (Σ1/2ΣiΣ

1/2)1/2 ≥ 0. The fixed point equation for Fréchet means ([27,
Proposition 16]) yields the inequality

Qi ≤
K∑
j=1

Qj = KΣ.

By Lemma A.1 there exists an operator G with range included in the closed
range of Σ such that Q

1/2
i = Σ1/2

G,
�
�G

�
�
∞ ≤

√
K and we may write G =

Σ−1/2
Q

1/2
i . If we can identify G∗ with Q

1/2
i Σ−1/2, then we can conclude that

ti = tΣi

Σ = Σ−1/2(Σ1/2ΣiΣ1/2)1/2Σ−1/2 = GG∗

is well-defined and bounded, with operator norm bounded by K. Let y = Σ1/2
z

and notice that for all x

〈G∗y, x〉 =
〈
Σ1/2

z,Gx
〉

=
〈
Σ1/2

z,Σ−1/2
Q

1/2
i x

〉
=
〈
z,Q

1/2
i x

〉
=
〈
Q

1/2
i Σ−1/2

y, x
〉
.

Thus G∗ = Q
1/2
i Σ−1/2 on range(Σ1/2). Since G∗ is bounded the equality extends

to the closure of the range, which is (kerΣ)⊥. On kerΣ both operators are
identically zero.

We have thus established the existence of deterministic optimal maps from
the Fréchet mean Σ to each of the operators Σj . Now if Z ∼ N(0,Σ), then π =
(t1(Z), . . . , tK(Z)) is a multicoupling of the corresponding Gaussian measures,
and the optimality of π follows from Zemel and Panaretos [44, Proposition 2].
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