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Abstract: This manuscript discusses the regression analysis of a semi-
parametric proportional mean model for panel count data. A spline-based
generalized estimating estimation (GEE) approach is applied to account
for the correlation among cumulative counts. To avoid the potential issue
of overfitting, a penalization technique is applied to regularize the spline
estimation. An easy-to-implement and computationally efficient two-stage
iterative algorithm is developed to accomplish the penalized estimation.
The proposed methodology does not specify the stochastic model of the
underlying counting process and hence provides great flexibility for model
fitting. Theoretically, the uniform convergence and the optimal rate of con-
vergence for the functional estimator are established, and the asymptotic
normality for regression parameter estimators is shown to be valid even
if the working covariance matrix is misspecified. The semiparametric effi-
ciency for regression parameter estimators can be achieved if the working
matrix is correctly specified. Further, to address the issue of the underes-
timation of the variance-covariance matrix of regression parameter estima-
tors for small sample sizes, which is brought up by GEE methodology, we
propose a novel approach based on the modified sandwich estimator to com-
pensate for the deficiency in variance-covariance estimation. Numerically,
an extensive Monte Carlo study was conducted to evaluate the finite-sample
performance of penalized spline estimators and the impact of the selection
of the working matrix on the estimation, along with the robustness of the
methodology to the underlying counting process. The proposed penalized
approach was further applied to analyze data from a non-melanoma skin
cancer chemoprevention study.
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1. Introduction

Panel count data are frequently observed in long-term cohort or experimental
studies. The distinctive feature of this type of data is that only the number of re-
current events of interest is accessible at each examination time. The exact time
to event cannot be measured directly, but rather is known to be relative to two
adjacent examination times. For example, in a randomized placebo-controlled
skin cancer clinical trial (Bailey et al. [1]), study subjects with a history of
non-melanoma skin cancer were randomly assigned to either a chemoprevention
therapy (DFMO) group or a placebo group. The primary aim of this study was
to evaluate whether DFMO can effectively reduce the recurrence of two types
of non-melanoma skin cancers, including basal carcinoma (BCC) and squamous
cell carcinoma (SCC). The participants were scheduled to have an assessment of
the efficacy of the treatment every 6 months. At each examination time, newly
developed tumors were recorded and removed. Throughout the study, the num-
ber of follow-up visits and examination times varied greatly from patient to
patient due to the flexible scheduled times and different entry times. In this
study, only the number of recurrent tumors between two clinic visits was ob-
served, but the exact time of the occurrence of the tumor is unavailable; see,
Chiou et al. [4], Li et al. [11], and Sun and Zhao [31] for more information.

Statistical methodology for panel count data has been extensively studied
in the literature, for example, Sun and Kalbfleisch [28], Sun and Wei [29], and
Zhang [38, 39], among many others; for a comprehensive review, see Sun and
Zhao [31] and the references therein. To alleviate the computational burden, Lu
et al. [13, 14] applied monotone spline techniques to study nonparametric and
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semiparametric pseudo-likelihood and maximal likelihood estimations under a
proportional mean model proposed by Wellner and Zhang [36, 37]. A potentially
prohibitive assumption made in all the above works is that the stochastic model
for the underlying counting process is a (mixed) non-homogeneous Poisson pro-
cess. This restrictive assumption may lead to biased estimation and incorrect
inference. Moreover, the Poisson process-based methodology fails to account
for the overdispersion problem that commonly arises in regression analysis for
count data. To address these issues and provide a more general estimation frame-
work, Hua and Zhang [7] developed a spline-based semiparametric estimation
approach that does not specify the stochastic model for the underlying counting
process under the proportional mean model using GEE methodology. Several
working covariance matrices were selected to accommodate the stochastic mod-
els of the underlying counting process, and the impact of the selection of a
working covariance matrix on the estimation was also investigated. Further, A
hybrid algorithm including the Newton method and the weighed isotonic regres-
sion approach was employed for estimation.

In this article, we endeavor to develop an easy-to-implement and computa-
tionally efficient approach that can be employed to conduct regression analysis
for panel count data under the proportional mean model within the framework
of GEE. In particular, we utilized a monotone B-spline to approximate the un-
known baseline mean function to facilitate the model fitting. To address the
potential issue of overfitting that frequently occurs in spline estimation, the
penalization technique was used to regularize the estimation of the unknown
baseline cumulative mean function. Within the carefully constructed framework
of the proposed penalized model, a two-stage hybrid iterative algorithm was
developed to fulfill the model fitting. A desirable feature of this algorithm is
that it simultaneously estimates regression parameters and spline coefficients
and incorporates the update of the smoothing parameter in the model fitting
process, which remarkably relieves the computational burden. Further, by mak-
ing use of spline approximation, a simple and consistent variance-covariance
estimation approach was proposed to provide valid inference for regression pa-
rameters. The novelty of this variance-covariance estimation approach is that
it atones for the underestimation of the variance-covariance matrix that origi-
nates from the standard sandwich estimator for small sample sizes, and hence
the proposed approach can provide more accurate Wald-type inference for re-
gression parameters. As demonstrated through extensive simulation studies, the
proposed penalized methodology is computationally efficient and robust to the
misspecification of the working variance-covariance structure under a variety
of settings. Theoretically, by integrating the spline approximation and penal-
ization technique innovatively and employing modern empirical process theory,
we established the large-sample properties for penalized spline GEE estimators.
In particular, the uniform consistency and the optimal rate of convergence for
the functional estimator, which is the best attainable rate in the context of
semiparametric regression, are established if the smoothing parameter and the
dimension of spline space are specified in an appropriate order. Moreover, the
regression parameter estimators are shown to be asymptotically normal even if
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the working covariance matrix is misspecified and the semiparametric efficiency
of regression parameter estimators (i.e., they attain the semiparametric infor-
mation bound) can be achieved if the working covariance matrix is correctly
specified. Furthermore, the estimated variance-covariance matrix of regression
parameter estimators is shown to be consistent and exhibits better finite-sample
performance compared to the one based on the standard sandwich method.

The remainder of the paper is organized as follows. The methodological de-
tails of penalized spline GEE estimators are provided, and the two-stage hybrid
algorithm and the selection of the smoothing parameter and spline knots as well
as the working covariance matrix are discussed in Section 2. The large-sample
properties of penalized spline GEE estimators are presented in Section 3. A novel
variance-covariance estimation procedure for regression parameters is developed
in Section 4. The finite-sample performance of the proposed methodology is
evaluated through extensive simulation studies in Section 5. The methodology
is further illustrated by analyzing data from a randomized non-melanoma skin
cancer study in Section 6. A summary of the work and future research are dis-
cussed in Section 7. Finally, the proofs of the asymptotic results are available
in Section 8.

2. Model setup and numerical algorithm

2.1. Model

Let {N(t) : t ≥ 0} denote a underlying counting process with N(0) = 0. Con-
sider a proportional mean model in which the conditional mean of N(·) given a
covariate vector Z takes the form:

E{N(t)|Z} = Λ(t) exp(βᵀZ), (2.1)

where Λ(·) is an unknown baseline cumulative mean of N(·) and β is a d-
dimensional vector of regression parameters corresponding to the possibly time-
dependent covariate vector Z. For panel count data X = (N,K, T, Z) of a
counting process N(·), K is the total number of random examination times
and T = (TK,1, . . . , TK,K)ᵀ is a vector of examination times with 0 < TK,1 <
. . . < TK,K . Let N(T ) = {N(TK,1), . . . ,N(TK,K)}ᵀ denote a vector of the cu-
mulative numbers of the recurrent events corresponding to examination times
T . Obviously, 0 ≤ N(TK,1) ≤ . . . ≤ N(TK,K). It is assumed that the exam-
ination times of panel count data are non-informative, i.e., (K,T ) are condi-
tionally independent of the underlying counting process N(·), given the covari-
ate vector Z. In what follows, the observed data comprise of a random sam-
ple X1, . . . , Xn, where Xi = {N(i),Ki, Ti, Zi} for Ti = {T (i)

Ki,1, . . . , T
(i)
Ki,Ki

}ᵀ,
Zi = (Zi1, . . . , ZiKi)ᵀ, and N

(i) = (Ni1, . . . ,NiKi)ᵀ with Nij = N
(i)(T (i)

Ki,j
). Also,

denote by μi = (μKi,1, . . . , μKi,Ki)ᵀ the conditional mean of N(i) given (Zi, Ti)
with μKi,j = Λ(T (i)

Ki,j
) exp(Zᵀ

i β), for j ∈ {1, . . . ,Ki}.
For ith underlying counting process N

(i), define Σi = var (N(i)|Ki, Zi, Ti)
and Vi = Vi(Ki, Zi, Ti) as the true covariance matrix of N(i) and as a working
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covariance matrix that may depend on a finite-dimensional vector of nuisance
parameters, respectively. In the sequel, to simplify the presentation and facilitate
the development of asymptotic results, the vector of the unknown parameters is
defined as τ = (β, ϕ), where ϕ(·) = log Λ(·). It is well-known that the penalized
methodology is competent in control of the balance between the fidelity and the
smoothness of the fitted curve in semiparametric estimation. Thus, following the
works of Ma and Kosorok [17], Lu and Li [15], and Lu et al. [16], we propose to
estimate the unknown parameter τ via identifying the minimizer of the following
penalized weighted least squares objective function, namely,

Wn,λ(τ) = 1
2n

n∑
i=1

{
N

(i) − μi

}ᵀ
V −1
i

{
N

(i) − μi

}
+ 1

2λ
2J2(ϕ), (2.2)

where J2(ϕ) =
∫
{ϕ(m)(t)}2dt is the penalized term for a fixed integer m ≥ 1

and λ > 0 is the smoothing parameter used to administer the smoothness of the
estimated function.

In general, it is considerably challenging to estimate the unknown function
ϕ(·) directly from the penalized objective function (2.2). To tackle the difficulty,
following the proposal of Lu and Li [15] and Lu et al. [14], we approximated
ϕ(·) via a monotone B-spline. In particular,

ϕ(·) ≈
qn∑
j=1

γjbj(·) ≡ γᵀb(·), (2.3)

where b(·) = {b1(·), . . . , bqn(·)}ᵀ is a vector of B-spline basis functions and γ =
(γ1, . . . , γqn)ᵀ is a vector of spline coefficients under the constraints γ1 ≤ . . . ≤
γqn . According to Theorem 5.9 of Schumaker [25], the nondecreasing constraints
on spline coefficients γ guarantee that the resulting spline is nondecreasing. Let
T = [d1, d2] with 0 ≤ d1 < d2 < ∞ be the support of T . Denote by Mn the
space of monotone splines defined on T with degree m + 1 and knots Kn. The
penalized spline estimator of τ is defined as one that minimizes Wn,λ(τ) on
Φ×N , where the regression parameter space Φ is a compact subset of Rd and
the nonparametric space is defined as N = {ϕ : ϕ ∈ Mn, J(ϕ) < ∞}.

Under the spline approximation (2.3), we obtain the proposed spline model,
namely,

E{N(t)|Z} = exp{βᵀZ + γᵀb(t)}. (2.4)
Let θ = (β, γ) denote the unknown parameters to be estimated under the spline
model (2.4) and define the conditional mean of N(i) as μi = (μKi,1, . . . , μKi,Ki

)ᵀ

with μKi,j = exp{βᵀZi + γᵀb(T (i)
Ki,j

)}, for j ∈ {1, . . . ,Ki}. Under the above
specifications, the penalized spline objective function for θ can be expressed as

Wn,λ(θ) = 1
2n

n∑
i=1

{
N

(i) − μi

}ᵀ
V −1
i

{
N

(i) − μi

}
+ 1

2λ
2γᵀDγ, (2.5)

where D is a band matrix with (j, k)th element
∫
T b

(m)
j (t)b(m)

k (t)dt. The penal-
ized spline estimator θ̂ = (β̂, γ̂) is defined as the minimizer of the penalized
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spline objective function (2.5) under nondecreasing constraints on γ. Accord-
ingly, ϕ̂(·) = γ̂ᵀb(·) is defined as the penalized spline estimator of ϕ(·). Notice
that, for a fixed λ, the regression parameters β and spline coefficients γ can
be estimated jointly by minimizing the penalized spline weighted least squares
objective function (2.5). Clearly, to calculate the penalized spline estimator τ̂ is
equivalent to deriving θ̂ under monotone constraints. To further facilitate the
model fitting, we employ the P -spline approach (e.g., Eilers and Marx [6]) to
approximate the penalty matrix D by the difference matrix DᵀD, where D is
the matrix induced by the difference operator of order m. As discussed in Wood
([34], p. 206), the difference matrix can be easily implemented with any order
of B-spline basis, and hence the P -spline method provides a great deal of flex-
ibility for penalized estimation. In Monte Carlo study and real application, we
use monotone cubic splines to approximate ϕ(·), i.e., m is set to be 2.

Under the above specifications, the closed forms for the gradient and expected
Hessian matrix of Wn,λ are given by

∇Wn,λ(θ) = − 1
n

n∑
i=1

Eᵀ
i ΔiV

−1
i

{
N

(i) − μi

}
+ λ2

(
0

DᵀDγ

)
and

In,λ(θ) = 1
n

n∑
i=1

Eᵀ
i ΔiV

−1
i ΔiEi + λ2

(
0 0
0 DᵀD

)
,

respectively, where Ei = (1KiZ
ᵀ
i , Bi) for 1Ki being the Ki-dimensional vector

with ones, Bi = {b(T (i)
Ki,1), . . . , b(T

(i)
Ki,Ki

)}ᵀ, and Δi = diag
{
μKi,1, . . . , μKi,Ki

}
.

Obviously, In,λ(θ) is positive definite. As will be discussed in Section 2.3, In,λ(θ)
plays an important role in updating the smoothing parameter λ in the proposed
two-stage algorithm. Notice that the penalized spline estimator θ̂ solves the
estimating equations

1
n

n∑
i=1

(
∂μi

∂θ

)ᵀ
V −1
i {N(i) − μi} − λ2

(
0

DᵀDγ

)
= 0.

Thus, the penalized spline estimators can be regarded as penalized semipara-
metric versions of the standard GEE estimators. By carefully taking into consid-
eration the spline approximation and properly choosing the order of λ, we can
justify that the large-sample properties of parametric GEE estimators such as
the consistency and asymptotic normality can be extended in semiparametric
context. The asymptotic properties of the penalized spline estimators will be
discussed in Section 3.

2.2. Selection of working covariance matrix

As is widely discussed in the literature, the selection of the working covariance
matrix has a significant influence on the efficiency of GEE-type estimator. Hua



Penalized GEE for panel count data 1609

and Zhang [7] discussed three different working covariance matrices to accommo-
date the underlying counting process for panel count data. In particular, define
V

(1)
i = (σkl)Ki×Ki with σkl = μKi,l, for k = l, and 0 otherwise, and V

(2)
i = (σkl)

with σkl = μKi,min(k,l). The selection of V
(1)
i implies that the cumulative ac-

counts are independent, and hence cov {N(t1),N(t2)} = 0, for t1 	= t2, while the
choice of V (i)

2 suggests that cov{N(t1),N(t2)} = E{N(t1)}, for t1 ≤ t2. The spline
GEE estimator based on V

(1)
i or V

(2)
i is equivalent to the pseudo-likelihood es-

timator or full likelihood estimator under the non-homogeneous Poisson model
proposed in Lu et al. [14], respectively; see Hua and Zhang [7] for more details.
The full likelihood estimator based on V

(2)
i is more computationally efficient

compared to the pseudo-likelihood estimator based on V
(1)
i , which ignores the

positive correlation among cumulative counts. It is observed that the spline es-
timation based on working covariance matrix V

(1)
i or V

(2)
i fails to account for

overdispersion, which arises naturally from the count data and may result in
loss of efficiency and inflation of type I error. To address this issue, Hua and
Zhang [7] proposed a working covariance matrix V

(3)
i = V

(2)
i +σ2μ⊗2

i , where the
parameter σ2 is used to account for overdispersion. The spline estimator based
on V

(3)
i is equivalent to one under the gamma frailty non-homogeneous Poisson

model, i.e., given the frailty variable γ ∼ Γ(1/σ2, 1/σ2), the underlying counting
process N(t) is a non-homogeneous Poisson process with mean γΛ(t)eβᵀZ . Un-
der this frailty model, the marginal mean of N(·) still satisfies the proportional
mean model (2.1), but the distribution of the cumulative count is marginally
negative binomial rather than Poisson. Obviously, the estimator based on V

(3)
i

reduces to the one based on V
(2)
i if σ2 = 0, i.e., the underlying counting process

is indeed a non-homogeneous Poisson process. The numerical properties of pe-
nalized spline estimators based on working covariance matrices will be discussed
in Section 5.

2.3. A two-stage hybrid algorithm

To accomplish the model fitting, we develop a two-stage iterative procedure to
identify the penalized spline estimate of θ. In particular, the smoothing param-
eter λ is updated during the outer iteration, while the inner iteration attempts
to identify the minimizer of the constrained penalized spline objective function
for a fixed λ. Under the gamma frailty non-homogeneous Poisson model, i.e.,
Vi = V

(3)
i , var {N(t)} = μt + σ2μ2

t with μt = E{N(t)}. In order to identify
the penalized spline estimate of θ, we need to estimate the nuisance parameter
σ2 in the working covariance. Following the proposal of Hua and Zhang [7], we
apply an adjusted moment estimation method which accounts for penalization
to estimate σ2. In particular,

σ̂2 = n

n− ρ

∑n
i=1
∑Ki

j=1
{
(Nij − μ̂ij)2 − μ̂ij

}∑n
i=1
∑Ki

j=1 μ̂
2
ij

, (2.6)
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where ρ = I−1
n,λIn with In = In,λ|λ=0 is the effective degree of freedom for

penalized estimation and μ̂t is an estimate of μt. In case of negative, σ̂2 is
set to be 0. The adjusted term n/(n − ρ) allows for bias correction when the
effective degree of freedom is relatively large compared to the sample size n.
Our numerical experiments reveal this ad hoc approach provides an accurate
estimation of σ2 for small sample sizes. The adjustment diminishes as the sample
size is increased.

During each inner iteration, the current estimate of θ, say θ
(l)
λ , is updated to

θ
(l)
λ via the Fisher’s scoring method, i.e.,

θ
(l)
λ = θ

(l)
λ − I−1

n,λ(θ(l)
λ )∇Wn,λ(θ(l)

λ ). (2.7)

In general, the update of γ(l)
λ available in θ

(l)
λ is not necessarily non-decreasing.

To enforce the constraints imposed on spline coefficients, γ(l)
λ is then projected

into a constrained space called Γn = {γ : γ1 ≤ . . . ≤ γqn}. This can be achieved
via solving the quadratic optimization problem, i.e.,

γ̃
(l)
λ = arg min

γ∈Γn

(γ − γ
(l)
λ )ᵀWn(γ − γ

(l)
λ ), (2.8)

for a positive-definite weighted matrix Wn. As discussed in Cheng and Zhang [2]
and Hua and Zhang [7], if Wn is chosen to be a diagonal matrix with elements
as the diagonal elements of I−1

n,λ(θ(l)
λ ) with respect to γ, the quadratic program-

ming problem (2.8) reduces to the standard isotonic regression (i.e., Robertson
et al. [23]), which can be solved via the procedure pava in R package Iso. Substi-
tuting γ

(l)
λ with γ̃

(l)
λ in θ

(l)
λ yields the constrained update of θ̃(l)

λ , and σ̂2 is then
updated via equation (2.6). These two optimization procedures (i.e., Fisher’s
scoring method and isotonic regression) iterate in turn until convergence, and
the inner iteration is complete. Notice that after each inner iteration, we obtain
the penalized spline estimate θ

(l+1)
λ of θ for a fixed λ. Then the outer iteration

restarts and the smoothing parameter λ is updated via the generalized Fellner-
Schall method; see Wood and Fasiolo [35] for more information. In particular,
the algorithm makes the update of λ as

λ
2 =

tr{A−
λA} − tr

{
I−1
n,λ(θ(l+1)

λ )A
}

θ
(l+1)ᵀ
λ Aθ

(l+1)
λ

λ2, (2.9)

where A is a diagonal matrix with diagonal elements 0d×d and DᵀD and A−
λ

is the generalized inverse of Aλ = λA. Since In,λ(θ(l+1)
λ ) is positive definite,

the update of λ in (2.9) is guaranteed to be positive; see Theorem 4 of Wood
and Fasiolo [35] for further details. Once the updated λ is available, the inner
process restarts to identify the constrained minimizer θ

(l+1)
λ

for the given λ.
The two-stage iterative algorithm converges if the difference between θ

(l+1)
λ

and
θ
(l+1)
λ is less than a pre-specified value. The implementation of the proposed

algorithm is outlined as follows:
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Step 1 (inner iteration). For a given λ > 0, (a) update the current θ
(l)
λ to θ

(l)
λ

through the Fisher’s scoring approach (2.7); (b) the monotonic update
γ̃

(l)
λ of γ

(l)
λ is acquired via the isotonic regression (2.8) and set θ̃

(l)
λ =

(β(l)ᵀ
λ , γ̃

(l)ᵀ
λ )ᵀ; and (c) update σ2 via equation (2.6) at θ = θ̃

(l)
λ . Go to

Step 2 if ‖θ̃(l)
λ − θ

(l)
λ ‖ < 10−6 and set θ

(l+1)
λ = θ̃

(l)
λ . Otherwise go back to

(a).
Step 2 (outer iteration). Update λ to λ via the generalized Fellner-Schall

method (2.9) and go to Step 1 to identify θ
(l+1)
λ

.

The two-stage algorithm converges if ‖θ(l+1)
λ

− θ
(l+1)
λ ‖ < 10−6.

To accelerate the convergence of the proposed algorithm, the spline full like-
lihood estimator θ(0) (i.e., Vi = V

(2)
i ) is used as the initial value of θ and the

initial value of σ2 can be obtained via the equation (2.6) at θ = θ(0) accord-
ingly. As shown in Lu et al. [14], the spline full likelihood estimator θ(0) is
n1/2-consistent, and hence the initial value of σ2 is a consistent estimator of
σ2. Further, as will be shown in Section 3, the penalized spline estimator θ̂ is
n1/2-consistent. Thus, the moment estimator σ̂2 via equation (2.6) at θ = θ̂ is
also consistent. The proposed two-stage iterative algorithm performed very well
in our simulation settings. In particular, the issue of divergence is very rare, and
the algorithm usually converges in a few steps by using the full spline estimator
as the initial value. Further, the optimization procedure does not depend on the
good starting value of λ.

2.4. Selection of spline knots

As is extensively discussed in the literature, the selection of spline knots is
not as crucial as that of smoothing parameters; see, for example, Ruppert et al.
[24]. Our numerical experiments reinforce this assertion and reveal that the pro-
posed methodology is robust to the selection of knots, i.e., the penalized spline
estimates are almost identical in terms of the bias and standard deviation for
different numbers of knots. Therefore, for practical computation, it is reasonable
to choose the number of inner knots as

⌈
n1/3⌉, where �·
 is the ceiling function.

The location of knots is then selected as equally spaced percentiles of examina-
tion times. This empirical rule was applied in Monte Carol studies and the real
application.

3. Asymptotic results

3.1. Assumptions

In this section we discuss the asymptotic properties of the penalized spline
GEE estimator τ̂ . Denote by τ0 = (β0, ϕ0) the true value of τ . Let B denote
the collection of Borel sets in R. For any B ∈ B ∩ T , define the measure μ as
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follows:

μ(B) =
∫
Rd

K∑
k=1

Pr(K = k|Z = z)
k∑

j=1
Pr(Tk,j ∈ B|K = k, Z = z)dF (z),

where F (·) is the distribution function of Z. Let F
= {ϕ : ϕ(·) is montoneincreasing on T }. Notice that the nonparametric space
N ⊂ F . Based on the measure μ, define the L2-metric ‖ · ‖L2(μ) on Φ × F as

‖τ2 − τ1‖2
L2(μ) = ‖β2 − β1‖2 + ‖ϕ2 − ϕ1‖2

L2(μ)

= ‖β2 − β1‖2 +
∫
T
{ϕ2(t) − ϕ1(t)}2

dμ(t),

where ‖ · ‖ is the Euclidean norm. The following regularity conditions are suffi-
cient to establish asymptotic results of τ̂ .

C1. The true parameters β0 and ϕ0 are in the interiors of Φ and F , respec-
tively. Further, ϕ0 is strictly increasing and its mth derivative satisfies the
Lipschitz condition on T .

C2. (a) The examination time T
(i)
Ki,j

is uniformly bounded on T , for i ∈
{1, . . . , n} and j ∈ {1, . . . ,Ki}; (b) the joint distribution of any pair T (i)

Ki,j1

and T
(i)
Ki,j2

(j1 	= j2) is uniformly bounded, for j1, j2 ∈ {1, . . . ,Ki}.
C3. The eigenvalues of the true covariance matrix Σi and the working co-

variance matrix Vi are uniformly bounded away from 0 and infinity, for
i ∈ {1, . . . , n}.

C4. The covariate Zi is uniformly bounded, for i ∈ {1, . . . , n}.
C5. The total number of the observation times Ki is uniformly bounded, for

i ∈ {1, . . . , n}.
C6. Let eij = Nij − exp

{
Zᵀ
i β0 + ϕ0(T (i)

Ki,j
)
}

, for j ∈ {1, . . . ,Ki}. The error
term ei = (ei1, . . . , eiKi)ᵀ is assumed to satisfy uniformly sub-Gaussian
condition, for i ∈ {1, . . . , n}, i.e., there exist some fixed positive constants
M0 and σ0 such that

max
i=1,...,n

M2
0E
{
exp
(
‖ei‖2/M2

0
)
− 1
}
≤ σ2

0 ,

almost surely, for all n.
C7. The smoothing parameter λ is of the order

λ = op(n−1/4) and λ−1 = Op(nm/(1+2m)).

C8. The maximum spacing of knots is of the order O(n−m/(1+2m)) and the
ratio of maximum and minimum spacings is uniformly bounded.

C9. The efficient information I0 defined in (3.1) and the matrix I1 defined
in (3.2) are positive definite.
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Remark 1. Condition C1 assumes that ϕ0(·) is smooth enough such that it can
be well approximated by a B-spline. Conditions C2 and C3 are regularity con-
ditions used in the literature for longitudinal/clustered data; see, for example,
Huang et al. [9] for partially linear models and Cheng et al. [3] for generalized
partially linear additive models. The uniformly bounded assumptions for the
covariate Zi (C4) and the total number of examinations Ki (C5) as well as the
sub-Gaussian condition (C6) are used in entropy calculation to derive the rate
of convergence of ϕ̂(·) and the asymptotic normality of β̂. Condition C7 is a
standard assumption in penalized estimation; see, for example, Mammen and
van de Geer [18] and Murphy and van der Vaart [21]. Condition C8 specifies the
appropriate order of the dimension of the monotone spline space Mn to derive
the rate of convergence of ϕ̂(·). Finally, condition C9 is required to establish the
asymptotic normality of β̂.

3.2. Semiparametric efficient score and efficiency bound

In this section, we discuss the semiparametric efficient score and efficient infor-
mation matrix when the covariance structure is correctly specified, i.e., V = Σ0,
where Σ0 represents Σ evaluated at τ = τ0. It is well known that the informa-
tion bound induced by the efficient information matrix plays an important role
in establishing the asymptotic properties of regression parameter estimators.
In other words, it serves as a benchmark to evaluate the asymptotic behav-
ior of regression parameter estimators. Further, it is worthwhile to point out
that the derivation of the information bound does not involve the distributional
assumptions on the data other than the proportional mean assumption (2.1).

Let Δ0 be a diagonal matrix with jth diagonal element exp{Zᵀβ0+ϕ0(TK,j)},
for j ∈ {1, . . . ,K}, and Z = 1KZᵀ. Denote by Zl the lth column of Z, for l ∈
{1, . . . , d}. In the sequel, for any ψ ∈ L2(T ), let ψ(T ) = {ψ(TK,1), . . . , ψ(TK,K)}ᵀ.
Define the inner product for a positive definite matrix W as

〈ξ1, ξ2〉W = E(ξᵀ
1Wξ2)

and the corresponding norm as ‖ξ‖2
W = 〈ξ, ξ〉W . Let W0 = Δ0Σ−1

0 Δ0, W1 =
Δ0V

−1Δ0, and W2 = Δ0V
−1Σ0V

−1Δ0. The least favorable direction is defined
as κ∗(·) = (κ∗

1(·), . . . , κ∗
d(·)) that satisfies

〈Zl − κ∗
l (T ), κ(T )〉W0 = 0, l ∈ {1, . . . , d},

for any κ(·) ∈ L2(T ), and hence has a closed form

κ∗(T ) = {E(W0|T )}−1E(W0Z|T ).

Theorem 1. Under the proportional mean model (2.1), the efficient score for
β at τ = τ0 is given by

�∗β(τ0) = {Z − κ∗(T )}ᵀΔ0Σ0(N− μ0),
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where N = N(T ) and μ0 represents μ evaluated at τ = τ0. Accordingly, the
semiparametric efficient information matrix for β at τ = τ0 is given by

I0 ≡ E{�∗β(τ0)}⊗2 = ‖Z − κ∗(T )‖2
W0

. (3.1)

Define h∗(·) = (h∗
1(·), . . . , h∗

d(·)), where h∗
l (·) ∈ L2(T ) minimizes ‖Zl −

h(T )‖2
W1

, for l ∈ {1, . . . , d}, or, equivalently, 〈Zl − h∗
l (T ), h(T )〉W1 = 0, for

any h(·) ∈ L2(T ). It follows that

h∗(T ) = {E(W1|T )}−1E(W1Z|T ).

It can be shown that κ∗(·) and h∗(·) are bounded and smooth on T under the
regularity conditions C2–C5; see supplementary material S.1 in Cheng et al. [3]
for further information. These properties are crucial to establish the asymptotic
normality and the semiparametric efficiency for regression parameter estimators.
Define

I1 ≡ ‖Z − h∗(T )‖2
W1

and I2 ≡ ‖Z − h∗(T )‖2
W2

. (3.2)

If the covariance structure is correctly specified, i.e., V = Σ0, h∗(·) turns into the
least favorable direction κ∗(·), and I1 and I2 reduce to the efficient information
matrix I0 accordingly.

3.3. Large sample properties

Parallel to the parametric setting as discussed in Liang and Zeger [12], we show
that, under the regularity conditions and the appropriate selection of the dimen-
sion of the spline space and the order of the smoothing parameter, the functional
estimator attains the optimal rate of convergence, and the asymptotic normality
of regression parameter estimators can be established even if the working covari-
ance matrix is misspecified. Further, semiparametric efficiency can be achieved
if the working covariance matrix is identical to the true covariance matrix.

Theorem 2. (Consistency and the rate of convergence) Under conditions C1–C8,
the penalized estimator β̂ is consistent for β0, ‖ϕ̂‖∞ = Op(1), ‖ϕ̂ − ϕ0‖∞ =
op(1), J(ϕ̂) = Op(1), and ‖ϕ̂ − ϕ0‖L2(μ) = Op(n−m/(1+2m), which is the opti-
mal rate of convergence for ϕ̂.

Theorem 3. (Asymptotic normality and efficiency) Under conditions C1–C9,

√
n(β̂ − β0)

d−−→ N(0,I −1
1 I2I

−1
1 ), as n → ∞.

If the working covariance structure is correctly specified, i.e., V = Σ0, then
√
n(β̂ − β0) = I −1

0
√
nPn�

∗
β(τ̂) + op(1) d−−→ N(0,I −1

0 ), as n → ∞,

where Pn is the empirical measure, i.e., β̂ achieves the semiparametric efficiency
bound.
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4. Variance estimation

To consistently estimate the variance-covariance matrix of β̂, or, equivalently,
to consistently estimate I1 and I2, we need to first derive the consistent
estimator of h∗(·). Again we employ the spline approximation technique. In
particular, approximate h∗

l (·) via a B-spline h∗
nl(·), for l ∈ {1, . . . , d}, i.e.,

h∗
l (·) ≈ h∗

nl(·) =
∑qn

j=1 ζljbj(·) ≡ ζᵀ
l b(·) such that ‖h∗

l − h∗
nl‖∞ = o(1), where

ζl = (ζl1, . . . , ζlqn)ᵀ. Let Zil be the lth column of Zi = (Zi, . . . , Zi)ᵀ and
Bi = {b(T (i)

Ki,1), . . . , b(T
(i)
Ki,Ki

)}ᵀ, for i ∈ {1, . . . , n}. In view of the definition
of h∗

l (·), the spline estimator ζ̂l is defined as the minimizer of the function

1/n
n∑

i=1
{Zil − h∗

nl(Ti)}ᵀΔ̂iV
−1
i Δ̂i{Zil − h∗

nl(Ti)},

where Δ̂i is a diagonal matrix with jth diagonal element exp{Zᵀ
i β̂ + ϕ̂(T (i)

Ki,j
)},

for j ∈ {1, . . . ,Ki}, and consequently the spline estimator of h∗
l (·) is defined as

ĥ∗
l (·) = ζ̂ᵀ

l b(·). Define

Ĥ =
(
Ĥ11 Ĥ12
Ĥ21 Ĥ22

)
≡ 1

n

(∑n
i=1 Z

ᵀ
i Δ̂iV

−1
i Δ̂iZi

∑n
i=1 Z

ᵀ
i Δ̂iV

−1
i Δ̂iBi∑n

i=1 B
ᵀ
i Δ̂iV

−1
i Δ̂iZi

∑n
i=1 B

ᵀ
i Δ̂iV

−1
i Δ̂iBi

)
.

Notice that Ĥ is equivalent to the expected Hessian matrix of the penalized
spline objective function (2.5) without the penalized term, i.e., Ĥ is equivalent
to In,λ(θ) evaluated at θ = θ̂ and λ = 0. It concludes from matrix algebra that

ĥ∗
l (Ti) = Biζ̂l = 1

n
BiĤ−1

11

n∑
i=1

Bᵀ
i Δ̂iV

−1
i Δ̂iZil,

and hence
ĥ∗(Ti) =

{
ĥ∗

1(Ti), . . . , ĥ∗
d(Ti)

}
= BiĤ−1

22 Ĥ21.

Let

În1 = 1/n
n∑

i=1
{Zi − ĥ∗(Ti)}ᵀΔ̂iV

−1
i Δ̂i{Zi − ĥ∗(Ti)}

and

În2 = 1/n
n∑

i=1
{Zi − ĥ∗(Ti)}ᵀΔ̂iV

−1
i Σ̂iV

−1
i Δ̂i{Zi − ĥ∗(Ti)},

for Σ̂i = (N(i) − μ̂i)⊗2. It follows from matrix algebra that În1 = Ĥ11 −
Ĥ12Ĥ−1

22 Ĥ21. Further, as shown in Theorem 4, În1 and În2 are the consis-
tent estimators of I1 and I2, respectively. Therefore, the asymptotic variance-
covariance matrix of β̂ can be consistently estimated by VR = Î −1

n1 În2Î
−1
n1 .

Theorem 4. (Variance estimation) Under conditions C1–C9, În1 and În2 are
consistent for I1 and I2, respectively.
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Our numerical experiments reveal that the asymptotic consistency does not
hold in small sample settings. The variance-covariance estimator tends to un-
derestimate the standard error of β̂, even if the working covariance matrix is
correctly specified. It has been extensively discussed in the literature that the
sandwich-type estimator tends to yield biased variance estimation for small
sample sizes. To cope with this issue, many researchers have proposed method-
ologies to improve the performance of the sandwich estimator under these cir-
cumstances; see, for example, Mancl and DeRouen [19] and Pan [22], among
many others. To adjust for the bias incurred by the sandwich estimator, Morel
et al. [20] recommended an inflated estimator by adding a scaled version of
trace to the sandwich estimator. Incorporating the suggestion by Morel et al.
[20], we proposed an adjusted estimator to atone for the deficiency in variance
estimation. Define

B̂ = 1/n
n∑

i=1
Eᵀ

i Δ̂iVi

(
N

(i) − μi

)⊗2
ViΔ̂iEi.

The modified variance-covariance estimator is referred to as

VM = VR + 1
n
δφÎ −1

n1 ,

where δ = min{0.5, ρ/(n − ρ)} and φ = max{1, ρ−1trace(Ĥ−1B̂)}. The perfor-
mance of the proposed variance-covariance estimation method was evaluated in
Monte Carlo studies and the results indicate that the modified estimator pro-
vides more accurate variance-covariance estimation compared to the standard
sandwich estimator in various settings. The approach was further employed for
inference on regression parameters in the real application.

5. Numerical illustration

In this section, we investigate the performance of the proposed methodology un-
der a variety of simulation settings. Each participant is scheduled for 6 follow-
up visits and for each visit the subject might choose to skip with a nonzero
probability. As a result, it is assumed that the total number of visits for the
ith individual takes each of the values {1, 2, . . . , 6} with equal probability, i.e.,
P (Ki = k) = 1/6, for k ∈ {1, . . . , 6}, and the time between two consecutive
visits is generated from Uniform (0, 10). In addition, the vector of covariates
for the ith individual, Zi = (Zi1, Zi2)ᵀ, is simulated as Zi1 ∼ Normal(0, 1) and
Zi2 ∼ Bernoulli(0.5) with regression parameters given by β = (−1, 1)ᵀ. Assume
a proportional mean model E {N(t)|Z)} = Λ(t) exp(Zᵀβ) with the baseline cu-
mulative mean function Λ(t) = 2t1/2.

To demonstrate the wide-ranging applicability of the proposed methodology,
we consider 5 different simulation settings in which the underlying counting pro-
cesses to generate panel counts differ. In Simulation I (S1), the panel count data
were generated from a Poisson process with the conditional mean Λ(t) exp(Zᵀβ),
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i.e., given the covariate Zi, ΔNij ∼ Poisson {ΔΛij exp (Zᵀ
i β)}, where ΔNij =

Nij −Ni(j−1) and ΔΛij = Λ(T (i)
Ki,j

)−Λ(T (i)
Ki,j−1), for j ∈ {1, . . . ,Ki}. In Simula-

tion II (S2) and Simulation III (S3), the panel count data were generated from
gamma frailty Poisson processes, i.e., given the covariate Zi and the gamma
frailty variable γi, ΔNij ∼ Poisson {γiΔΛij exp (Zᵀ

i β)}. To assess the impact of
overdispersion on the proposed methodology, the frailty variable γi is assumed
to be Gamma(1,1) or Gamma(1/2,1/2) in S2 or S3, yielding the overdispersion
parameter σ2 = 1 or 2, respectively. To further investigate the robustness of the
proposed methodology, we consider scenarios in which the working matrices (i.e.,
V

(1)
i , V (2)

i , and V
(3)
i ) are all misspecified. Specifically, in Simulation IV (S4), the

panel count data were generated from a mixture Poisson process, i.e., given the
covariate Zi and the discrete random variable γi from (−0.4,0,0.4) with corre-
sponding probability (1/4,1/2/,1/4), ΔNij ∼ Poisson{(1 + γi)ΔΛij exp (Zᵀ

i β)},
and in Simulation V (S5), the panel count data were generated from a log-normal
frailty Poisson process, i.e., given the covariate Zi and the log-normal variable γi
with mean 1 and variance 1, ΔNij ∼ Poisson {γiΔΛij exp (Zᵀ

i β)}. Clearly, the
panel counts are not marginally Poisson distributed in settings S2 through S5,
but conditional on the covariates, the means of panel count data still satisfy the
proportional mean model (2.1). In all these settings, cubic monotone B-splines
were applied to approximate ϕ(·). The selection of the spline knots and the
smoothing parameter follows the discussion presented in Sections 2.3 and 2.4.
For each simulation configuration, 1,000 Monte Carlo samples were generated
with n = 50 or n = 100.

Table 1 summarizes the results for estimating regression parameters with
working matrices V

(1)
i , V (2)

i , and V
(3)
i under settings S1–S3, including the em-

pirical bias, standard deviation (SD), relative efficiency (RE) defined as the ratio
of mean squared errors between the estimator with V

(3)
i and that with V

(1)
i or

V
(2)
i , averages of estimated standard errors based on the sandwich estimator

(SSE) and the modified estimator (MSE), and estimated coverage probabilities
denoted by CP1 and CP2, which are based on the sandwich estimator and the
modified estimator, respectively. These results indicate that all empirical bi-
ases of the estimators with all three working matrices are negligible compared
to standard deviations under all settings, and the biases and standard devia-
tions decrease as the sample size is increased, which suggests the asymptotic
consistency for the GEE penalized spline estimators. Moreover, histograms and
quantile-quantile (Q-Q) plots (results not shown) reveal that the GEE penal-
ized estimators with all three working matrices are approximately normally
distributed, which provides the numerical justification for the asymptotic nor-
mality of regression parameter estimators established in Theorem 3, even in the
case that the working matrix is misspecified. Also, it is observed that under
all simulation configurations the estimation with V

(2)
i or V

(3)
i tends to provide

smaller mean squared errors and more satisfactory 95% coverage probabilities
than that with V

(1)
i , which fails to account for the positive association among

the panel counts.
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Table 1. Summary of simulation results for penalized spline GEE estimators of the regression coefficients β = (β1, β2)ᵀ = (−1, 1)ᵀ with working
covariance matrices V

(1)
i , V

(2)
i , and V

(3)
i under simulation settings S1–S3; SD, standard deviation of the estimates; RE, relative efficiency (%)

(defined as the ratio of mean squared errors between the estimator with V
(3)
i and that with V

(1)
i or V

(2)
i ); SSE and MSE are the averages of standard

errors based on the sandwich estimator and modified estimator, respectively; CP1 and CP2 are the empirical coverage probabilities (%) based on the
sandwich estimator and modified estimator, respectively.

n = 50 n = 100

Bias SD RE SSE MSE CP1 CP2 Bias SD RE SSE MSE CP1 CP2
S1 V

(1)
i β1 −0.003 0.051 76.0 0.042 0.044 89.0 90.6 −0.001 0.031 81.8 0.028 0.029 93.1 93.2

β2 0.000 0.102 76.0 0.086 0.091 90.3 91.8 −0.001 0.064 77.1 0.062 0.064 92.2 93.6
V

(2)
i β1 −0.001 0.044 101.7 0.037 0.044 89.4 94.7 −0.000 0.027 104.5 0.025 0.028 93.5 95.1

β2 0.001 0.088 101.6 0.078 0.092 91.7 94.8 −0.000 0.056 100.3 0.055 0.060 92.9 95.7
V

(3)
i β1 −0.001 0.045 100.0 0.038 0.045 89.5 94.7 −0.001 0.028 100.0 0.025 0.028 93.7 95.2

β2 −0.001 0.089 100.0 0.078 0.093 91.4 94.8 −0.000 0.056 100.0 0.055 0.060 93.3 95.6
S2 V

(1)
i β1 0.039 0.244 47.3 0.171 0.212 77.9 85.2 0.033 0.183 41.1 0.135 0.152 81.9 86.1

β2 0.006 0.414 56.7 0.350 0.434 88.6 94.9 −0.013 0.328 46.8 0.279 0.315 88.6 92.5
V

(2)
i β1 0.043 0.238 49.6 0.161 0.210 73.9 85.9 0.034 0.177 43.6 0.129 0.149 79.4 85.1

β2 0.004 0.390 63.9 0.331 0.434 89.0 96.1 −0.012 0.306 54.0 0.261 0.304 90.0 93.8
V

(3)
i β1 0.003 0.170 100.0 0.142 0.170 89.5 94.2 0.004 0.119 100.0 0.106 0.117 91.0 93.5

β2 0.012 0.312 100.0 0.292 0.345 93.0 96.1 0.003 0.225 100.0 0.213 0.233 93.1 94.8
S3 V

(1)
i β1 0.098 0.320 49.2 0.218 0.282 75.8 86.8 0.053 0.237 40.7 0.179 0.211 79.3 84.5

β2 0.013 0.512 59.9 0.457 0.589 90.8 96.5 0.012 0.414 50.9 0.374 0.442 91.6 95.5
V

(2)
i β1 0.094 0.314 51.3 0.203 0.278 73.5 85.2 0.053 0.236 41.1 0.169 0.203 77.6 84.5

β2 0.004 0.490 65.4 0.431 0.585 90.3 97.8 −0.003 0.395 55.9 0.349 0.421 91.6 95.8
V

(3)
i β1 0.028 0.233 100.0 0.183 0.221 88.1 92.0 0.011 0.155 100.0 0.139 0.157 92.0 93.2

β2 0.018 0.396 100.0 0.387 0.457 93.6 96.6 −0.001 0.295 100.0 0.284 0.319 93.5 95.8
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When panel count data follow a Poisson process as specified in S1, i.e., the
overdispersion parameter σ2 = 0, the penalized estimation with V

(2)
i or V

(3)
i

displays almost identical finite-sample performance due to the fact that the
overdispersion estimator σ̂2 obtained from (2.6) is almost equal to 0 in this sce-
nario. When the underlying process to generate panel count data is a gamma
frailty Poisson process with σ2 = 1 or σ2 = 2 as described in S2 or S3, respec-
tively, due to accounting for the overdispersion, the GEE estimator with V

(3)
i

exceeds that with V
(1)
i or V (2)

i in terms of the smaller mean squared errors and
estimated standard errors as well as more reasonable coverage probabilities. In
all simulation settings, even in the case that the working matrix is correctly
specified, the estimation based on the sandwich method underestimates the
standard error regardless of the sample size, and consequently, the correspond-
ing coverage probability tends to be less than the nominal level. On the other
hand, the proposed method provides superior variance-covariance estimation. In
particular, the averages of estimated standard errors agree with the standard de-
viations of the estimates, and the corresponding empirical coverage probabilities
are close to the nominal level. As displayed in Table 1, with extra overdisper-
sion involved in the underlying counting process, the estimation is liable to be
less accurate with increased mean squared error and less favorable empirical
coverage probability, regardless of the specification of the working matrix.

To demonstrate the robustness of the proposed methodology in the case where
the underlying counting process is misspecified, panel count data were generated
from a mixture Poisson process in S4 or a log-normal frailty Poisson process in
S5. As presented in Table 2, the proposed methodology still displays adequate
numerical properties in the matter of the empirical bias, standard deviation,
and empirical coverage probability. As expected, the estimator with V

(3)
i out-

performs that with V
(1)
i or V

(2)
i , and the variance-covariance estimation based

on the modified estimator provides more satisfactory coverage probability com-
pared to the one based on the sandwich formula. It concludes that the proposed
methodology is robust to the specification of the underlying counting process
up to a point.

The pointwise mean estimates of ϕ(·) and the corresponding 2.5th and 97.5th
percentiles of 1,000 Monte Carlo samples as well as the true curve of the func-
tion with all three different working covariance matrices under settings S1–S5
are presented in Figures 1 and 2. It is observed that all fitted spline curves are
reasonably close to the true function. The proposed penalized method with V

(3)
i

provides less biased functional estimates and narrower pointwise confidence in-
tervals compared to that with V

(1)
i or V (2)

i when the overdispersion is presented
as displayed in Figure 1, and is robust to the specification of the underlying
counting process as presented in Figure 2. Further, the bias and variability are
decreased when the sample size is increased.

The penalized spline method was also compared to the regression spline ap-
proach proposed by Hua and Zhang [7] (i.e., λ = 0) under S1–S5. As presented
in Tables 3 and 4 and Figures 3 and 4, the two methods provide comparable
results in terms of bias and standard deviation of the estimates. One explana-
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Table 2. Summary of simulation results for penalized spline GEE estimators of the regression coefficients β = (β1, β2)ᵀ = (−1, 1)ᵀ with working
covariance matrices V

(1)
i , V (2)

i , and V
(3)
i under simulation settings S4 and S5; SD, standard deviation of the estimates; RE, relative efficiency (%)

(defined as the ratio of mean squared errors between the estimator with V
(3)
i and that with V

(1)
i or V

(2)
i ); SSE and MSE are the averages of standard

errors based on the sandwich estimator and modified estimator, respectively; CP1 and CP2 are the empirical coverage probabilities (%) based on the
sandwich estimator and modified estimator, respectively.

n = 50 n = 100

Bias SD RE SSE MSE CP1(%) CP2 Bias SD RE(%) SSE MSE CP1 CP2
S4 V

(1)
i β1 0.003 0.095 59.1 0.065 0.071 80.7 83.0 0.000 0.067 53.5 0.050 0.053 83.1 84.4

β2 0.007 0.158 66.5 0.133 0.144 89.3 91.0 −0.006 0.115 62.7 0.101 0.107 92.4 91.9
V

(2)
i β1 0.004 0.090 68.6 0.062 0.073 82.4 87.1 0.001 0.063 60.4 0.048 0.053 84.5 87.8

β2 0.007 0.146 78.2 0.126 0.148 89.4 93.8 −0.006 0.104 75.8 0.095 0.104 92.3 94.5
V

(3)
i β1 0.000 0.075 100.0 0.063 0.075 90.0 93.0 0.000 0.047 100.0 0.046 0.050 91.8 95.2

β2 0.006 0.133 100.0 0.123 0.144 93.6 96.0 −0.004 0.092 100.0 0.088 0.096 94.7 96.0
S5 V

(1)
i β1 0.048 0.219 52.4 0.148 0.179 75.9 82.3 0.027 0.173 41.0 0.122 0.137 80.4 84.4

β2 0.010 0.384 58.8 0.311 0.376 88.5 93.7 0.002 0.308 49.5 0.251 0.285 89.1 92.4
V

(2)
i β1 0.046 0.214 54.5 0.140 0.179 74.2 83.8 0.029 0.169 42.2 0.118 0.135 78.3 83.6

β2 0.001 0.361 66.6 0.296 0.379 89.7 95.3 0.003 0.290 55.8 0.238 0.277 89.5 94.1
V

(3)
i β1 0.010 0.162 100.0 0.131 0.158 85.9 92.2 0.009 0.109 100.0 0.101 0.111 91.3 94.6

β2 0.008 0.294 100.0 0.273 0.322 92.8 96.7 −0.000 0.216 100.0 0.202 0.223 92.5 95.1
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Fig 1. Penalized spline estimates and corresponding 95% pointwise confidence intervals of
Λ(t) = 2t1/2 under simulation settings S1–S3. From top to bottom, the panels correspond to
S1, S2 and S3, respectively, while left and right panels correspond to n = 50 and n = 100,
respectively, in each simulation setting. The solid curves correspond to the true value of
the function. The dashed curves, longdashed curves, and dotted curves are the averages of
estimates along with 2.5th and 97.5th percentiles of the estimates from 1,000 Monte Carlo
samples with V

(1)
i , V (2)

i , and V
(3)
i , respectively.
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Fig 2. Penalzied spline estimates and corresponding 95% pointwise confidence intervals of
Λ(t) = 2t1/2 under simulation settings S4 and S5. From top to bottom, the panels correspond
to S4 and S5, respectively, while left and right panels correspond to n = 50 and n = 100,
respectively, in each simulation setting. The solid curves correspond to the true value of
the function. The dashed curves, longdashed curves, and dotted curves are the averages of
estimates along with 2.5th and 97.5th percentiles of the estimates from 1,000 Monte Carlo
samples with V

(1)
i , V (2)

i , and V
(3)
i , respectively.

tion for this phenomenon is that the monotone spline estimator is constrained,
i.e., under monotone constraints, and hence, the impact of the penalization is
not as significant as in the case of non-constrained spline estimation. Although
the penalized estimators do not outperform the spline alternatives under the
proposed simulation settings, the penalized technique is more computationally
stable compared to the spline alternative. Further, the penalized method dis-
plays preferable properties in variance-covariance estimation. More specifically,
the variance estimator has less variability and the corresponding empirical cov-
erage probabilities are close to the nominal level.
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Table 3

Summary of simulation results for regression spline and penalized spline GEE estimators of
the regression coefficients β = (β1, β2)ᵀ = (−1, 1)ᵀ with working covariance matrices V

(1)
i ,

V
(2)
i , and V

(3)
i under simulation settings S1–S3; SD, standard deviation of the estimates;

SSE and MSE are the averages of standard errors based on the sandwich estimator and
modified estimator, respectively; CP1 and CP2 are the empirical coverage probabilities (%)

based on the sandwich estimator and modified estimator, respectively.
Regression Spline Penalized Spline

Bias SD SSE CP1 Bias SD MSE CP2
S1 n = 50 V

(1)
i β1 −0.003 0.052 0.043 89.3 −0.003 0.051 0.044 90.6

β2 0.000 0.103 0.087 90.0 0.000 0.102 0.091 91.8
V

(2)
i β1 −0.001 0.044 0.037 89.7 −0.001 0.044 0.044 94.7

β2 0.001 0.088 0.078 91.3 0.001 0.088 0.092 94.8
V

(3)
i β1 −0.001 0.045 0.038 89.9 −0.001 0.045 0.045 94.7

β2 0.001 0.089 0.078 91.2 0.001 0.089 0.093 94.8
n = 100 V

(1)
i β1 −0.000 0.032 0.029 92.4 −0.001 0.031 0.029 93.2

β2 −0.001 0.065 0.062 93.1 −0.001 0.064 0.064 93.6
V

(2)
i β1 −0.007 0.027 0.025 93.0 −0.000 0.027 0.028 95.1

β2 −0.000 0.056 0.055 93.2 −0.000 0.056 0.060 95.7
V

(3)
i β1 −0.001 0.028 0.025 92.9 −0.001 0.028 0.028 95.2

β2 −0.000 0.056 0.055 93.2 −0.000 0.056 0.060 95.6
S2 n = 50 V

(1)
i β1 0.039 0.244 0.166 77.0 0.039 0.244 0.212 85.2

β2 0.007 0.415 0.334 88.1 0.006 0.414 0.434 94.9
V

(2)
i β1 0.043 0.238 0.161 74.1 0.043 0.238 0.210 85.9

β2 0.004 0.390 0.331 89.2 0.004 0.390 0.434 96.1
V

(3)
i β1 0.001 0.171 0.143 89.5 0.003 0.170 0.170 94.2

β2 0.014 0.311 0.293 93.0 0.012 0.312 0.345 96.1
n = 100 V

(1)
i β1 0.032 0.181 0.132 82.0 0.033 0.183 0.152 86.1

β2 −0.012 0.328 0.271 88.3 −0.013 0.328 0.315 92.5
V

(2)
i β1 0.034 0.177 0.129 79.6 0.034 0.177 0.149 85.1

β2 −0.013 0.306 0.261 90.0 −0.012 0.306 0.304 93.8
V

(3)
i β1 0.038 1.069 0.107 90.7 0.004 0.119 0.117 93.5

β2 0.046 1.391 0.213 92.8 0.003 0.225 0.233 94.8
S3 n = 50 V

(1)
i β1 0.096 0.319 0.208 74.0 0.098 0.320 0.282 86.8

β2 0.015 0.511 0.427 88.8 0.013 0.512 0.589 96.5
V

(2)
i β1 0.094 0.313 0.203 73.3 0.094 0.314 0.278 85.2

β2 0.005 0.490 0.431 90.4 0.004 0.490 0.585 97.8
V

(3)
i β1 0.027 0.233 0.183 87.9 0.028 0.233 0.221 92.0

β2 0.019 0.397 0.387 93.5 0.018 0.396 0.457 96.6
n = 100 V

(1)
i β1 0.053 0.236 0.172 79.1 0.053 0.237 0.211 84.5

β2 0.012 0.414 0.355 90.5 0.012 0.414 0.442 95.5
V

(2)
i β1 0.053 0.236 0.169 77.5 0.053 0.236 0.203 84.5

β2 −0.002 0.395 0.349 91.6 −0.003 0.395 0.421 95.8
V

(3)
i β1 0.037 0.841 0.139 91.8 0.011 0.155 0.157 93.2

β2 0.009 0.447 0.284 93.3 −0.001 0.295 0.319 95.8

6. Real data analysis

The proposed penalized methodology was applied to the skin cancer chemo-
prevention data. In this clinical trial, study subjects were randomly assigned



1624 M. Lu

Table 4

Summary of simulation results for regression spline and penalized spline GEE estimators of
the regression coefficients β = (β1, β2)ᵀ = (−1, 1)ᵀ with working covariance matrices V

(1)
i ,

V
(2)
i , and V

(3)
i under simulation settings S4 and S5; SD, standard deviation of the

estimates; SSE and MSE are the averages of standard errors based on the sandwich
estimator and modified estimator, respectively; CP1 and CP2 are the empirical coverage
probabilities (%) based on the sandwich estimator and modified estimator, respectively.

Regression Spline Penalized Spline

Bias SD SSE CP1 Bias SD MSE CP2
S4 n = 50 V

(1)
i β1 0.002 0.094 0.067 81.4 0.003 0.095 0.071 83.0

β2 0.007 0.157 0.134 89.2 0.007 0.158 0.144 91.0
V

(2)
i β1 0.004 0.090 0.063 80.0 0.004 0.090 0.073 87.1

β2 0.007 0.146 0.126 89.7 0.007 0.146 0.148 93.8
V

(3)
i β1 0.000 0.075 0.064 89.1 0.009 0.075 0.075 93.0

β2 0.006 0.133 0.123 92.3 0.006 0.133 0.144 96.0
n = 100 V

(1)
i β1 0.000 0.067 0.051 84.1 0.000 0.067 0.053 84.4

β2 −0.006 0.115 0.102 90.6 −0.006 0.115 0.107 91.9
V

(2)
i β1 0.001 0.063 0.049 85.1 0.001 0.063 0.053 87.8

β2 −0.006 0.104 0.096 92.7 −0.006 0.104 0.104 94.5
V

(3)
i β1 −0.000 0.047 0.046 93.4 −0.000 0.047 0.050 95.2

β2 −0.004 0.092 0.088 94.0 −0.004 0.092 0.096 96.0
S5 n = 50 V

(1)
i β1 0.047 0.216 0.145 76.1 0.048 0.219 0.179 82.3

β2 0.012 0.382 0.300 87.0 0.010 0.384 0.376 93.7
V

(2)
i β1 0.046 0.214 0.140 74.2 0.046 0.214 0.179 83.8

β2 0.001 0.361 0.296 89.5 0.001 0.361 0.379 95.3
V

(3)
i β1 0.010 0.162 0.132 86.0 0.010 0.162 0.158 92.2

β2 0.008 0.294 0.273 92.7 0.008 0.294 0.322 96.7
n = 100 V

(1)
i β1 0.026 0.172 0.120 79.9 0.027 0.173 0.137 84.4

β2 0.002 0.308 0.247 88.9 0.002 0.308 0.285 92.4
V

(2)
i β1 0.029 0.169 0.117 78.7 0.029 0.169 0.135 83.6

β2 0.003 0.290 0.239 89.4 0.003 0.290 0.277 94.1
V

(3)
i β1 0.009 0.109 0.100 92.0 0.009 0.109 0.111 94.6

β2 −0.000 0.216 0.202 92.3 −0.000 0.216 0.223 95.1

to either a DFMO group or a placebo group. The primary goal was to assess
the efficacy of DFMO in the reduction of the recurrence of two types of non-
melanoma skin cancers, BCC and SCC. The data include 290 study subjects
with at least one follow-up visit. The number and the times of examinations
vary greatly from individual to individual. In particular, the number of follow-
up visits ranges from 1 to 17, while the examination times range from 11 to
1,879 days. Further, the cumulative count of the recurrence of combined BCC
and SCC tumors ranges from 0 to 29. Among these patients, the majority were
males (n = 174, 60%) and aged 65 years old or above (n = 119, 62.6%), around
half of participants (n = 143, 49.4%) were randomly assigned to the DFMO
group, and the average count of prior skin cancers from first diagnosis to ran-
domization is 4.33. We fit the data via the following proportional mean model,
namely,

E{N(t)|Z} = Λ(t) exp(Z1β1 + Z2β2 + Z3β3 + Z4β4),
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Fig 3. Regression spline and penalized spline estimates and corresponding 95% pointwise
confidence intervals of Λ(t) = 2t1/2 under simulation settings S1–S3. From top to bottom,
the panels correspond to S1, S2 and S3, respectively, while left and right panels correspond
to n = 50 and n = 100, respectively, in each simulation setting. The solid curves correspond
to the true value of the function. The dashed curves and longdashed curves are the averages
of regression spline and penalized spline estimates, respectively, along with 2.5th and 97.5th
percentiles of the estimates from 1,000 Monte Carlo samples with V

(3)
i .
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Fig 4. Regression spline and penalized spline estimates and corresponding 95% pointwise
confidence intervals of Λ(t) = 2t1/2 under simulation settings S4 and S5. From top to bottom,
the panels correspond to S4 and S5, respectively, while left and right panels correspond to
n = 50 and n = 100, respectively, in each simulation setting. The solid curves correspond
to the true value of the function. The dashed curves and longdashed curves are the averages
of regression spline and penalized spline estimates, respectively, along with 2.5th and 97.5th
percentiles of the estimates from 1,000 Monte Carlo samples with V

(3)
i .

where Z1 is the age at enrollment (1 for those aged 65 years old or above and 0
otherwise), Z2 is gender (1 for male and 0 for female), Z3 is a treatment indicator
(1 for DFMO and 0 for placebo), and Z4 is the number of prior non-melanoma
tumors. In this analysis the outcome variable is defined as the combined panel
count of two non-melanoma skin cancers. The baseline cumulative mean function
Λ(·) was approximated by a monotone cubic B-spline. We applied the empirical
rule discussed in Section 2.4 to select the number and the location of knots and
used the generalized Fellnee-Schall approach and the moment estimation method
to determine the smoothing parameter λ2 and the overdispersion parameter
σ2, respectively. The model fitting was carried out via the proposed two-stage
iterative algorithm.

Table 3 summarizes the results of data analysis, including the estimates of
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Fig 5. Plots of the penalized spline estimates of Λ(·) for skin cancer chemoprevention data;
the dashed curves correspond to the functional estimates, while the dotted curves are 2.5th
and 97.5th percentiles of the estimates from 1,000 bootstrap samples. From left to right, the
panels correspond to estimations with working covariance matrices V

(1)
i , V

(2)
i , and V

(3)
i ,

respectively.

the parameters with working matrices V (1)
i , V (2)

i , and V
(3)
i , the estimated stan-

dard errors based on the sandwich estimator and the modified estimator, and
the corresponding p-values, as well as the estimated values of λ2 and σ2. The
analyses with the three different working covariance matrices yield the consis-
tent results that being male or increasing of age is prone to be susceptible to a
higher number of tumor recurrences on average and the chemoprevention treat-
ment suppresses the tumor recurrence, but none of the three factors is statisti-
cally significant. The number of prior skin cancers is shown to be significantly
associated with the recurrence. In particular, with every additional prior skin
cancer, the newly developed tumor count was estimated to increase by 8.2%,
8.0%, or 11.5% with V

(1)
1 , V (2)

i , or V
(3)
i , respectively. These results agree with

those discussed in Chiou et al. [4] under the accelerated mean model. One ex-
planation for the consistent results with different working matrices is that the
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Table 5

Summary of penalized spline estimation with working matrices V
(1)
i , V (2)

i , and V
(3)
i for

skin cancer chemoprevention data; estimate: point estimate; SSE and MSE are estimated
standard errors based on the sandwich estimator and modified estimator, respectively; λ2

and σ2 are the estimated values for the smoothing parameter and overdispersion parameter,
respectively.

Method λ2 σ2 Covariate Estimate SSE p-value MSE p-value
V

(1)
i 270.935 N/A Age 0.121 0.159 0.447 0.161 0.452

Gender 0.303 0.188 0.106 0.190 0.110
DFMO −0.185 0.169 0.274 0.171 0.281
Prior Count 0.079 0.008 < 0.001 0.008 < 0.001

V
(2)
i 178.593 N/A Age 0.162 0.141 0.248 0.144 0.260

Gender 0.228 0.160 0.155 0.164 0.164
DFMO −0.209 0.149 0.160 0.152 0.169
Prior Count 0.077 0.007 < 0.001 0.007 < 0.001

V
(3)
i 187.214 0.519 Age 0.067 0.142 0.638 0.148 0.650

Gender 0.238 0.156 0.128 0.161 0.140
DFMO −0.058 0.149 0.686 0.154 0.705
Prior Count 0.109 0.009 < 0.001 0.009 < 0.001

effect of overdispersion is estimated as small as 0.519 and the correlation among
observed panel counts seems to be not very strong. Further, it is worthwhile to
mention that as discussed in Chiou et al. [4] and Li et al. [11], the recurrence
rate was related to the number of follow-up visits, which violates the assump-
tion of non-informative observation, suggesting that the proposed methodology
could be misused for this data. Further, the estimated curves of the baseline
cumulative mean function Λ(·), along with 95% pointwise confidence intervals
with the three working covariance matrices are presented in Figure 3. The lower
and upper limits of pointwise confidence intervals were constructed as 2.5th and
97.5th percentiles of 1,000 bootstrap samples.

7. Summary and future work

In this study, we consider a computationally efficient penalized approach for
a semiparametric proportional mean model with panel count data using GEE
methodology. The method provides great flexibility for model fitting by not spec-
ifying the stochastic model of the underlying counting process. The asymptotic
properties of the penalized spline estimators including the uniform convergence
and the optimal rate of convergence for the functional estimator and the asymp-
totic normality for the regression parameter estimators were rigorously proved
by applying model empirical process theory. By addressing the underestima-
tion of the variance-covariance matrix of the regression parameter estimators in
GEE methodology, the proposed method yields less biased variance-covariance
estimation and provides more reliable inference for the regression parameters
compared to the standard sandwich approach. The simulation results indicate
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that the proposed methodology that accounts for the overdispersion enhances
the accuracy of estimation and the reliability of inference, and still performs well
even if the stochastic model of the underlying counting process is not correctly
specified for practical sample sizes.

The proposed methodology assumes that the examination process is inde-
pendent of the underlying counting process. This non-informative assumption
is not always valid in practice. For instance, the frequency of the clinic visit is re-
lated to the tumor recurrence rate in the chemoprevention skin cancer trial; see
more discussion in Chiou [4] and Li et al. [11]. Statistical analysis of panel count
data with informative observation times has been discussed in the literature; see
Huang et al. [8], Sun et al, [30], Li et al. [11], and Chiou et al. [4], among many
others. The analysis of panel count data with dependent observation under GEE
framework is challenging and has not been discussed in the literature yet. It will
be our future work to tackle the challenge using penalized methodology. The
other fundamental assumption in this study is that the regression coefficients
are constant over time. This restrictive proportional mean assumption can be
relaxed in various ways. Specifically, a time-varying coefficient model that allows
the covariate effects to change over time offers great flexibility to capture the
temporal dynamics of covariate effects. It will be our future work to consider
the efficient estimation of time-varying coefficient models for panel count data
using penalization methodology. In particular, the time-varying effects will be
modeled via penalized splines. The proposed penalization methodology can be
easily adapted to time-varying coefficient models. The asymptotic results such
as uniform consistency and the optimal rate of convergence are still valid. The
asymptotic normality for regression parameter estimators, especially the calcu-
lation of information bound, needs further investigation. Following the line of
Gray [5], a hypothesis that the regression parameters are time-independent will
be considered to test the proportional mean assumption.

Further, the proposed variance-covariance estimation is based on Morel esti-
mator (Morel et al. [20]). Another future research direction is to develop a new
estimator to accommodate the nature of panel count data in variance-covariance
estimation by incorporating other estimators such as Pan estimator (Pan [22])
and investigate its numerical properties via extensive Monte Carlo studies for
practical sample sizes. Finally, it is worthwhile to further inspect the impact of
the selection of other working covariance matrices commonly used in correlated
data analysis.

8. Technical details

8.1. Technical lemmas

In this section we provide some empirical process results for panel count data
that are useful to establish the asymptotic properties of the penalized spline
GEE estimators. Denote by G a class of K-dimensional vector functions g with
jth element gj = Zᵀβ + ϕ(TK,j), for j ∈ {1, . . . ,K}, where β ∈ Φ, ϕ ∈ Mn,
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and J(ϕ) < ∞. Define μ = (μK,1, . . . , μK,K)ᵀ with μK,j = exp(gj). In view of
Lemma A1 of Lu et al. [13], ϕ0(·) can be well approximated by a monotone
spline; i.e., there exists ϕn ∈ Mn such that ‖ϕn − ϕ0‖∞ = O(n−m/(1+2m)).
Denote τn = (β0, ϕn), and let g0, gn, and ĝ denote g evaluated at τ = τ0, τn,
and τ̂ , respectively. Define the empirical inner product with respect to working
matrices V as

〈ξ1, ξ2〉v,n = Pn(ξᵀ
1V

−1ξ2),

for ξ1, ξ2 ∈ R
K and the corresponding empirical norm as ‖ξ‖2

v,n = 〈ξ, ξ〉v,n. In
view of the definition of τ̂ , we have,

ĝ = arg min
g∈G

{
1
2 ‖N− μ‖2

v,n + 1
2λ

2J2(g)
}
.

For R > 0, define G (R) = {g ∈ G , ‖g − g0‖v,n ≤ R}. This definition implies
supg∈G (R) ‖g‖v,n ≤ R, which is required in Lemmas 1, and 2. For every prob-
ability measure Q and a class of measurable functions L , let H(ε,L , L2(Q))
denote the entropy number of L . In the sequel, it is assumed that the eigen-
values of positive definite matrices Vi are uniformly bounded away from 0 and
infinite.

Lemma 1. Suppose that e1, . . . , en are independent random vectors with expec-
tation 0 satisfying the uniformly sub-Guassian condition, i.e.,

max
i=1,...,n

M2
0 {E exp(‖ei‖2/M2

0 ) − 1} ≤ σ2
0 ,

for some fixed positive constants M0 and σ0, and that

H(ε,L , ‖ · ‖v,n) ≤ A0ε
−α, (8.1)

for all ε > 0 and some constants A0 > 0 and 0 < α < 2. Further, assume
supξ∈L ‖ξ‖v,n ≤ R. Then for some constant C depending on A0, α, R, M0 and
σ0, we have for all T ≥ C,

P

(
sup
ξ∈L

n1/2 |〈e, ξ〉v,n|
‖ξ‖1−α

2
v,n

≥ T

)
≤ C exp(−T 2/C2).

Lemma 2. For every ε > 0,

H

(
ε,

{
A(g)

J(ϕ) + J(ϕn) : g ∈ G (R)
}
, ‖ · ‖v,n

)
≤ (1/ε)1/m ,

up to a constant constant, where A(g) = exp(g) − exp(gn).

Lemma 3. For a sufficiently small ε > 0, ‖ϕ‖∞ ≤ C {1 + J(ϕ)}, for C > 0,
whenever J(ϕ) < ∞ and ‖ϕ− ϕ0‖L2(μ) < ε.

Lemma 4. ‖ĥ∗
l − h∗

l ‖L2(μ) = op(1), for l ∈ {1, . . . , d}.
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Remark 2. Lemma 1 that is the extension of Lemma 8.4 of van de Geer [32]
for panel count data is applied to derive the modulus of continuity for the
random process n1/2〈e, ξ〉v,n. Lemma 2 establishes a useful result of the entropy
number for a class of spline functions. It is related to Lemma 11.3 of van de
Geer [32]. The above lemmas are key results to establish the consistency and
rate of convergence of ĝ. Lemma 3 is used to derive the uniform boundedness
of ϕ̂(·) in probability once the consistency of ϕ̂(·) is established. Lemma 4 is
employed to establish the consistency of the variance-covariance estimator of β̂.

8.2. Proof of Lemma 1

The proof is similar to that of Lemma 8.4 of van de Geer [32], and thus is
omitted.

8.3. Proof of Lemma 2

Let ζ = Zᵀβ + ϕ(t). Define ζn = Zᵀβ + ϕn(t) and ζ0 = Zᵀβ0 + ϕ0(t). First we
show that

H

(
ε,

{
A(ζ)

J(ζ) + J(ζn) : β ∈ Φ, ϕ ∈ Mn, J(ϕ) < ∞, ‖ζ − ζ0‖n ≤ R

}
, ‖ · ‖n

)
≤ (1/ε)1/m , (8.2)

up to a constant, where ‖ · ‖n is the standard empirical norm. For any function
ϕ(·) defined on T with J(ϕ) < ∞, by a Taylor expansion, ϕ(t) can be written as
ϕ1(t) +ϕ2(t), where ϕ1(·) is a polynomial of degree m− 1 and supt∈T |ϕ2(t)| ≤
C0J(ϕ), for C0 > 0, with J(ϕ) = J(ϕ2). Without loss of generality, assume
0 < C0 < 1, i.e., supt∈T |ϕ2(t)| ≤ J(ϕ). Let ζ1 = Zᵀβ+ϕ1(t) and ζ2 = ϕ2(t). For
a fixed bounded function h, by Example 3.7.4d of van de Geer [32], the class of
uniformly bounded functions ζ1 +h is a Vapnik-Chervonenkis subgraph class of
index bounded by d+m+2. It concludes from Lemma 19.15 of van der Vaart [33]
that the entropy number with ‖ · ‖n of the class of uniformly bounded functions
ζ1 + h is bounded by ln(1/ε), up to a constant. Since A(ζ) = exp(ζ) − exp(ζn)
is Lipschitz with respect to ζ, we read

H (ε, {A(ζ1 + h)} , ‖ · ‖n) ≤ C1 ln (1/ε) , (8.3)

for some constant C1 > 0. For a small ε > 0, write q(ζ) = �1/[{J(ζ) + J(ζn)} ε]� ε,
where �·� is the floor function. In view of the inequality 1/2 < a�1/a� < 1, for
0 < a < 1, we read J{q(ζ)ζ2} < 1 and ‖q(ζ)ζ2‖∞ < 1. Theorem 2.4 of van de
Geer [32] applies and yields

H (ε, {q(ζ)ζ2 : J(ζ) < ∞} , ‖ · ‖∞) ≤ C2 (1/ε)1/m , (8.4)

for some constant C2 > 0. Thus, in view of entropy results (8.3) and (8.4), there
exists gl(·) for 1 ≤ l ≤ exp{C2(1/ε)1/m} ≡ M2 such that ‖q(ζ)ζ2 − gl‖n ≤
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‖q(ζ)ζ2 − gl‖∞ ≤ ε and fk(·) for 1 ≤ k ≤ (1/ε)C1 ≡ M1 such that

‖A (ζ1 + gl/q(ζ)) −A (fk + gl/q(ζ))‖n ≤ ε.

It follows that

‖A(ζ1 + ζ2)/{J(ζ) + J(ζn)} −A (fk + gl/q(ζ)) q(ζ)‖n ≤ C3ε,

for some constant C3 > 0. The entropy result (8.2) follows. Thus, for ξ(t) =
A{ζ(t)}/{J(ζ) + J(ζn))}, there exists ρkl(t) = A{fk(t) + gl(t)/q(ζ)}q(ζ), for
k ∈ {1, . . . ,M1} and l ∈ {1, . . . ,M2}, such that

K∑
j=1

‖ξ(TK,j) − ρkl(TK,j)‖2
n ≤ C4ε

2, (8.5)

for some constant C4 > 0. Let ξ(T ) = (ξ(TK,1), . . . , ξ(TK,K))ᵀ and ρkl(T ) =
(ρkl(TK,1), . . . , ρkl(TK,K))ᵀ. It follows from the uniformly bounded assumption
of the eigen values of V and (8.5) that

Pn {ξ(TK) − ρkl(TK)}ᵀ
V −1 {ξ(TK − ρkl(TK)} ≤ C5ε

2,

for some constants C5 > 0. Hence, the entropy result (8.2) also holds for norm
‖ · ‖v,n. Lemma 2 follows.

8.4. Proof of Lemma 3

As discussed in the proof of Lemma 2, every ϕ(·) with J(ϕ) < ∞ can be written
as ϕ1(·)+ϕ2(·), where ϕ1(·) is a polynomial of degree m−1 and supt∈T |ϕ2(t)| ≤
C0J(ϕ), for 0 < C0 < 1. Write ϕ1(t) = aᵀt for t = (1, t, . . . , tm−1)ᵀ and a =
(a0, a1 . . . , am−1)ᵀ with al = ϕ(l)(t1)/l!, for t1 ∈ T and l ∈ {0, . . . ,m − 1}.
By convention, ϕ(0)(·) = ϕ(·). Under the bounded assumption of K and ϕ0(·),
we have ‖ϕ0‖L2(μ) ≤ M for M > 0, and hence ‖ϕ‖L2(μ) ≤ ‖ϕ0‖L2(μ) + ‖ϕ −
ϕ0‖L2(μ) ≤ M + ε. Thus,

‖ϕ1‖L2(μ)

1 + J(ϕ) ≤
‖ϕ‖L2(μ)

1 + J(ϕ) +
‖ϕ2‖L2(μ)

1 + J(ϕ) ≤ M + ε + 1.

The non-singularity of matrix E
(∑K

j=1 ηK,jη
ᵀ
K,j

)
for ηK,j=(1, TK,j , . . . , T

m−1
K,j )ᵀ

implies that E
(∑K

j=1 ηK,jη
ᵀ
K,j

)
is positive definite, and hence ‖a‖/{1+J(ϕ)} =

O(1). Thus, ‖ϕ1‖∞/{1 + J(ϕ)} = O(1) since ϕ1(·) is defined on a bounded set
T . Lemma 3 follows from the inequality ‖ϕ‖∞ ≤ ‖ϕ1‖∞ + ‖ϕ2‖∞.

8.5. Proof of Lemma 4

Because h∗
l (·) is bounded and smooth, according to the standard spline approx-

imation result, there exists h∗
nl ∈ Sn such that ‖h∗

l − h∗
nl‖∞ = O(n−m/(1+2m))
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and J(h∗
nl) ≤ M for M > 0, where Sn is a class of B-splines of degree m+1 de-

fined on T . For a positive definite matrix V −1, there exists an orthogonal matrix
U = (uij)K×K such that UᵀV −1U =diag {λ1, . . . , λK}, for 0 < λ1 ≤ . . . ≤ λK .
Define

ρl(τ ;μ, h) = {Zl − h(T )}ᵀ ΔV −1Δ {Zl − h(T )} .
It is easy to verify that

ρl(τ ;μ, h) =
K∑

m=1
λm

⎡⎣ K∑
j=1

umjμj {zl − h(TK,j)}

⎤⎦2

.

Let μ = exp {Zᵀβ + ϕ(t)}. It concludes from Example 19.7 of van der Vaart [33]
and Theorem 2.4 of van de Geer [32] together with the Donsker preservation
theorem (e.g., Corollary 9.32 of Kosorok [10]) that

H(ε, {μ : ‖τ − τ0‖L2(μ) ≤ M, ‖ϕ‖∞ ≤ M,J(ϕ) ≤ M}, ‖ · ‖∞) ≤ C(1/ε)1/m,

for some constant C > 0. That is, for any ε > 0, there exits μ(k) = exp{Zᵀβ(k)+
ϕ(k)(t)}, for 1 ≤ k ≤ exp{C(1/ε)1/m}, such that ‖μ(k) − μ‖∞ ≤ ε. Obviously,
by the triangle inequality, ‖μ(k)‖∞ is bounded. Construct a class of functions
ρl(τ ;μ(k), h), where μ(k) is a K-vector with jth element μ

(k)
j = exp{Zᵀβ(k) +

ϕ(k)(TK,j)}, for j ∈ {1, . . . ,K}. Thus, under conditions C3, C4, and C5, for any
h ∈ Sn, we have ‖ρl(τ ;μ, h) − ρl(τ ;μ(k), h)‖2 ≤ ε, up to a constant. Thus, the
class of functions ρl(τ ;μ, h) with ‖τ−τ0‖L2(μ) ≤ M , J(ϕ) ≤ M , and ‖ϕ‖∞ ≤ M
is a Donsker class. It follows from the consistency of τ̂ and Glivenko-Cantelli
theorem that

(Pn − P )ρl(τ̂ ; μ̂, h∗
l ) = op(1) and (Pn − P )ρl(τ̂ ; μ̂, h) = op(1), (8.6)

for h ∈ Sn. Further, under conditions C3, C4, and C5, the continuous mapping
theorem and the dominated convergence theorem together with the consistency
of τ̂ yield

P{ρl(τ̂ ; μ̂, h∗
l ) − ρl(τ0;μ0, h

∗
l )} = op(1) and P{ρl(τ̂ ; μ̂, h) − ρl(τ0;μ0, h)} = op(1).

(8.7)

Combing (8.6) and (8.7) yields

Pn {ρl(τ̂ ; μ̂, h) − ρl(τ̂ ; μ̂, h∗
l )} = P {ρl(τ0;μ0, h) − ρl(τ0;μ0, h

∗
l )} + op(1). (8.8)

For any ε > 0 and h ∈ Sn with ‖h−h∗
l ‖∞ ≥ ε, it concludes from the uniqueness

of h∗
l (·) that P {ρl(τ0;μ0, h) − ρl(τ0;μ0, h

∗
l )} > 0, and hence (8.8) yields

Pn {ρl(τ̂ ; μ̂, h) − ρl(τ̂ ; μ̂, h∗
l )} > 0 (8.9)

in probability. In view of Theorem 2.4 of van de Geer [32] and Donsker preserva-
tion theorem, the class of functions ρl(τ ;μ, h)−ρl(τ ;μ, h∗

l ) with ‖τ −τ0‖L2(μ) ≤
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M , ‖h − h∗
l ‖∞ ≤ M , ‖h‖∞ ≤ M , J(h) ≤ M , ‖ϕ‖∞ ≤ M , and J(ϕ) ≤ M is

a Donsker class. Further, by the spline approximation ‖h∗
l − h∗

nl‖∞ = o(1) and
‖h∗

l ‖∞ ≤ M , we have ‖h∗
nl‖∞ ≤ M and J(h∗

nl) ≤ M . Thus, Theorem 2 and
Glivenko-Cantelli theorem apply and yield

(Pn − P ) {ρl(τ̂ ; μ̂, h∗
nl) − ρl(τ̂ ; μ̂, h∗

l )} = op(1). (8.10)

Further, applying the continuous mapping theorem and dominated convergence
theorem together with the consistency of τ̂ yields P {ρl(τ̂ ; μ̂, h∗

nl) − ρl(τ̂ ; μ̂, h∗
l )} =

op(1), and it follows from (8.10) that Pn

{
ρl(τ̂ ; μ̂, h∗

n,l) − ρl(τ̂ ; μ̂, h∗
l )
}

= op(1).
Thus,

Pn

{
ρl(τ̂ ; μ̂, ĥ∗

l ) − ρl(τ̂ ; μ̂, h∗
l )
}

= Pn

{
ρl(τ̂ ; μ̂, ĥ∗

l ) − ρl(τ̂ ; μ̂, h∗
nl)
}

+ op(1).
(8.11)

In view of (8.9), ‖ĥ∗
l − h∗

l ‖∞ ≥ ε implies Pn

{
ρl(τ̂ ; μ̂, ĥ∗

l ) − ρl(τ̂ ; μ̂, h∗
nl)
}
≥ 0 in

probability. Thus, it concludes from (8.11) and the definition of ĥ∗
l (·) that

P (‖ĥ∗
l − h∗

l ‖∞ ≥ ε) ≤ P
[
Pn

{
ρl(τ̂ ; μ̂, ĥ∗

l ) − ρl(τ̂ ; μ̂, h∗
nl)
}
≥ 0
]
→ 0,

as n → ∞. The consistency of ĥ∗
l (·) follows.

8.6. Proof of Theorem 1

The proof of Theorem 1 follows the similar arguments to those in the proof of
Lemma A4 of Huang et al. [9], and thus is omitted.

8.7. Proof of Theorem 2

Define the error term e = N− μ0. According to the definition of τ̂ ,

‖N− μ̂‖2
v,n + λ2J2(ĝ) ≤ ‖N− μn‖2

v,n + λ2J2(gn).

Write N− μ̂ = N− μn − (μ̂− μn) and the above inequality reduces to

‖μ̂− μn‖2
v,n + λ2J2(ĝ) ≤ 2〈N− μn, μ̂− μn〉v,n + λ2J2(gn). (8.12)

In view of the uniformly bounded assumptions of the eigen values of V and the
total number of examinations K, the spline approximation applies and yields
‖μn − μ0‖v,n = o(1), and it concludes from Cauchy-Schwarz inequality that

〈μn − μ0, μ̂− μn〉v,n = op(1)‖μ̂− μn‖v,n. (8.13)

Combing (8.12) and (8.13), we have the following basic inequality

{1 + op(1)} ‖μ̂− μn‖2
v,n + λ2J2(ĝ) ≤ 2〈e, μ̂− μn〉v,n + λ2J2(gn). (8.14)
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It is observed that e1, . . . , en satisfy the sub-Gaussian condition under condition
C5. Further, by Lemma 2, the entropy result (8.1) in Lemma 1 holds with
α = 1/m. Thus, Lemma 1 applies and yields

|〈e, μ̂− μn〉v,n|
‖μ̂− μn‖

1− 1
2m

v,n {J(ĝ) + J(gn)}
1

2m
= Op(n−1/2). (8.15)

If J(ĝ) ≥ J(gn) in probability, then in view of the basic inequality (8.14) along
with (8.15), we have

{1 + op(1)} ‖μ̂−μn‖2
v,n+λ2J2(ĝ) ≤ Op(n−1/2)‖μ̂−μn‖

1− 1
2m

v,n J
1

2m (ĝ)+λ2J2(gn).

Under the assumption of the order of λ, applying the similar arguments to those
in the proof of Theorem 10.2 of [32] yields J(ĝ) = OP (1) and ‖μ̂ − μn‖v,n =
Op(n− m

1+2m ). Similarly, in the case of J(ĝ) < J(gn) in probability (i.e., J(ĝ) =
Op(1)), it follows from (8.14) and (8.15) that

‖μ̂− μn‖2
v,n ≤ Op(n−1/2)‖μ̂− μn‖

1− 1
2m

v,n + Op(λ2).

Hence, ‖μ̂ − μn‖v,n = Op(n− m
1+2m ), and it results from the assumption of the

order of λ and the spline approximation ‖ϕn − ϕ0‖∞ = Op(n− 2m
1+2m ) that

‖μ̂− μ0‖2
v,n ≤ ‖μ̂− μn‖2

v,n + ‖μn − μ0‖2
v,n = Op(n− 2m

1+2m ).

Under conditions C3 and C6, a Taylor expansion yields

Pn

K∑
j=1

{
Zᵀ(β̂ − β0) + (ϕ̂− ϕ0)(TK,j)

}2
= Op(n− 2m

2m+1 ).

According to the bracketing entropy calculations for the class of monotone func-
tions and the parametric class with bounded index set, we can verify that the
bracketing entropy of the class {ζ−ζ0 : ‖ζ−ζ0‖v,n ≤ M,β ∈ Φ, ϕ ∈ Mn, J(ϕ) <
∞} is bounded by 1/ε, up to a constant, for every ε > 0 and every probability
measure; see Examples of 19.7 and 19.11 of van der Vaart [33]. Thus, Theorem
2.3 of Mammen and van de Geer [18] applies and yields

E

K∑
j=1

{
Zᵀ(β̂ − β0) + (ϕ̂− ϕ0)(TK,j)

}2
= Op(n− 2m

1+2m ).

According to Lemma 3.1 of Stone [27], ‖ϕ̂ − ϕ0‖L2(μ) = Op(n−m/(1+2m)). Fur-
ther, under the assumptions that E(ZZᵀ) and K are uniformly bounded, ‖β̂−
β0‖ = Op(n−m/(1+2m)). According to Lemma 3, we can establish that ‖ϕ̂‖∞ =
Op(J(ϕ̂) + 1), and hence ‖ϕ̂‖∞ = Op(1) on account of the fact that J(ϕ̂) =
Op(1). In view of Cauchy-Schwarz inequality and J(ϕ̂) = Op(1), for any t ∈
T = [d1, d2], |ϕ̂(m−1)(t) − ϕ̂(m−1)(d1)| =

∣∣∣∫ t

d1
ϕ̂(m)(u)du

∣∣∣ ≤ J(ϕ̂) = Op(1),
and hence ϕ̂(m−1)(·) is uniformly bounded in probability. Integrating ϕ̂(m−1)(·)
(m− 2) times yields the first derivative of ϕ̂(·) is uniformly bounded in proba-
bility. Thus, ϕ̂(·) is uniformly equicontinuous in probability on the compact set
T , which implies the uniform convergence of ϕ̂(·) by Arzel-Ascoli theorem.
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8.8. Proof of Theorem 3

Inserting (β̂+ξ, ϕ̂(T )−h∗(T )ξ) with a vector of functions h∗(·)=(h∗
1(·), . . . , h∗

d(·))
satisfying J(h∗

l ) < ∞, for l ∈ {1, . . . , d}, into the penalized weighted least
squares function (2.2), differentiating it with respect to ξ, and evaluating it at
ξ = 0, we obtain the following stationary equations

0 = PnQ
ᵀΔ̂V −1(N− μ̂) + λ2

∫ ⎛⎜⎜⎝
η̂(m)(u)h∗(m)

1 (u)
...

η̂(m)(u)h∗(m)
d (u)

⎞⎟⎟⎠ du, (8.16)

where Q = Z − h∗(T ) and Δ̂ = diag {μ̂K,1, . . . , μ̂K,K}. Rewrite the stationary
equation (8.16) as

0 = PnQ
ᵀ(Δ̂ − Δ0)V −1(N− μ0) + PnQ

ᵀΔ0V
−1(N− μ0)

− PnQ
ᵀ(Δ̂ − Δ0)V −1(μ̂− μ0) − PnQ

ᵀΔ0V
−1(μ̂− μ0)

+ λ2
∫ ⎛⎜⎜⎝

η̂(m)(u)h∗(m)
1 (u)

...
η̂(m)(u)h∗(m)

d (u)

⎞⎟⎟⎠ du

≡ I1 + I2 − I3 − I4 + I5.

To derive the asymptotic normality, we need to show that ‖I1‖ = ‖I3‖ = ‖I5‖ =
op(n−1/2). Let ĝj and g0j be gj evaluated at τ̂ and τ0, respectively, for j ∈
{1, . . . ,K}. Denote by hl(X,h∗; g) a K-vector of functions for g ∈ G (R) with
jth element {zl − h∗

l (TK,j)}
{
exp(gj) − exp(g0j)

}
. Clearly, the lth element of I1

can be written as Pnhᵀ
l (X,h∗; ĝ)V −1e, for l ∈ {1, . . . , d}. For any g ∈ G (R),

it follows from the uniformly bounded assumptions of Z, h∗(·), and the eigen
values of V that ‖hl(X,h∗; g)‖v,n ≤ ‖g − g0‖v,n, up to a constant, and hence
Theorem 2 applies and yields

‖hl(X,h∗; ĝ)‖v,n ≤ Op(1)‖ĝ − g0‖v,n = Op(n−m/(1+2m) ≡ ρn.

Similarly, it can be shown that ‖hl(X,h∗; g̃) − hl(X,h∗; g)‖v,n ≤ ‖g̃ − g‖v,n,
up to a constant, for g, g̃ ∈ G (R). In view of Examples 19.7 and 19.10 of van
der Vaart [33], the bracketing entropy of the class of functions Zᵀβ + ϕ(t) for
‖β − β0‖ ≤ M , ‖ϕ− ϕ0‖L2(μ) ≤ M , ‖ϕ‖∞ ≤ M , and J(ϕ) ≤ M with ‖ · ‖∞ is
bounded by (1/ε)1/m, up to a constant, for any ε > 0. In view of the uniformly
bounded assumptions of the total number of examinations K and the eigen
values of V , the entropy result also holds for the class of functions g ∈ G (R)
with ‖β − β0‖ ≤ M , ‖ϕ − ϕ0‖L2(μ) ≤ M , ‖ϕ‖∞ ≤ M , and J(ϕ) ≤ M with
‖ · ‖v,n. Further, since hl(X,h∗; g) is Lipschitz with respect to g, it follows that

H(ε,
{
hl : ‖β − β0‖ ≤ M, ‖ϕ− ϕ0‖L2(μ) ≤ M, ‖ϕ‖∞ ≤ M,J(ϕ) ≤ M

}
, ‖ · ‖v,n)

≤ (1/ε)1/m ,
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up to a constant. Therefore, it concludes from Theorem 2 and Lemma 1 that

|Pnhᵀ
l (X,h∗; ĝ)V −1e| = ‖hl(X,h∗; ĝ)‖1−1/2m

v,n Op(n−1/2),

which implies

|Pnhᵀ
l (X,h∗; ĝ)V −1e| = ρ1−1/2m

n Op(n−1/2) = Op(n−2m/(1+2m)),

and hence ‖I1‖ = op(n−1/2). Obviously, the lth element of I3 is Pnhᵀ
l (U, h∗; ĝ)V −1

(μ̂ − μ0), for l ∈ {1, . . . , d}. Since Z, h∗(·), and the eigen values of V are uni-
formly bounded, mean value theorem and Cauchy-Schwarz inequality apply and
yield that the lth element of I3 can be bounded by ‖ĝ − g0‖2

v,n, up to a con-
stant. It concludes from Theorem 2 that ‖I3‖ = Op(n−2m/(1+2m)) = op(n−1/2).
Further, under conditions C3 and C5, applying a Taylor expansion and the rate
of convergence of ĝ, as well as the uniform boundedness of ĝ and h∗(·) yields

I4 = PnQ
ᵀΔ0V

−1Δ0(ĝ − g0) + op(n−1/2).

Since Z and h∗(·) along with the eigen values of V are uniformly bounded, the
jth element of PnQ

ᵀΔ0V
−1Δ0(ĝ − g0) can be written as Pn

∑K
j=1 aj(ĝj − g0j)

with |aj | ≤ M for a constant M > 0. Under the uniformly bounded assumption
of Z and K, it concludes from Examples 19.7 and 19.10 of van der Vaart [33] that
the bracketing entropy of the class of functions

∑K
j=1 aj(gj−g0j) for ‖β−β0‖ ≤

M , ‖ϕ − ϕ0‖L2(μ) ≤ M , ‖ϕ‖∞ ≤ M , and J(ϕ) ≤ M with ‖ · ‖∞ is bounded
by (1/ε)1/m, up to a constant, for every ε > 0, and hence the above class is
a Donsker class. Further, in view of the rate of convergence of ĝ and Cauchy-
Schwarz inequality, E

{∑K
j=1 aj(ĝj − g0j)

}2
= Op(n−2m/(1+2m)). In view of

Theorem 2, ‖β̂ − β0‖ = op(1), ‖ϕ̂ − ϕ0‖L2(μ) = op(1), ‖ϕ̂‖∞ = Op(1), and
J(ϕ̂) = Op(1), and hence Lemma 19.24 of van der Vaart [33] applied and yields

(Pn − P )QᵀΔ0V
−1Δ0(ĝ − g0) = op(n−1/2).

Thus,

I4 = E{QᵀΔ0V
−1Δ0Z(β̂ − β0)} + E{QᵀΔ0V

−1Δ0(ϕ̂− ϕ0)(T )} + op(n−1/2).

According to the characteristic of h∗(·), E{QᵀΔ0V
−1Δ0(ϕ̂ − ϕ0)(T )} = 0 and

E{QᵀΔ0V
−1Δ0h

∗
l (T )} = 0, for l ∈ {1, . . . , d}, and thus, I4 = I1(β̂ − β0) +

op(n−1/2). In view of Cauchy-Schwarz inequality and the assumption of the order
of λ, the lth element of I5 is bounded by λ2J(ϕ̂)J(h∗

l ) = Op(n−2m/(1+2m))Op(1) =
op(n−1/2), and hence ‖I5‖ = op(n−1/2). It concludes that

n1/2(β̂ − β0) = I −1
1 n1/2

PnQ
ᵀΔ0V

−1(N− μ0) + op(1) →d N(0,I −1
1 I2I

−1
1 ),

as n → ∞. We conclude the asymptotic normality of β̂.
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8.9. Proof of Theorem 4

We first show that În1 = I1 + op(1). For a positive definite matrix V −1,
there exists an orthogonal matrix C = (cij)K×K such that CᵀV −1C =diag
{λ1, . . . , λK} for 0 < λ1 ≤ . . . ≤ λK . Define

I
(jk)
1 ≡

K∑
v=1

λv

K∑
p,q=1

cvpcvq{zj − hj(TK,p)}{zk − hk(TK,q)}μpμq,

and let Î
(jk)

1 denote I
(jk)
1 evaluated at τ = τ̂ and hl = ĥ∗

l , for l = j, k. Clearly,
the (j, k)th element of În1 can be written as PnÎ

(jk)
1 , for j, k ∈ {1, . . . ,K}.

As shown in the proof of Theorem 3, the class of uniformly bounded functions
exp{Zᵀβ + ϕ(t)} for ‖β − β0‖ ≤ M , ‖ϕ − ϕ0‖L2(μ) ≤ M , ‖ϕ‖∞ ≤ M , and
J(ϕ) ≤ M with ‖ · ‖∞ is a Donsker class. Further, in view of the bracketing
entropy calculation of spline (e.g., Shen and Wong ([26], p. 597)), the class of
uniformly bounded functions zl − hl for hl ∈ Sn and ‖hl − h∗

l ‖∞ ≤ M is also
a Donsker class. Thus, under conditions C3, C4, and C5, it concludes from the
Donsker preservation theorem that the class of uniformly bounded functions
I

(jk)
1 for ‖β − β0‖ ≤ M , ‖ϕ− ϕ0‖L2(μ) ≤ M , ‖ϕ‖∞ ≤ M , J(ϕ) ≤ M , hl ∈ Sn,

and ‖hl − h∗
l ‖∞ ≤ M , for l = j, k, with ‖ · ‖∞ is a Donsker class, and hence a

Glivenko-Cantelli class. Thus, it results from Glivenko-Cantelli Theorem along
with Theorem 2 and Lemma 4 that (Pn−P )Î (jk)

1 = op(1). Further, combining
the continuous mapping Theorem and dominated convergence Theorem with
the consistency of τ̂ and ĥ∗

l yields EÎ
(jk)

1 = EI
(jk)
1,0 + op(1), where I

(jk)
10

denotes I
(jk)
1 evaluated at τ = τ0 and hl = h∗

l , for l = j, k. This completes the
proof of the consistency of În1.

Next we shall show that În2 = I2 + op(1). Write {Zl − ĥ∗
l (T )}ᵀΔ̂V −1 as

{Zl − h∗
l (T )}ᵀΔ0V

−1 + {(h∗
l − ĥ∗

l )(T )}ᵀΔ0V
−1

+{Zl − h∗
l (T )}ᵀ(Δ̂ − Δ0)V −1 + {(h∗

l − ĥ∗
l )(T )}ᵀ(Δ̂ − Δ0)V −1

≡ ξl1 + ξl2 + ξl3 + ξl4, l = j, k.

Then the (j, k)th element of In2 can be written as

Pn

4∑
r,s=1

ξjr (N− μ̂)⊗2
ξᵀ
ks ≡ Pn

4∑
r,s=1

δ(jk)
rs .

Let I
(jk)
2 denote (j, k)th element of I2. Observe that I

(jk)
2 = Eδ

(jk)
11 . In the

following we shall show that Pnδ
(jk)
11 = I

(jk)
2 + op(1) and Pnδ

(jk)
rs = op(1), for

r 	= 1 or s 	= 1. Define

ω(jk)
pq = λpλq

K∑
a1,a2,b1,b2=1

C
(pq)
a1a2b1b2

{
zj − h∗

j (TK,a1)
}
{N(TK,b1) − μb1}

{zk − h∗
k(TK,a2)} {N(TK,b2) − μb2} ,
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where μb = exp{Zᵀβ + ϕ(TK,b)}, μ0a = exp{Zᵀβ0 + ϕ0(TK,a)}, and C
(pq)
a1a2b1b2

= cpa1cpb1cqa2cqb2μ0a1μ0a2 , for a = a1, a2 and b = b1, b2. Let ω̂
(jk)
pq denote ω

(jk)
pq

evaluated at τ = τ̂ . Observe that
∑K

p,q=1 ω̂
(jk)
pq = ξj1 (N− μ̂)⊗2

ξᵀ
k1. As discussed

above, for any ε > 0, the bracketing entropy of the class of uniformly bounded
functions m(t) = exp{Zᵀβ + ϕ(t)} for ‖β − β0‖ ≤ M , ‖ϕ − ϕ0‖L2(μ) ≤ M ,
‖ϕ‖∞ ≤ M , and J(ϕ) ≤ M with ‖ · ‖∞ is bounded by C1(1/ε)1/m, i.e., there
exists m(r)(t) = exp{Zᵀβ(r) + ϕ(r)(t)} for 1 ≤ r ≤ exp{C1(1/ε)1/m such that
‖m(r) −m‖∞ ≤ C2ε, for some constants C1, C2 > 0. Let μ(r)

K,j and ω
(jk,r)
pq denote

μK,j and ω
(jk)
pq evaluated at β = β(r) and ϕ(·) = ϕ(r)(·), respectively. Combing

the sub-Gaussian condition of N(·) with the uniformly bounded conditions of
K, Z, and the eigen values of V along with ‖h∗

l ‖∞ ≤ M for l = j, k yields

E
{
ω(jk,r)
pq − ω(jk)

pq

}2
≤ C3E

K∑
b1,b2=1

[
{μ(r)

K,b1
− μK,b1}2 + {μ(r)

K,b2
− μK,b2}2

]
≤ C4ε

2,

for some constants C3, C4 > 0, which implies that the class of uniformly bounded
functions

∑K
p,q=1 ω

(jk)
pq for ‖β − β0‖ ≤ M , ‖ϕ−ϕ0‖L2(μ) ≤ M , ‖ϕ‖∞ ≤ M , and

J(ϕ) ≤ M is a Donsker class, and hence is a Glivenko-Cantelli class. Therefore,
it concludes from the Glivenko-Cantelli theorem and Theorem 2 that (Pn −
P )
∑K

p,q=1 ω̂
(jk)
pq = op(1). Further, applying the continuous mapping theorem

and dominated convergence theorem together with the sub-Gaussian condition
of N(·) and the consistency of τ̂ yields that E

∑K
p,q=1 ω̂

(jk)
pq = I

(jk)
2 + op(1).

Thus,

Pnδ
(jk)
11 = Pn

K∑
p,q=1

ω̂(jk)
pq = I

(jk)
2 + op(1).

Next, let

ζ(jk)
pq = λpλq

K∑
a1,a2,b1,b2=1

C
(pq)
a1a2b1b2

(h− h∗
j )(TK,a1) {N(TK,b1) − μb1}

{zk − h∗
k(TK,a2)} {N(TK,b2) − μb2} .

Let ζ̂
(jk)
pq denote ζ

(jk)
pq evaluated at τ = τ̂ and h(·) = ĥ∗

j (·). Observe that
ξj2 (N− μ̂)⊗2

ξᵀ
k1 =

∑K
p,q=1 ζ̂

(jk)
pq . As discussed above, there exists m(r)(t) =

exp{Zᵀβ(r)+ϕ(r)(t)} such that ‖m(r)−m‖∞ ≤ C6ε, for 1 ≤ r ≤ exp{C5(1/ε)1/m}
and some constants C5, C6 > 0. Further, in view of Example 19.10 of van
der Vaart [33], the bracketing entropy of the class of functions h − h∗

j for
‖h‖∞ ≤ M and J(h) ≤ M with ‖ · ‖∞ is C7(1/ε)1/m, i.e., there exists h(s)

for 1 ≤ s ≤ exp{C7(1/ε)1/m} such that ‖h− h(s)‖∞ ≤ C8ε, for some constants
C7, C8 > 0. Notice that both m(r)(·) and h(s)(·) are uniformly bounded. Con-
struct ζ

(jk,rs)
pq as ζ

(jk)
pq evaluated at β = β(r), ϕ(·) = ϕ(r)(·), and h(·) = h(s)(·).
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In view of the sub-Gaussian condition of N(·) and the uniformly bounded con-
ditions of K, Z, and the eigen values of V together with ‖hj‖∞ ≤ M , we have
E{ζ(jk,rs)

pq − ζ
(jk)
pq }2 ≤ C9ε

2, for some constant C9 > 0, which implies that the
class of functions

∑K
p,q=1 ζ

(jk)
pq for ‖β−β0‖ ≤ M , ‖ϕ−ϕ0‖L2(μ) ≤ M , ‖ϕ‖∞ ≤ M ,

J(ϕ) ≤ M , h ∈ Sn, ‖h‖∞ ≤ M , and J(h) ≤ M with ‖·‖∞ is a Donsker class, and
hence a Glivenko-Cantelli class. It follows from Theorem 2 and Lemma 4 along
with Glivenko-Cantelli theorem that (Pn − P )

∑K
p,q=1 ζ̂

(jk)
pq = op(1). Further,

applying the continuous mapping theorem and dominated convergence theorem
along with the sub-Gaussian condition of N(·) and the consistency of τ̂ and ĥ∗

j (·)
yields that E

{∑K
p,q=1 ζ̂

(jk)
pq

}
= op(1). Therefore, Pn

{∑K
p,q=1 ζ̂

(jk)
pq

}
= op(1).

Similarly, we can show that for r 	= 1 or s 	= 1, Pn

{
ξjr(N− μ̂)⊗2ξᵀ

ks

}
= op(1).

Hence, Pn

{∑4
r,s=1 δ

(jk)
rs

}
= I

(jk)
2 + op(1). The consistency of În2 follows.
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