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Abstract: Individualized treatment rules (ITRs) have been widely applied
in many fields such as precision medicine and personalized marketing. Be-
yond the extensive studies on ITR for binary or multiple treatments, there
is considerable interest in applying combination treatments. This paper
introduces a novel ITR estimation method for combination treatments in-
corporating interaction effects among treatments. Specifically, we propose
the generalized ψ-loss as a non-convex surrogate in the residual weighted
learning framework, offering desirable statistical and computational prop-
erties. Statistically, the minimizer of the proposed surrogate loss is Fisher-
consistent with the optimal decision rules, incorporating interaction effects
at any intensity level – a significant improvement over existing methods.
Computationally, the proposed method applies the difference-of-convex al-
gorithm for efficient computation. Through simulation studies and real-
world data applications, we demonstrate the superior performance of the
proposed method in recommending combination treatments.
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1. Introduction

The individualized treatment rule (ITR) in precision medicine has been widely
applicable in recommending tailored treatment for each individual. Unlike the
traditional one-size-fits-all strategy, ITR aims to account for subject hetero-
geneity to achieve personalization. While existing ITR methods mainly focus on
choosing one of two or more treatments, combination treatments have emerged
as a promising strategy to achieve better outcomes including enhanced efficacy
and resistance prevention [26, 24, 13, 22]. Furthermore, combination treatments
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have also been applied in personalized marketing, where a mix of promotional
strategies are tailored to diverse customer groups. In summary, developing ITR
methods for combination treatments is of great interest not only in precision
medicine and personalized marketing, but also potentially in many other fields.

The existing literature on ITR estimation can be broadly summarized into
two categories. The first of these categories is the indirect approach, including
the well-known Q-learning [29, 5], D-learning [28, 27] and A-learning [33, 20, 32].
These methods propose parametric or non-parametric models for conditional
average treatment effects to recommend preferable treatment. Another main-
stream of ITR is the direct approach, including outcome-weighted learning
[44, 46, 41, 17, 38], and residual-weighted learning [45]. These methods directly
maximize the value function with respect to the decision rules. In practice, direct
methods have demonstrated superior empirical performance, as they circumvent
model misspecification issues common to indirect approaches. In addition, their
decision rules are flexible, accommodating either parametric models (e.g., linear
decision rule [44, 41]) or nonparametric models (e.g., kernel method [44, 41],
neural network [16], and boosting [36]).

In regard to the combination treatment problem, we can apply the aforemen-
tioned multicategory ITRs to recommend the combination treatment problems,
where each combination is treated as an independent treatment. Therefore, the
correlations among combination treatments are ignored by the multicategory
ITRs. Consequently, as the number of single treatments increases, the num-
ber of combination treatments tends to increase exponentially, which leads the
model complexity of either direct or indirect approaches to explode. Given the
limited or moderate sample sizes in biomedical applications, the estimation ef-
ficiency of multicategory ITRs is severely compromised. To address this issue,
recent work [37] proposed an indirect approach which estimates the conditional
average treatment effects (CATE) with the double encoder model. This method
has been shown to achieve both empirically and theoretically efficient estimation
for combination treatments. Among the direct approaches, [16, 39] utilized the
Hamming loss in place of the 0-1 loss, treating the ITR estimation as a weighted
multi-label classification problem. Under this formulation, we only need to es-
timate the decision rules for each single treatment, which greatly reduces the
model complexity and addresses the inefficiency issue in multicategory ITRs.
However, a parsimonious model may be incapable of incorporating interaction
effects among combination treatments. Specifically, [16] could be undermined
when the interaction effects are non-negligible. Therefore, it is essential to de-
velop direct methods that offer flexible modeling and are capable of incorporat-
ing interaction effects among combination treatments.

In this paper, we introduce a novel Multi-Label Residual Weighted Learning
(MLRWL) framework for estimating the optimal ITR for combination treat-
ments. Specifically, we propose using the generalized ψ-loss as a non-convex
surrogate for the 0-1 loss in the multi-label classification problem, with the op-
timal ITR derived as the minimizer of the weighted generalized ψ-loss. The pro-
posed method has two main advantages over the Hamming hinge loss considered
in [16]. First, the generalized ψ-loss guarantees the Fisher consistency, regard-
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less of whether interaction effects are present. In particular, the minimizer of the
weighted generalized ψ-loss exhibits sign consistency with the optimal ITR, a
property that holds at any intensity level of interaction effects. This property is
especially valuable in real applications, where the intensity of interaction effects
could be unknown. Second, the generalized ψ-loss can accommodate negative or
shifted outcomes to stabilize the empirical performance. In theory, we demon-
strate that the Fisher consistency and the consistency of the proposed estimator
are preserved given negative and shifted outcome weights. In contrast, a convex
surrogate loss, such as the Hamming hinge loss, can only accommodate positive
weights to preserve its convexity, potentially limiting its applicability.

Computationally, the non-convex generalized ψ-loss can be formulated as the
difference between two convex functions. Therefore, the minimization of the
weighted generalized ψ-loss can be solved efficiently by the difference of the
convex (DC) algorithm [34] iteratively. Notably, the subproblem within each
iteration is a quadratic programming problem for both linear and nonlinear
decision rules, which can be solved by the quadratic programming solver. We
show that estimators obtained through the DC algorithm are stationary points.
Our numerical studies indicate that the proposed method achieves superior per-
formance compared with existing ITR approaches for combination treatment
problems.

The rest of the article is organized as follows. In Section 2, we introduce
the background of the ITR problem and existing works. In Section 3, we pro-
pose Multi-Label Residual Weighted Learning with the generalized ψ-loss. Al-
gorithms and implementation details for linear and nonlinear decision rules are
also illustrated. In Section 4, the theoretical properties of the generalized ψ-loss
are provided. In Sections 5 and 6, we present numerical studies to evaluate the
empirical performance of the proposed method in simulation settings and a real
application to a type-2 diabetes study.

2. Background

In this paper, we focus on estimating an individualized treatment rule (ITR)
for combination treatments using clinical experiment data. The variables of
interest are (X,A, Y ), where X ∈ X ⊂ R

p represents pre-treatment covariates,
A = (A(1), A(2), ..., A(K)) ∈ A = {−1, 1}K denotes the combination treatments
consisting of up to K single treatments, and Y ∈ R is the observed outcome.
We assume that a larger Y indicates a more desirable outcome, and use Y (A)
to represent the potential outcome [30] under the treatment assignment A.
Since only one of the potential outcomes can be observed for each subject, it is
infeasible to recommend the subject-wise optimal treatment. Instead, our goal is
to learn an ITR d(·) : X → A through maximizing the average outcome across
the population. Here, the expected potential outcome under ITR d(·) is also
termed as the value function [29] with respect to d(·):

V(d) = E[Y {d(X)}]. (1)
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To estimate the ITR d(·) from clinical experiments, we rely on the following
standard causal assumptions [8]:

(a) Stable Unit Treatment Value Assumption (SUTVA): Y = Y (A);
(b) No unmeasured confounders: A ⊥⊥ Y (a)|X for any a ∈ A;
(c) Positivity: P(A = a|X) ≥ pA > 0 for any a ∈ A, X ∈ X .
Under these causal assumptions, the optimal ITR d∗(·) satisfies

d∗(·) = arg max
d(·)

V(d) = arg max
d(·)

E

[
Y

P(A|X) I(A = d(X))
]
, (2)

where I(·) is the indicator function and P(A|X) is the propen sity score [9].
Moreover, maximizing the value function (2) is equivalent to minimizing the
following risk:

d∗(·) = arg min
d(·)

R(d) = arg min
d(·)

E

[
Y

P(A|X) I(A �= d(X))
]
, (3)

which is equivalent to a weighted classification problem, with A being the re-
sponse comprised of 2K distinct classes and weights given by Y/P(A|X). How-
ever, directly minimizing the risk (3) is an NP-hard problem due to the non-
smoothness of the indicator function I(·). More intricate than binary or multicat-
egory treatment problems, minimizing (3) for combination treatments encoun-
ters the curse of the dimensionality issue. As the number of single treatments
K grows, the number of possible combination treatments grows exponentially,
which requires a rather complex model d(·) as the decision rule. Consequently,
the estimation efficiency is undermined in combination treatment problems, es-
pecially those with a large K.

Since the combination treatment A can be considered as a K-dimensional
binary response, it is natural to approach the problem (3) from the multi-label
classification perspective [16, 35]. Each treatment A(k) can be treated as a binary
response, indicating whether the kth treatment was assigned (A(k) = 1) or not
(A(k) = −1). Therefore, we can decompose the ITR d(·) into K decision rules:
d(1)(·), ..., d(K)(·), where d(k)(·) decides whether the kth treatment should be
assigned or not. In contrast to the multicategory classification requiring 2K
decision rules, K decision rules are sufficient under the multi-label classification
framework.

There are two mainstream strategies to tackle multi-label classification in the
literature: the first strategy is the so-called binary relevance [21, 4], which treats
each label A(k) as an independent binary label and builds independent binary
classifiers for each label. In combination treatment problems, the combination
of multiple treatments could potentially induce additional interaction effects.
These effects can be either synergistic or antagonistic effects in nature. As a
result, the outcome Y is largely contingent on the holistic treatment assignment
A, rather than solely on the individual assignment A(k). Therefore, it is risky to
adopt the binary relevance strategy in combination treatment problems which
may ignore the considerable interaction effects.
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Second, it is prevalent to propose an appropriate loss function, particularly
convex surrogate losses, to replace the 0-1 loss. The convexity property promotes
an efficient computation algorithm that guarantees global optimality. However,
the improved computational efficiency may come at the cost of compromised sta-
tistical properties. For instance, [16] combines the Hamming and hinge losses as
a convex surrogate loss to tackle the combination treatment problem. However,
the minimizer of their surrogate loss does not guarantee a Fisher-consistent es-
timation of the optimal ITR d∗(·), especially when significant interaction effects
exist among treatments. In summary, it is critical to identify a suitable surro-
gate loss that guarantees sound statistical properties such as Fisher consistency
while achieving efficient computation.

3. Methodology

In Section 3.1, we introduce the proposed residual weighted learning framework
from the perspective of multi-label classification. Section 3.2 introduces the al-
gorithm and implementation details for linear and nonlinear decision rules, re-
spectively.

3.1. Multi-label residual weighted learning

In this section, we introduce a novel non-convex surrogate loss, the general-
ized ψ-loss, that targets the weighted multi-label classification to estimate the
optimal ITR for combination treatments.

Specifically, the generalized ψ-loss associated risk, named as ψ-risk, is defined
as follows:

Rψ(f) = E

[
Y

P(A|X)ψ(Z(1), ..., Z(K))
]

= E

[
Y

P(A|X){T1(Z(1), ..., Z(K)) − T0(Z(1), ..., Z(K))}
]
,

(4)

where f(·) = (f (1)(·), ..., f (K)(·)) and f (k)(·) : X → R to represent the de-
cision function for the kth treatment, and the kth decision rule is followed
by d(k)(X) = sign(f (k)(X)). The intermediate variables Z(k)’s are defined as
Z(k) = A(k)f (k)(X), where Z(k) > 0 indicates that the kth label A(k) is cor-
rectly classified, and Z(k) ≤ 0 signifies misclassification.

The proposed generalized ψ-loss is denoted as ψ(. . .), composed of two parts
with the same form Ts(Z(1), ..., Z(K)) = max(s − Z(1), ..., s − Z(K), 0) for s =
0, 1. This loss is a generalization of the ψ-loss [18] which targets the binary or
multicategory classification. The first term, T1(Z(1), ..., Z(K)), is an extension of
the hinge loss to multi-label settings, which can be also formulated as follows:

T1(Z(1), . . . , Z(K)) = max(1 − Z(1), . . . , 1 − Z(K), 0)

= max
k

{
max(1 − Z(k), 0)

}
,
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Fig 1. Illustration and comparison of the generalized hinge loss and the generalized ψ-loss in
the 2-label classification scenario.

which characterizes the largest hinge loss over all labels. We also term T1(. . .)
as the generalized hinge loss for (weighted) multi-label classification, which is
a convex surrogate loss of the 0-1 loss. The second term has the same shape
as T1(. . .) but passes through the origin. Subtracting T0(. . .) from T1(. . .) is
equivalent to truncating the generalized hinge loss T1(. . .) at 1 if Z(k) ≥ 0 for
any k ∈ {1, ...,K}. A visual comparison of the generalized hinge loss and the
generalized ψ-loss in 2-label scenarios is shown in Figure 1.

As shown in Figure 1, the generalized ψ− loss ψ(Z(1), ..., Z(K)) = 0 if and
only if Z(k) > 1 for all k = 1, ...,K; conversely, ψ(Z(1), ..., Z(K)) = 1 if any one of
the Z(k)’s is negative. In other words, the generalized ψ− loss is minimized only
if all the decision functions f (k)(·)’s perfectly assign the observed treatments:

|f (k)(X)| > 1 and sign(f (k)(X)) = A(k) for all k = 1, ...,K.

In order to minimize the ψ− risk (4), ψ(Z(1), ..., Z(K)) is expected to be min-
imal for large weights Y

P(A|X) , and the decision functions f (k)(·)’s are expected
to align with the associated treatment assignment A. Therefore, the overall
treatment effects of the combination treatments, including treatment effects of
single treatments and the induced interaction effects, affect the decision rules
simultaneously. This property indeed guarantees the Fisher consistency of the
proposed method, irrespective of the intensity of interaction effects. In contrast,
each single treatment contributes to the Hamming hinge loss [16], leading the
decision rules to rely more on the treatment effects of single treatments, so
the Fisher consistency of their method is only achieved with minor interaction
effects.
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3.1.1. Outcome shift

A significant drawback of the outcome-weighted learning framework [44, 16] is
that the value of Y must be positive to preserve the convexity of the surro-
gate loss function. Empirically, it is possible to shift the outcome so that the
assumption is satisfied; however, the shift of the outcome may impact the em-
pirical performance of the algorithm. We refer readers to [45] for a detailed
discussion about this potential issue.

The proposed generalized ψ-loss is also sensitive to the shift of the outcome
Y , and the impact of the outcome shift for the combination treatment problems
is rather significant. Specifically, the minimizer of the ψ-risk under outcome
weights and the minimizer of the ψ-risk under shifted outcome weights Y −
g(X)’s are not necessarily equivalent, because: Rψ(f) �= Rψ,g(f) + constant
where Rψ,g(f) is defined as follows:

Rψ,g(f) = E

[
Y − g(X)
P(A|X) ψ(Z(1), ..., Z(K))

]
, (5)

where g(X) is a measurable function. Therefore, minimizing the ψ-risk given the
shifted outcome weights Y − g(X) might result in decision rules other than the
optimal decision rules derived from (4). Therefore, selecting an appropriate shift
is crucial for maintaining statistical consistency and optimality of the decision
rules.

In this work, we employ the treatment-free effects g(X) = 1
|A|

∑
E[Y |X,A]

as a functional shift, and the inverse probability weighted residual Y−g(X)
P(A|X) is

regarded as the weight in the multi-label classification. There are two main
reasons for choosing g(X) as the treatment-free effects: First, it does not change
the relative orders of the conditional average treatment effects over all possible
treatments:

E[Y |X,A = a] − E[Y |X,A = a′]
=E[Y − g(X)|X,A = a] − E[Y − g(X)|X,A = a′], for all a,a′ ∈ A,

which is a sufficient condition to guarantee the Fisher consistency property,
which will be elaborated in Section 4. Second, it leads to a straightforward
interpretation: for treatments associated with above-average treatment effects,
the decision rules are expected to match these treatments; for the treatment
associated with below-average treatment effects, the decision rules are instead
encouraged to deviate from these treatments.

Empirically, given the i.i.d samples (xi,ai, yi)ni=1, we can estimate the ITR
by minimizing

min
f(1),...,f(K)

n∑
i=1

yi − g(xi)
P(ai|xi)

ψ(z(1)
i , ..., z

(K)
i ) + Pλ(f), (6)

where g(·) is the treatment-free effects, P(·|·) is the propensity score in the
clinical trial experiment. In observational study, both treatment-free effects and
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true propensity scores are unknown to us, so working models of g(x) and P(a|x)
are needed. In Appendix A.8, we discuss the estimation of working models which
can be plugged into (6) to estimate decision rules. The penalty function Pλ(f)
determines the function space of f and controls its complexity. More detailed
discuss of model specification is introduced in Section 3.2. Once we obtain the
estimated f̂ (1), ..., f̂ (K), the estimated ITR d̂ is given by:

d̂(k)(x) = sign(f̂ (k)(x)).

3.2. Algorithm and implementation

In this section, we introduce the algorithm and implementation details of the
proposed method, under both the linear and nonlinear decision rules, respec-
tively. Since the generalized ψ-loss is a non-convex surrogate loss, commonly
adopted convex algorithms are not applicable. Nevertheless, the generalized ψ-
loss enables a decomposition which can be represented as the difference of two
convex functions, in which the difference of the convex algorithm [25, 34] is
applicable for efficient computation.

Suppose the decision functions f (1), ..., f (K) are parameterized by βk’s re-
spectively. Then the empirical loss (6) can be reformulated as

L(β) =
n∑

i=1
wi

{
T1(β;xi,ai) − T0(β;xi,ai)

}
+ λ

2

K∑
k=1

P(βk)

= λ

2

K∑
k=1

P(βk) +
n∑

i=1
|wi|

{
T1(β;xi,ai)I(wi ≥ 0) + T0(β;xi,ai)I(wi < 0)

}
︸ ︷︷ ︸

Convex part:Lcvx

+
n∑

i=1
−|wi|

{
T1(β;xi,ai)I(wi < 0) + T0(β;xi,ai)I(wi ≥ 0)

}
︸ ︷︷ ︸

Concave part:Lcave

,

(7)

where β = (β1, ...,βK) is the collection of parameters of the decision functions,
and the weight yi−m̂(xi)

P̂(ai|xi)
is denoted as wi for ease of notation. The penalty

function P(βk) is a convex penalty function associated with the type of the
decision rule, and λ serves as the tuning parameter for the penalty.

Since the loss function L(β) can be decomposed into two parts, Lcvx(β)
and Lcave(β), we can employ the difference of the convex algorithm [25, 34] to
obtain the estimation of β. Specifically, at the t th iteration, the subproblem is
minimizing a linear minorization [19] of the loss function L(β):

β(t) = arg min
β

Lcvx(β)+ < ∇βLcave(β(t−1)),β − β(t−1) >,
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Algorithm 1 Difference of convex algorithm for minimizing L(β)
Initialize β(0), set maximum iteration T
for t = 1, 2, ..., T do

Compute the subgradients ∇βLcave(β(t−1))
Update β(t) by solving the convex optimization problem:

minLcvx(β)+ < ∇βLcave(β(t−1)),β − β(t−1) >
end for
Output β(t) if

∑K
k=1‖β

(t)
k − β

(t−1)
k ‖2 ≤ ε; where ε is a pre-specified threshold; Otherwise,

output β(T )

where ∇βLcave(β(t−1)) is the sub-gradient of Lcave(β) at the iterated β(t−1),
and < ·, · > denotes the inner product. The algorithm for minimizing L(β) is
summarized as follows:

The above algorithm guarantees that the convergent point obtained from the
iterations is the stationary point of L(β) if the initial value β satisfies certain
conditions, the detailed result and conditions can be found in the Appendix A.3.

In order to minimize (7), which includes complex max operator and indica-
tor functions, we introduce the slack variables ηi’s to convert the T1(β;xi,ai)
and T0(β;xi,ai) into linear constraints, then the convex optimization problem
within each iteration of Algorithm 1 is equivalent to the following problem:

min
β

K∑
k=1

P(βk) + γ

n∑
i=1

|wi|ηi + γ

K∑
k=1

< ∇βk
Lcave(β̂

(t−1)
),βk >

s.t. ηi ≥ I(wi > 0) − a
(k)
i f (k)(xi), for any k = 1, ...,K

ηi ≥ 0;

(8)

where γ is a constant depending on λ, and ∇βk
Lcave(β) is the subgradient of

the concave part Lcave with respect to βk:

∇βk
Lcave(β) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 I(wi ≥ 0)|wi|∇βk

f (k)(xi),
if k = arg maxl{−a

(l)
i f (l)(xi)} and 1 − a

(k)
i f (k)(xi) > 0,∑n

i=1 I(wi < 0)|wi|∇βk
f (k)(xi),

if k = arg maxl{−a
(l)
i f (l)(xi)} and − a

(k)
i f (k)(xi) > 0,

0, otherwise.
(9)

In the following, we provide the implementation details for linear decision
rules in Section 3.2.1, and then generalize it to the nonlinear decision rules in
Section 3.2.2.

3.2.1. Linear decision rule for optimal ITR

Consider the linear decision rules f (k)(x) as follows:

f (k)(x) = β0k + xTβ1k,
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where β1k ∈ R
p and β0k ∈ R. Then the associated ITR d(·) assigns a subject

with x to the kth treatment if β0k + xTβ1k > 0 and does not assign the kth
treatment otherwise. For the linear decision functions, we define the penalty
function as the Euclidean norm P(βk) = ‖β1k‖2

2. Then, the convex program-
ming problem (8) can be rewritten as

min
β

1
2

K∑
k=1

‖β1k‖2
2 + γ

n∑
i=1

|wi|ηi + γ

K∑
k=1

< ∇β1kLcave(β̂
(t−1)

),β1k > +

γ

K∑
k=1

∇β0kLcave(β̂
(t−1)

)β0k

s.t. ηi ≥ I(wi > 0) − a
(k)
i (β0k + xT

i β1k), for any k = 1, ...,K
ηi ≥ 0,

(10)

which is a quadratic programming with decision function parameters β1k’s,
β0k’s and slack variables ηi’s, where ηi’s are associated with individual-wise
linear constraints. In the scenarios with large sample size n and relatively small
dimension of covariates p, it is computationally efficient to solve the primal form
(10) directly. Otherwise, it is preferable to solve the dual form by introducing the
Lagrange multipliers θik’s. Specifically, the dual form of (10) can be formulated
as follows:

min
λ

1
2

K∑
k=1

n∑
i=1

n∑
j=1

θikθjka
(k)
i a

(k)
j xT

i xj − γ

K∑
k=1

n∑
i=1

θika
(k)
i xT

i ∇β1kLcave(β̂
(t−1)

)−

K∑
k=1

n∑
i=1

θikI(wi ≥ 0)

s.t.

K∑
k=1

θik ≤ γ|wi|, γ∇β0kLcave(β̂
(t−1)

) =
n∑

i=1
θikaik, θik ≥ 0,

(11)

which can be solved by quadratic programming solvers such as Gurobi [6]. Given
the estimated θik’s, we can derive the estimated β1k’s and β0k’s, where the
detailed derivations are provided in the Appendix A.1.

3.2.2. Nonlinear decision rule for optimal ITR

In the following, we consider the nonlinear decision functions as follows:

f (k)(x) = β0k +
n∑

i=1
K(x,xi)βik,

where K(·, ·) is a valid kernel function associated with a reproducing kernel
Hilbert space HK. Therefore, f (k)(x) can represent nonlinear functions embed-
ded by HK with a shift β0k. The norm in HK, denoted as ‖·‖K, is induced by
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the inner product:

< f, g >K=
n∑

i=1

m∑
j=1

αiβjK(xi,xj),

for f(·) =
∑n

i=1 αiK(xi, ·) and g(·) =
∑m

j=1 βjK(xj , ·). When we plug f (k)(x)
into (8), the convex programming in the t-th iteration is formulated as follows:

min
β

1
2

K∑
k=1

n∑
i=1

n∑
j=1

βikβjkK(xi,xj) + γ

n∑
i=1

|wi|ηi +

γ

K∑
k=1

n∑
i=0

< ∇βik
Lcave(β̂

(t−1)
), βik >

s.t. ηi ≥ I(wi > 0) − a
(k)
i (β0k +

n∑
j=1

K(xj ,xi)βjk), for any k = 1, ...,K

ηi ≥ 0. (12)

Even though the f (k)(x) belongs to an infinite-dimensional space, it is compu-
tationally efficient to consider the dual form of the problem, which is also called
the kernel trick [7]. After the Lagrange multipliers θik’s are introduced, the dual
form is formulated as follows:

min
λ

1
2

K∑
k=1

n∑
i=1

n∑
j=1

θikθjka
(k)
i a

(k)
j K(xi,xj) − γ

K∑
k=1

n∑
i=1

θika
(k)
i ∇βk

Lcave(β̂
(t−1)

)−

K∑
k=1

n∑
i=1

θikI(wi ≥ 0)

s.t.

K∑
k=1

θik ≤ γ|wi|, γ∇β0kLcave(β̂
(t−1)

) =
n∑

i=1
θika

(k)
i , θik ≥ 0,

(13)

which can also be solved by quadratic programming solvers.

4. Theoretical properties

In this section, we develop the theoretical properties of the estimated ITR un-
der the weighted multi-label classification framework. Particularly, we establish
the Fisher consistency under the proposed generalized ψ-risk, to guarantee that
the optimizer of the ψ-risk is theoretically optimal. Furthermore, we also es-
tablish the excess risk bound and the consistency of the estimator within the
reproducing kernel Hilbert space.

First, we establish the Fisher consistency under the outcome weighted learn-
ing framework. Specifically, the following result holds:
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Lemma 4.1. For any measurable function f : X → R
K , if f̂ minimizes the

ψ-risk Rψ(f), then d∗(x) = sign(f̂(x)), where d∗(·) is the optimal ITR given in
(3).

Lemma 4.1 provides the validity of using the generalized ψ-loss as the sur-
rogate loss in the outcome weighted learning framework to estimate the opti-
mal ITR. More importantly, there is no requirement for the intensity of the
interaction effects among combination treatments as in [16], which is an ad-
vantage in estimating the ITR for combination treatments. As we emphasized
in Section 3.1, ψ-loss can incorporate interaction effects of any intensity, and
guarantees the above property.

In the following, we show that the Fisher consistency holds under the residual
weighted learning framework:

Theorem 4.2. For g(X) = 1
|A|

∑
A∈A E[Y |X,A], the minimizer f̂ of the sur-

rogate risk Rψ,g(f) satisfies that sign(f̂(x)) = d∗(x) where d∗(x) is the optimal
ITR as in Lemma 4.1.

Theorem 4.2 guarantees that the generalized ψ-loss is a valid surrogate loss in
the sense of Fisher consistency. As we mentioned in Section 3.1.1, an arbitrary
choice of g(X) may violate the Fisher consistency. Our choice of treatment-free
effects retains the relative order of the CATE among all treatments so that
Fisher consistency is also guaranteed. The detailed proofs of Lemma 1 and
Theorem 1 are provided in Appendix A.4 and A.5.

Next, we establish the relationship between the excess risk under the proposed
generalized ψ-loss and the 0-1 loss.

Theorem 4.3. For f = (f (1), ..., f (K)) and any measurable f (k) : X → R, and
any probability distribution for (X,A, Y ), we have

R{sign(f)} −R∗ ≤ Rψ,g(f) −R∗
ψ,g, (14)

where the Rψ,g denotes the risk Rψ,g with g(·) as treatment-free effects.

Theorem 4.3 shows that the excess risk of any measurable decision functions
f under the 0-1 loss is no larger than the excess risk under the ψ-risk. This
suggests that if we estimate the ITR by minimizing Rψ,g(f), the risk of the
minimizer f̂ is close to the Bayes risk.

However, the above theoretical analyses are all based on the population-level
probability of (X,A, Y ). In practice, we are concerned more about the estima-
tor obtained from the empirical distribution. In the following, we establish the
consistency of the proposed estimator f̂n learned from the empirical distribution
with sample size n.

Theorem 4.4. Suppose the penalty coefficient λ in the primal form (7) satisfies
λ → 0 and nλ → ∞. The weights |Y−g(X)|

P(A|X) ’s are assumed to be upper bounded
by some positive constant M almost surely. Then for any distribution P for
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(X,A, Y ), we have

P

{
lim
n→∞

Rψ,g(f̂n) = inf
f∈HK+{1}

Rψ,g(f)
}

= 1, (15)

where f̂n is the minimizer of the empirical loss (6) with sample size n, and
HK + {1} denotes the shifted reproducing kernel Hilbert space we considered in
Section 3.2.2.

Theorem 4.4 claims that the risk of the proposed estimator obtained by min-
imizing the empirical risk (6) can converge in probability to the minimal of the
population risk as sample size increases. In other words, the proposed estimator
is consistent corresponding to the optimal decision rules for the combination
treatments. In addition, Theorem 4.4 also holds for linear decision rules with
a pre-specified linear kernel K(·, ·). The technical details of the proof are pro-
vided in Appendix A.7. Furthermore, we provide the extension of Theorem 4.4
to observational study in Appendix A.9.

5. Numerical studies

In this section, we assess the performance of the proposed method through
simulation studies which mimic real-world scenarios. In these simulations, we
consider the treatment effects with varying complexities, while interaction effects
of different intensities are included in all settings.

The simulation settings are conducted under different sample sizes (n = 400,
800, 2000). The pre-treatment covariates X ∈ R

10 are sampled uniformly from
the interval (−1, 1). In all designed simulation studies, combination treatments
A are uniformly randomly assigned. We consider three data generation pro-
cesses. In the first two settings, two treatments are considered (K = 2), result-
ing in four possible combination treatments with different treatment effects. In
the third setting, three treatments are considered (K = 3), corresponding to a
total of eight possible combinations, with more complex treatment effects in-
volving non-linear combinations of the covariates. The detailed treatment effects
specifications are described as follows:

Simulation setting 1:
τ(−1,−1)(X) = 0; τ(−1,1)(X) = 6 · I(X1 + X2 > 0) · I(−X1 + X2 < 0);
τ(1,−1)(X) = 5 · I(X1 + X2 < 0) · I(−X1 + X2 < 0);
τ(1,1)(X) = 3 · I(X1 + X2 > 0) · I(−X1 + X2 > 0).

Simulation setting 2:
τ(−1,−1)(X) = (X1 + X2)2; τ(−1,1)(X) = X2

2 + X3X4;
τ(1,−1)(X) = −X3X4; τ(1,1)(X) = X2

2 + 3X5X6.
Simulation setting 3:

τ(−1,−1,−1)(X) = 0; τ(−1,−1,1)(X) = 2(X1 + exp(X2));
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Fig 2. Interaction effects induced by the combination of two single treatments in different
quadrants.

τ(−1,1,−1)(X) = X3 + (X4 + X5)2;
τ(−1,1,1)(X) = 2(X1 + exp(X2)) +X3 + (X4 +X5)2 + log((X5 + 1)2);
τ(1,−1,−1)(X) = exp(X6 + X7);
τ(1,−1,1)(X) = exp(X6 + X7) + 2(X1 + exp(X2)) + X8 + X9 + X10;
τ(1,1,−1)(X) = exp(X6 + X7) + X3 + (X4 + X5)2;
τ(1,1,1)(X) = exp(X6 +X7) +X3 + (X4 +X5)2 + 2(X1 + exp(X2)) +
(X1 −X5 + X6)2.

After generating the treatment effects, we design the outcome of interest Y
as follows:

Y = g(X) + τA(X) + ε, g(X) = 1 + X1 + 2X2, ε ∼ N(0, 0.3),

where g(X) is the treatment-free effects, and ε is the random noise. It is note-
worthy that interaction effects among combination treatments are designed in
all of the above simulation settings. Specifically, in simulation setting 1, we
split a two-dimensional plane into four quadrants. Except for the quadrant
I(X1 + X2 < 0,−X1 + X2 > 0), the combination of two treatments induces
either positive or negative interaction effects in the other three quadrants as
shown in Figure 2. In simulation settings 2 and 3, the interaction effects are
polynomials and nonlinear functions of the pre-treatment covariates X, respec-
tively. Additionally, the true decision rules are linear in simulation setting 1,
and nonlinear in simulation settings 2 and 3.

We compare our method with several existing methods which estimate the
optimal ITR for combination treatments or multicategory treatments: the out-
come weighted learning with deep learning (OWL-DL, [16]), the L1 penalized
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Table 1

Simulation studies: mean and standard error of the value function under the proposed
method with linear and nonlinear decision rules, and five competing methods: the outcome

weighted learning with deep learning (OWL-DL, [16]), the L1 penalized least square
(L1-PLS, [29]), the outcome weighted learning with multinomial deviance (OWL-MD, [10]),

and the multicategory outcome weighted learning with linear and kernel functions
(MOWL-Linear and MOWL-Kernel, [41]).

Setting Method 400 800 2000

1

MLRWL-Linear 4.104(0.092) 4.179(0.076) 4.238(0.077)
MLRWL-Kernel 4.022(0.094) 4.156(0.073) 4.226(0.074)

OWL-DL 3.579(0.171) 3.871(0.114) 4.073(0.067)
L1-PLS 3.901(0.098) 4.052(0.081) 4.143(0.068)

OWL-MD 3.772(0.119) 3.944(0.108) 4.035(0.110)
MOWL-Linear 3.404(0.236) 3.571(0.189) 3.678(0.167)
MOWL-Kernel 2.835(0.273) 3.026(0.251) 3.329(0.208)

2

MLRWL-Linear 1.369(0.034) 1.372(0.032) 1.375(0.022)
MLRWL-Kernel 1.700(0.047) 1.810(0.045) 1.923(0.046)

OWL-DL 1.451(0.060) 1.472(0.051) 1.499(0.042)
L1-PLS 1.371(0.062) 1.364(0.051) 1.377(0.044)

OWL-MD 1.556(0.058) 1.591(0.056) 1.613(0.050)
MOWL-Linear 1.553(0.074) 1.578(0.054) 1.589(0.037)
MOWL-Kernel 1.641(0.063) 1.668(0.041) 1.681(0.028)

3

MLRWL-Linear 5.664(0.426) 6.000(0.418) 6.267(0.247)
MLRWL-Kernel 6.328(0.349) 6.415(0.100) 6.416(0.097)

OWL-DL 5.524(0.239) 5.861(0.198) 6.148(0.152)
L1-PLS 4.941(0.264) 5.047(0.205) 5.090(0.040)

OWL-MD 5.924(0.189) 6.125(0.152) 6.295(0.110)
MOWL-Linear 6.105(0.340) 6.286(0.196) 6.374(0.116)
MOWL-Kernel 6.269(0.432) 6.375(0.200) 6.399(0.101)

least square (L1-PLS, [29]), the outcome weighted learning with multinomial
deviance (OWL-MD, [10]), and the multicategory outcome weighted learning
with linear and kernel functions (MOWL-Linear and MOWL-Kernel, [41]). For
the last four competing methods, we first convert the combination treatments
into categorical treatments and apply those methods to estimate the ITR.

All of the above simulation experiments are repeated 100 times, and the
empirical performance is evaluated by the prediction accuracy, which is de-
fined as 1

n

∑n
i=1 I(A

opt
i = d̂(Xi)), where Aopt

i is the optimal treatment assign-
ment for the ith subject derived from the data generation process. We also
compute the empirical value function [29], measured by an estimator V(d̂) =∑n

i=1 YiI(Ai=d̂(Xi))∑n
i=1 I(Ai=d̂(Xi))

to assess the performance even when the optimal treatment
assignments are unknown.

The results of the simulation studies are presented in Tables 1 and 2, which
demonstrates the effectiveness of our proposed method in estimating the optimal
ITR for combination treatments. Our approach consistently outperformed com-
peting methods in terms of optimal treatment assignment accuracy and value
function across various settings, particularly considering the interaction effects
of combination treatments. In simulation setting 1, the proposed method with
linear decision rules improves the optimal treatment assignment accuracy by
13.2% to 34.0% compared with competing methods given 2000 samples. Even
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Table 2

Simulation studies: mean and standard error of the accuracy under the proposed method
with linear and nonlinear decision rules, and five competing methods: the outcome weighted
learning with deep learning (OWL-DL, [16]), the L1 penalized least square (L1-PLS, [29]),

the outcome weighted learning with multinomial deviance (OWL-MD, [10]), and the
multicategory outcome weighted learning with linear and kernel functions (MOWL-Linear

and MOWL-Kernel, [41]).

Setting Method 400 800 2000

1

MLRWL-Linear 0.797(0.033) 0.853(0.022) 0.884(0.012)
MLRWL-Kernel 0.664(0.042) 0.744(0.023) 0.797(0.015)

OWL-DL 0.534(0.037) 0.581(0.029) 0.625(0.022)
L1-PLS 0.669(0.019) 0.699(0.015) 0.717(0.012)

OWL-MD 0.640(0.027) 0.674(0.023) 0.690(0.025)
MOWL-Linear 0.552(0.051) 0.591(0.039) 0.611(0.034)
MOWL-Kernel 0.421(0.045) 0.456(0.042) 0.509(0.036)

2

MLRWL-Linear 0.262(0.015) 0.267(0.011) 0.272(0.009)
MLRWL-Kernel 0.452(0.027) 0.539(0.025) 0.638(0.013)

OWL-DL 0.302(0.030) 0.313(0.026) 0.331(0.021)
L1-PLS 0.278(0.026) 0.276(0.025) 0.279(0.023)

OWL-MD 0.353(0.027) 0.365(0.020) 0.377(0.017)
MOWL-Linear 0.342(0.031) 0.350(0.054) 0.362(0.027)
MOWL-Kernel 0.385(0.025) 0.398(0.023) 0.402(0.019)

3

MLRWL-Linear 0.584(0.082) 0.647(0.086) 0.708(0.053)
MLRWL-Kernel 0.717(0.114) 0.745(0.003) 0.746(0.003)

OWL-DL 0.455(0.064) 0.543(0.062) 0.635(0.052)
L1-PLS 0.272(0.055) 0.257(0.045) 0.237(0.040)

OWL-MD 0.584(0.063) 0.648(0.052) 0.718(0.025)
MOWL-Linear 0.649(0.114) 0.709(0.056) 0.739(0.017)
MOWL-Kernel 0.705(0.142) 0.737(0.063) 0.746(0.005)

though the true decision rules are linear, the proposed method with nonlinear
decision rules still achieves comparable accuracy and value function. In simu-
lation settings 2 and 3, given that the true decision rules are nonlinear, the
proposed method with nonlinear decision rules achieves the best performance.
In particular, it improves the optimal treatment assignment accuracy by 27.1%
to 39.4% in setting 2, and 4.1% to 53.0% in setting 3, respectively.

6. Real data application

In this section, we apply our method to recommend the optimal combination
treatments for type-2 diabetes patients. The dataset is from Electronic Health
Record (EHR) data accessible from the Clinical Practice Research Datalink 1.
In this study, type-2 diabetes patients were recruited from 2015 to 2018. Each
subject was followed for 6 months, and the effectiveness of their assigned treat-
ments was measured. There are four candidates for single treatments: dipeptidyl
peptidase-4 (DPP4), sulfonylurea (SU), metformin (Met), and thiazolidinedione
(TZD), which induces 16 combination treatments in total. In the past decade,
researchers have investigated the combination treatments for type-2 diabetes

1https://cprd.com

https://cprd.com
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Table 3

Real data application: mean and standard error of the value function using the proposed
method with linear and nonlinear decision rules, and five competing methods: the outcome

weighted learning with deep learning (OWL-DL, 16), the L1 penalized least square (L1-PLS,
29), the outcome weighted learning with multinomial deviance (OWL-MD, 10), the

multicategory outcome weighted learning with linear and kernel functions (MOWL-Linear
and MOWL-Kernel, 41).

Method Value
MLRWL-Linear 2.615(0.403)
MLRWL-Kernel 2.645(0.339)

OWL-DL 2.534(0.482)
L1-PLS 1.780(1.801)

OWL-MD 2.349(0.704)
MOWL-Linear 2.263(0.793)
MOWL-Kernel 2.548(1.210)

patients [31, 1, 23], and interaction effects among these treatments are evalu-
ated. For example, [31] suggest that SU combined with DDP4 induces a higher
risk of hypoglycemia compared with using the SU treatment alone. Therefore,
it is essential to consider interaction effects in assessing the optimal ITR for
type-2 diabetes patients.

In this dataset, 21 pre-treatment covariates were collected, including subjects’
demographic information (e.g., age, BMI, gender, weight, height), diabetes-
related health index (e.g., high-density lipoprotein, low-density lipoprotein, hema-
tocrit), and medical history (e.g., congestive heart failure, stroke, hypertension).
We use all these covariates except for the lower extremity arteries (LEA) to con-
trol for potential confounding, as the LEA value is the same for all subjects.
The primary index to measure the effectiveness of treatment is the A1C, which
measures average blood glucose levels [12]. The normal A1C level is below 5.7%,
and type-2 diabetes patients are generally above 6.5% [42]. The A1C levels are
expected to decrease after the treatments are applied. Therefore, we use the
negative change of A1C as our outcome, where a larger value indicates a better
treatment effect.

In the implementation, we split the dataset into training (800), validation
(200), and testing (139) sets. Since some combination treatments were assigned
to fewer than 10 subjects, we perform stratified sampling to ensure that the
training set includes all possible combination treatments. To validate the re-
sults, we repeat the sampling procedure and run the experiment independently
100 times, and report the averaged value function on test sets. Similar to the
simulation studies, we compare the proposed method with the five competing
methods which are used as competing methods in the simulation studies.

Table 3 provides the means and standard errors of the value function. Our
data analysis indicates that the proposed method under linear and nonlinear
decision rules outperforms the competing methods with higher value functions
and smaller standard deviations. Specifically, compared with the methods for
the multicategory treatment ITR (all competing methods except for OWL-DL),
the proposed method improves the value function by 48.6%, 12.6%, 16.9%, and
3.8%, while reducing the standard errors by 81.2%, 51.8%, 57.3%, and 72.0%,
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respectively. The improvement is partially due to the proposed MLRWL frame-
work which requires estimating fewer decision rules than those multicategory
ITR estimation methods. Therefore, the reduced standard error is also observed
for OWL-DL [16]. Compared with OWL-DL [16], our proposed method improves
the value function by 4.4% with a 29.7% decreased standard errors. This sug-
gests that incorporating interaction effects in estimating the optimal ITR for
combination treatments is essential and useful.

7. Conclusion and discussion

In this paper, we investigate the efficient estimation of individualized treat-
ment rule for combination treatments. Our main contributions are as follows:
First, we formulate the value maximization problem as a multi-label classifica-
tion problem, which greatly reduces the modeling complexity for decision rules.
Second, we proposed a non-convex multi-label surrogate loss which can incor-
porate any interaction effects among combination treatments. The proposed
method has sound theoretical properties including Fisher consistency and uni-
versal consistency. Third, we solve the non-convex minimization efficiently with
the difference-of-convex algorithm, and achieve great numerical performance in
simulation studies and a real data example.

In the combination treatment problems, the positivity assumption is a con-
tingent assumption, especially in observational study scenarios. We can explore
further potential directions as follows. First, we could utilize parametric as-
sumptions on the interaction effects among combination treatments. Suppose
the high-order interaction effects do not exist, then it is possible to identify
the treatment effects of combination treatment by single treatments and lower-
order combination treatments. We refer readers to [40] for a more comprehen-
sive investigation in this direction. The second plausible solution is to identify
the value functions with incremental propensity scores [14, 43], which shift the
propensity values as a treatment assignment probability instead of assigning a
deterministic treatment. This stochastic approach inherently avoids the posi-
tivity assumption; however, existing methods only apply to binary treatment
problems. Therefore, it is worth further investigation on applying incremental
propensity scores to multiple or combination treatment problems. Another po-
tential solution is based on the pessimistic principal [11] which optimizes lower
confidence bounds, instead of maximizing the point estimation of policy values.
This approach can also relax the positivity assumption, but has not been studied
in the combination treatment literature.

Appendix A

In this appendix, we provide the detailed derivation of the optimization problem
for linear and nonlinear decision rules, and technique proof details of the theo-
retical properties of the Multi-Label Residual Weighted Learning (MLRWL). In
addition, the extension of our method to observational study is also discussed.
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A.1. Derivation of the optimization problem of linear decision rules

Within each iteration, the subproblem can be formulated as the following quadrat-
ic programming:

min
β

1
2

K∑
k=1

‖β1k‖2 + γ

n∑
i=1

|wi|ηi + γ

K∑
k=1

< ∇β1kLcave(β̂
(t−1)

),β1k > +

γ

K∑
k=1

∇β0kLcave(β̂
(t−1)

)β0k

s.t. ηi ≥ I(wi ≥ 0) − a
(k)
i (β0k + xT

i β1k), for any k = 1, 2, ...,K
ηi ≥ 0

(16)

where γ is associated with the penalty coefficient λ. By introducing the La-
grange multipliers θik’s and μi’s, we have the following Lagrange function:

L(β,λ, μ) = 1
2

K∑
k=1

‖β1k‖2 + γ

n∑
i=1

|wi|ηi + γ

K∑
k=1

< ∇β1kLcave(β̂
(t−1)

),β1k > +

γ

K∑
k=1

∇β0kLcave(β̂
(t−1)

)β0k +
n∑

i=1

K∑
k=1

θik(I(wi ≥ 0)

− a
(k)
i (β0k + xT

i β1k) − ηi)

−
n∑

i=1
μiηi,

where θik ≥ 0 ∀i = 1, ..., n, k = 1, ...K and μi ≥ 0,∀i = 1, ..., n. After taking
derivatives of L(β,θ, μ) with respect to β0k’s, β1k’s, and ηi’s and letting them
equal to zero, we have

∂L
∂β1k

= β1k + γ∇β1kLcave(β̂
(t−1)

) −
n∑

i=1
θika

(k)
i xi = 0 (17)

∂L
∂β0k

= γ∇β0kLcave(β̂
(t−1)

) −
n∑

i=1
θika

(k)
i = 0 (18)

∂L
∂ηi

= γ|wi| −
K∑

k=1
θik − μi = 0. (19)

Then the primal problem 16 can be transformed to the dual problem:

min
θ

1
2

K∑
k=1

n∑
i=1

n∑
j=1

θikθjka
(k)
i a

(k)
j xT

i xj − γ

K∑
k=1

n∑
i=1

θika
(k)
i xT

i ∇β1kLcave(β̂
(t−1)

)

−
K∑

k=1

n∑
i=1

θikI(wi ≥ 0)
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s.t.

K∑
k=1

θik
(19)
≤ γ|wi|, γ∇β0kLcave(β̂

(t−1)
) (18)=

n∑
i=1

θika
(k)
i , θik ≥ 0. (20)

θik’s can be solved via the standard quadratic programming algorithm, and β1k
can be obtained from (17). By the Karush-Kuhn-Tucker conditions [3], we have

θik(I(wi ≥ 0) − a
(k)
i (β0k + xT

i β1k) − ηi) = 0
μiηi = 0.

Then β0k = I(wi ≥ 0)a(k)
i − xT

i β1k for points satisfying θik > 0 and ηi = 0. For
numerical stability, we take the mean value of such β0k’s as the estimation [7].

A.2. Derivation of the optimization problem of nonlinear decision
rules

Similar to the linear case, we can still decompose the loss function into convex
and concave parts, but replace the linear decision rule with a nonlinear deci-
sion rule, represented as fk(x) = β0k +

∑n
i=1 K(xi,x)βik where K(·, ·) is the

pre-specified kernel function. Within the t th iteration, we solve the following
quadratic programming:

min
β

1
2

K∑
k=1

βT
k Kβk + γ

n∑
i=1

|wi|ηi + γ

K∑
k=1

< ∇βk
Lcave(β̂

(t−1)
),βk > +

γ
K∑

k=1

< ∇β0kLcave(β̂
(t−1)

), β0k >

s.t. ηi ≥ I(wi ≥ 0) − a
(k)
i (Kiβk + β0k),∀k = 1, 2, ...,K

ηi ≥ 0

(21)

where K = (Kij)n×n and Kij = K(xi,xj), and Ki is the i th row of K. Following
the similar procedure as in (17, 18, 19), we can obtain the following subproblem
in the t th iteration:

min
θ

1
2

K∑
k=1

n∑
i=1

n∑
j=1

θikθjka
(k)
i a

(k)
j Kij − γ

K∑
k=1

n∑
i=1

θika
(k)
i ∇βik

Lcave(β̂(t−1))

−
K∑

k=1

n∑
i=1

θikI(wi ≥ 0)

s.t.

K∑
k=1

θik
(19)
≤ γ|wi|, γ∇β0kLcave(β̂

(t−1)
) =

n∑
i=1

θika
(k)
i , θik ≥ 0. (22)

Therefore, we can also apply the standard quadratic programming algorithm to
solve (22) and obtain the solution of θik’s.
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A.3. Algorithm convergence

In this section, we show that the convergent points of the Algorithm 1 is sta-
tionary points.

Proposition 1. If the level set {β|L(β) ≤ L(β(0))} is compact, then the con-
vergent points obtained from Algorithm 1 are stationary points of L(β).

The level set condition for β(0) is a standard assumption in the convergence
analysis of non-convex programming [15]. Note that Proposition 1 does not
exclude the possibility of local optima and saddle points, so the global optimum
is not guaranteed. In practice, we can try multiple random initializations and
select the ones that achieve the best performance on our validation sets.

Proof : First of all, since β(t) = arg minβ Lcvx(β)+ < ∇βLcave(β(t−1)),β >, it
follows that

Lcvx(β(t−1)) + ∇Lcave(β(t−1))Tβ(t−1) ≥ Lcvx(β(t)) + ∇βLcave(β(t−1))Tβ(t).

After rearranging this inequality, we have

Lcvx(β(t−1)) − Lcvx(β(t)) ≥ ∇βLcave(β(t−1))T (β(t) − β(t−1)).

By the definition of (sub)gradient ∇βLcave(β(t−1)), we have

Lcave(β(t)) ≤ Lcave(β(t−1)) + ∇βLcave(β(t−1))T (β(t) − β(t−1)).

Based on the above two inequalities, we can derive

Lcvx(β(t−1)) + Lcave(β(t−1)) ≥ Lcvx(β(t)) + Lcave(β(t)),

which indicates that the sequence {L(β(t))} is monotonically decreasing.
Under the assumption that the initial values β(0) has the following property:

the level set {β|L(β) ≤ L(β(0))} is compact, then the sequence {β(t)} has a
limit point β∗ by the Bolzano-Weierstrass theorem [2].

Next, we prove that β∗ is a stationary point. Due to the convexity of Lcvx(β)
and −Lcave(β), the (sub)gradients exist. Furthermore, we have ∇Lcvx(β(t)) +
∇Lcave(β(t−1)) = 0 and ∇Lcave(β(t−1)) converges to −∇Lcvx(β∗). Thus, the
limit point β∗ is a stationary point since ∇L(β∗) = ∇Lcvx(β∗)+∇Lcave(β∗) =
0.

A.4. Proof of Lemma 4.1

First, we show the Fisher consistency of the proposed method under the outcome-
weighted framework, i.e., the weight in the risk is Y

P(A|X) , and the associated
risk is as follows

Rψ(f) = E[ Y

P(A|X)ψ(A, f(X))]
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= E[ Y

P(A|X) (T1(A, f(X)) − T0(A, f(X)))].

For any X = x, the conditional risk is

E[ Y

P(A|X) (T1(A, f(X)) − T0(A, f(X)))|X = x]

=
∑
a∈A

E[Y (T1(A, f(X)) − T0(A, f(X)))|X = x,A = a].

Note that for any measurable functions f(x) = (f (1)(x), f (2)(x), ..., f (K)(x)),
there exists only one a ∈ A = {−1, 1}K (denoted as a∗) such that a(k)

∗ f (k)(x) ≥
0 for all k ∈ {1, 2, ...,K}. For any other a �= a∗, there exists k0 ∈ {1, 2, ...,K}
such that a(k0)f (k0)(x) ≤ 0, then mink a

(k)f (k)(x) ≤ 0. And if we denote
k1 = arg min a(k)f (k)(x), we can obtain T1(a, f(x)) = 1 − a(k1)f (k1)(x) and
T0(a, f(x)) = −a(k1)f (k1)(x), which yields T1(a, f(x)) − T0(a, f(x)) = 1. Fol-
lowing the above derivation, we have

∑
a∈A

E[Y |X = x,A = a](T1(a, f(x)) − T0(a, f(x)))

=
∑
a∈A

E[Y |X = x,A = a]+E[Y |X = x,A = a∗](−1+T1(a∗, f(x))−T0(a∗, f(x))).

Note that −1 + T1(a∗, f(x)) − T0(a∗, f(x)) ≤ 0, then we have E[Y |X = x,A =
a∗](−1 + T1(a∗, f(x)) − T0(a∗, f(x))) ≥ 0 for any measurable f(x) if E[Y |X =
x,A = a∗] < 0. Meanwhile, E[Y |X = x,A = a∗](−1+T1(a∗, f(x))−T0(a∗, f(x)))
≤ 0 for any measurable f(x) if E[Y |X = x,A = a∗] > 0. Hence, the con-
ditional risk is minimized when a∗ = arg maxa∈A E[Y |X = x,A = a] and
a
(k)
∗ f (k)(x) ≥ 1 for any k ∈ {1, 2, ...,K}. In other words, the minimizer f̂(·) of

Rψ(f) satisfies d(x) = sign(f̂(x)) = arg maxa∈A E[Y |X = x,A = a].

A.5. Proof of Theorem 4.2

Following the steps in A.4, if we adopt the residual Y − g(X) as the weight,
then we have similar conclusions as in Section S.4:

∑
a∈A

E[Y − g(X)|X = x,A = a](T1(a, f(x)) − T0(a, f(x)))

=
∑
a∈A

E[Y − g(X)|X = x,A = a]

+E[Y − g(X)|X = x,A = a∗](−1 + T1(a∗, f(x)) − T0(a∗, f(x))). (23)

Since arg maxa∈A E[Y −g(X)|X = x,A = a] = arg maxa∈A E[Y |X = x,A = a],
the desired results are concluded.
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A.6. Proof of Theorem 4.3

In this proof, we will follow two steps to prove the results. In the first step, we
first introduce intermediate risks Rg(f) and R∗

g and build connection between
Rg(f)−R∗

g and Rψ,g(f)−R∗
ψ,g. In the second step, we establish the equivalence

between Rg(f) −R∗
g and R(f) −R∗ and conclude the results.

Now, we introduce an intermediate risk given g(X) and 0-1 loss:

R∗
g = E

[ ∑
a∈A

E[Y − g(X)|X = x,A = a]I(a �= sign(f∗(x)))
]
,

Rg(f) = E

[ ∑
a∈A

E[Y − g(X)|X = x,A = a]I(a �= sign(f(x)))
]
,

From the proof of Lemma 4.1 and Theorem 4.2, we have

Rψ,g(f) = E

[ ∑
a∈A

E[Y − g(X)|X = x,A = a]
{
T1(a, f(x)) − T0(a, f(x))

}]

R∗
ψ,g = E

[ ∑
a∈A

E[Y − g(X)|X = x,A = a]
{
T1(a, f∗(x)) − T0(a, f∗(x))

}]
.

In addition, |f (k)
∗ | ≥ 1, and a

(k)
∗ f

(k)
∗ (x) ≥ 1 for a∗ = arg maxa∈A E[Y −g(X)|X =

X,A = a]. Therefore, for any other a ∈ A, there exists k0 such that a(k0)f
(k0)
∗ (x)

≤ −1, which leads the generalized ψ-loss T1(a, f)− T0(a, f) = 1. Then we have

R∗
ψ,g = E

[ ∑
a∈A\a∗

E[Y − g(X)|X = x,A = a]
]
.

Similarly, we can find

R∗
g = E

[ ∑
a∈A\a∗

E[Y − g(X)|X = x,A = a]
]
.

Therefore, it is sufficient to prove that Rψ,g(f) ≥ Rg(sign(f)) to establish the
first excess risk bound. Note that for any f , there only exists one combination
treatment a∗ such that a(k)

∗ f
(k)
∗ (x) > 0. And for any other a �= a∗, there exists k0

such that a(k0)f (k0)(x) < 0. Therefore, ψ(a, f(x)) = 1 for any a �= a∗, followed
by

E

[ ∑
a �=a∗

E[Y − g(X)|X = x,A = a]ψ(a, f(x))
]

=E

[ ∑
a �=a∗

E[Y − g(X)|X = x,A = a]I(a �= sign(f(x)))
]
.
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Since E[Y − g(X)|X = x,A = a∗] > 0, and ψ(a, f(x)) ≥ I(a �= f(x)) for any
measurable f , we conclude that Rψ,g(f) ≥ Rg(sign(f)).

Given that E[g(X)] is a constant, Rg(sign(f)) = R(sign(f))−E[g(X)] for any
measurable f , and R∗

g = R∗−E[g(X)], so Rg(sign(f))−R∗
g = R(sign(f))−R∗,

which concludes the results.

A.7. Proof of Theorem 4.4

First, let L(h, b) = Y−g(X)
P(A|X) ψ(Z(1), ..., Z(K)), where Z(k) = A(k)(h(k)(X) + b(k)),

h(k)(·) ∈ HK and b(k) ∈ R. For the minimizer of the empirical loss (6), we denote
the corresponding estimator as hn and bn, respectively. By the definition of hn,
bn, for any h(k) ∈ HK and b(k) ∈ R, we have

Pn(L(hn, bn)) ≤ Pn(L(hn, bn)) + λ

2 ‖hn‖2
K ≤ Pn(L(h, b)) + λ

2 ‖h‖
2
K,

where Pn denotes the empirical measure of the observed datasets (xi,ai, yi)ni=1.
Then, lim supn Pn(L(hn, bn)) ≤ P(L(h, b)) = Rψ(h + b) almost surely. Further-
more, it implies that

lim sup
n

Pn(L(hn, bn)) ≤ inf
h(k)∈HK,b(k)∈R

Rψ(h + b) ≤ P(L(hn, bn)), w.p. 1.

Therefore, it is suffice to show that Pn(L(hn, bn))− P(L(hn, bn)) → 0 in proba-
bility to conclude the results.

In the following, we establish the bound for ‖hn‖K and bn to control the
complexity of the space HK+{1}. Since Pn(L(hn, bn))+ λ

2 ‖hn‖2
K ≤ Pn(L(h, b))+

λ
2 ‖h‖2

K for any h and b, we take h = 0 and b = 0, to obtain that

Pn(L(hn, bn)) + λ

2 ‖hn‖2
K ≤ Pn(Y − g(X)

P(A|X) ).

Note that 0 ≤ ψ(·) ≤ 1, we can derive

λ‖hn‖2
K ≤ 4Pn( |Y − g(X)|

P(A|X) ) ≤ 4M.

To obtain the bound for bn, we note that there exists some xi such that
|hn(xi) + bn| < 1, then we have

|bn| ≤ 1 + |hn(xi)| ≤ 1 + ‖hn‖∞ ≤ 1 + CK‖hn‖K.

Therefore, we can obtain that |
√
λbn| ≤

√
λ + CK

√
λ‖hn‖K. Since λ → 0, CK

and
√
λ‖hn‖K are bounded, |

√
λbn| is bounded too. Furthermore, since ψ(·) is a

Lipschitz continuous function with Lipschitz constant 1, the class {
√
λL(h, b) :

‖
√
λh‖K, |

√
λb| are bounded} is a P-Donsker class, which induces

√
nλ(Pn(L(hn, bn)) − P(L(hn, bn))) = Op(1).

Consequently, as nλ → ∞, we have Pn(L(hn, bn)) → P(L(hn, bn)) in probability.
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A.8. Estimation of working models of treatment-free effects and
propensity score

In observational studies, the treatment assignment is usually unknown to prac-
tioners. Therefore, it is essential to estimate the propensity score before estimat-
ing the ITR via (6). In this work, we utilize the multinomial logistic regression
to estimate the propensity score. Specifically, we first encode the combination
treatment with categorical codings Ãi: {1, ..., 2K}, and then maximize the like-
lihood:

max
τ1,...,τ2K

n∑
i=1

2K∑
j=1

I(Ãi = j) log exp(XT
i τj)∑

j exp(XT
i τj)

− λ
∑
j

‖τj‖2
2,

and the estimated propensity score is P(Ãi|Xi) = exp(XT
i τÃi

)∑
j exp(XT

i τj)
.

As for the treatment-free effects, g(X) = 1
|A|

∑
E[Y |X,A] = E[ Y

|A|P(A|X) |X],
so we assume as linear model to fit the treatment-free effects and obtain an
estimation by minimizing the following loss:

min
η

n∑
i=1

1
P̂(A|X)

(Yi − XT
i η)2.

For clinical trials with uniform random assignment, the above loss reduces to

min
η

n∑
i=1

(Yi − XT
i η)2.

A.9. Consistency of f̂n in observational study

In this section, we show the consistency of the proposed method in observa-
tional study, where the propensity score model is also estimated from finite
sample data. The following Theorem states the necessary assumptions and the
consistency of the proposed estimator.

Theorem A.1. Suppose the penalty coefficient λ in the primal form (7) satisfies
λ → 0 and nλ → ∞. The weights |Y − g(X)|/P(A|X)’s are upper bounded by
some positive constant M almost surely. Suppose the working model of propensity
score P(A|X; τn) is a uniform consistent estimator of the true propensity score
model, say, ‖τn−τ‖ → 0 in probability and it is bounded below by some constant
ξ > 0 for any X ∈ X and A ∈ X . Then for any distribution P for (X,A, Y ),
we have

P

{
lim
n→∞

Rψ,g(f̂n) = inf
f∈HK+{1}

Rψ,g(f)
}

= 1,

where f̂n is the minimizer of the empirical loss (6) with plug-in estimator of
propensity score P̂(A|X). HK+{1} denotes the shifted reproducing kernel Hilbert
space we considered in Section 3.2.2.
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Proof. We first introduce some notations for the ease of derivation. First, we
denote the propensity score model as P(A|X; τ) where P(·|·) specifies the func-
tion form, and τ is the associated parameter. The estimated propensity score
is denoted as P(A|X; τn), where τn is the finite sample estimator of τ . In
addition, we define L(h, b, τ) = Y−g(X)

P(A|X;τ)ψ(Z(1), ..., Z(K)), and L(h, b, τn) =
Y−g(X)

P(A|X;τn)ψ(Z(1), ..., Z(K)). Therefore, we have

hn, bn = arg min
h(k)∈HK,b(k)∈R

Pn(L(h, b, τn)).

Our expected result can be expressed as

lim
n→∞

P(L(hn, bn, τ)) = inf
h(k)∈HK,b(k)∈R

P(L(h, b, τ)).

The (≥) part is straightforward in that

inf
h(k)∈HK,b(k)∈R

P(L(h, b, τ)) ≤ P(L(hn, bn, τ)),

and it is followed by

inf
h(k)∈HK,b(k)∈R

P(L(h, b, τ)) ≤ lim
n→∞

P(L(hn, bn, τ)).

For the (≤) part, we can decompose the difference as follows:

P(L(hn, bn, τ)) − P(L(h, b, τ)) = P(L(hn, bn, τ)) − P(L(hn, bn, τn))
+ P(L(hn, bn, τn)) − Pn(L(hn, bn, τn))
+ Pn(L(hn, bn, τn)) − Pn(L(h, b, τn))
+ Pn(L(h, b, τn)) − Pn(L(h, b, τ))
+ Pn(L(h, b, τ)) − P(L(h, b, τ))
= (I) + (II) + (III) + (IV ) + (V ),

where the term (III) is negative by the definition of hn and bn, and the term
(V ) is easily goes to zero in probability based on weak law of large number.
Therefore, we only need to consider the asymptotic properties of the terms
(I), (II), (IV ).

For the term (I), it is easy to see

P

{
Y − g(X)
P(A|X; τ) [1 − P(A|X; τ)

P(A|X; τn) ]ψ(hn, bn)
}

→ 0,

due to the boundedness of Y−g(X)
P(A|X;τ) and 0 ≤ ψ(hn, bn) ≤ 1.

For the term (II), we will use empirical process theory to prove this con-
vergence. Before that, we establish the bound for hn, bn and τn to control the
complexity. By the same means, we have

Pn(L(hn, bn, τn)) + λ

2 ‖hn‖2
K ≤ Pn(L(h, b, τn)) + λ

2 ‖h‖
2
K,
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and we can take h = 0 and b = 0, so we have

λ‖hn‖2
K ≤ 4Pn( |Y − g(X)|

P(A|X; τn) )

≤ 4Pn( |Y − g(X)|
P(A|X; τ)

P(A|X; τn)
P(A|X; τ) )

≤ 4M/pA.

The bound for bn can be derived as the same approach as in Appendix A.7, in
that

|
√
λbn| ≤

√
λ + CK‖hn‖K.

In summary, the class {
√
λL(h, b, τ) : ‖

√
λh‖K, |

√
λb|, ‖

√
λτ‖2 are bounded} is

a P-Donsker class, which induces
√
nλ(Pn(L(hn, bn, τn)) − P(L(hn, bn, τn))) = Op(1).

Consequently, as nλ → ∞, we have Pn(L(hn, bn, τn)) → P(L(hn, bn, τn)) in
probability.

For term (IV), we first consider the upper bound of the difference

|L(h, b, τn) − L(h, b, τ)| =
∣∣∣∣ Yi − g(Xi)
P(Ai|Xi; τn) − Yi − g(Xi)

P(Ai|Xi; τ)

∣∣∣∣ψ(h, b)

≤
∣∣∣∣ Yi − g(Xi)
P(Ai|Xi; τ) ( P(Ai|Xi; τ)

P(Ai|Xi; τn) − 1)
∣∣∣∣

≤ M

∣∣∣∣ P(Ai|Xi; τ)
P(Ai|Xi; τn) − 1

∣∣∣∣
Since τn → τ uniformly, for any ε > 0, there exists Nε such that if n > Nε,∣∣∣ P(Ai|Xi;τ)
P(Ai|Xi;τn) − 1

∣∣∣ < ε. Therefor, for n > Nε, Pn(L(h, b, τn) − L(h, b, τ)) < Mε,
which shows that (IV) converges to zero as n goes to infinity. The desired results
are concluded.

A.10. Numerical experiment in observational study

In this section, we extend the simulation studies in Section 5 to observational
studies, where a propensity score model P(A|X) is controlling the treatment
assignment. Specifically, the propensity score model we adopt is defined as

P(Ãj |X) = exp(j ·XT τ)∑
j exp(j ·XT τ) , (24)

where τ = (−0.5,−0.4, ...,−0.1, 0.1, ..., 0.4, 0.5) ∈ R
10, and Ãj ∈ {1, 2, ..., 2K}

is the categorical coding of combination treatment A ∈ {−1, 1}K . In our al-
gorithm, we first estimate the propensity score using the multinomial logistic
regression [7] and then plug it into (6) to estimate the ITR.
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Table 4

Simulation studies: mean and standard error of the value function under the proposed
method with linear and nonlinear decision rules, and five competing methods: the outcome

weighted learning with deep learning (OWL-DL, [16]), the L1 penalized least square
(L1-PLS, [29]), the outcome weighted learning with multinomial deviance (OWL-MD, [10]),

and the multicategory outcome weighted learning with linear and kernel functions
(MOWL-Linear and MOWL-Kernel, [41]). Higher value is better.

Setting Method 400 800 2000

1

MLRWL-Linear 4.112(0.144) 4.398(0.082) 4.437(0.071)
MLRWL-Kernel 3.934(0.137) 4.218(0.073) 4.357(0.059)

OWL-DL 4.010(0.118) 4.100(0.109) 4.201(0.089)
L1-PLS 4.057(0.109) 4.148(0.085) 4.265(0.094)

OWL-MD 3.660(0.176) 3.806(0.125) 3.927(0.118)
MOWL-Linear 3.132(0.184) 3.180(0.104) 3.280(0.097)
MOWL-Kernel 2.892(0.184) 3.002(0.224) 3.273(0.110)

2

MLRWL-Linear 1.382(0.055) 1.420(0.049) 1.427(0.047)
MLRWL-Kernel 1.836(0.079) 1.948(0.062) 2.080(0.056)

OWL-DL 1.678(0.098) 1.701(0.093) 1.702(0.091)
L1-PLS 1.689(0.089) 1.707(0.099) 1.724(0.083)

OWL-MD 1.657(0.130) 1.684(0.120) 1.699(0.079)
MOWL-Linear 1.771(0.159) 1.893(0.118) 1.938(0.108)
MOWL-Kernel 1.798(0.039) 1.904(0.039) 1.969(0.032)

3

MLRWL-Linear 4.413(0.253) 4.618(0.192) 4.660(0.113)
MLRWL-Kernel 4.730(0.086) 4.734(0.084) 4.736(0.075)

OWL-DL 4.302(0.200) 4.602(0.198) 4.639(0.187)
L1-PLS 4.205(0.216) 4.188(0.186) 4.219(0.143)

OWL-MD 4.421(0.183) 4.499(0.290) 4.501(0.214)
MOWL-Linear 4.609(0.169) 4.600(0.101) 4.602(0.086)
MOWL-Kernel 4.712(0.090) 4.703(0.077) 4.721(0.080)

In this simulation, all other data generating processes including covariates
distribution, treatment effects, and sample sizes are identical to the settings
in (5). Table 4 and 5 present the evaluation and comparison of our methods
with competing methods, which demonstrate our method can still outperform
competing methods in the observational study settings.
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Table 5

Simulation studies: mean and standard error of the accuracy under the proposed method
with linear and nonlinear decision rules, and five competing methods: the outcome weighted
learning with deep learning (OWL-DL, [16]), the L1 penalized least square (L1-PLS, [29]),

the outcome weighted learning with multinomial deviance (OWL-MD, [10]), and the
multicategory outcome weighted learning with linear and kernel functions (MOWL-Linear

and MOWL-Kernel, [41]).

Setting Method 400 800 2000

1

MLRWL-Linear 0.773(0.057) 0.861(0.028) 0.893(0.019)
MLRWL-Kernel 0.691(0.047) 0.764(0.025) 0.803(0.018)

OWL-DL 0.633(0.047) 0.649(0.039) 0.672(0.030)
L1-PLS 0.653(0.025) 0.674(0.014) 0.694(0.014)

OWL-MD 0.615(0.055) 0.645(0.037) 0.662(0.028)
MOWL-Linear 0.466(0.032) 0.477(0.023) 0.497(0.018)
MOWL-Kernel 0.364(0.056) 0.382(0.050) 0.464(0.028)

2

MLRWL-Linear 255(0.021) 0.266(0.013) 0.267(0.011)
MLRWL-Kernel 0.473(0.017) 0.522(0.019) 0.596(0.013)

OWL-DL 0.334(0.038) 0.342(0.030) 0.350(0.032)
L1-PLS 0.326(0.027) 0.328(0.019) 0.334(0.012)

OWL-MD 0.326(0.022) 0.326(0.016) 0.313(0.022)
MOWL-Linear 0.354(0.026) 0.367(0.018) 0.368(0.011)
MOWL-Kernel 0.386(0.006) 0.387(0.007) 0.400(0.024)

3

MLRWL-Linear 0.379(0.180) 0.565(0.167) 0.600(0.153)
MLRWL-Kernel 0.721(0.072) 0.723(0.052) 0.742(0.013)

OWL-DL 0.493(0.054) 0.542(0.049) 0.608(0.049)
L1-PLS 0.180(0.028) 0.170(0.023) 0.172(0.014)

OWL-MD 0.386(0.058) 0.422(0.062) 0.467(0.067)
MOWL-Linear 0.518(0.092) 0.510(0.049) 0.504(0.043)
MOWL-Kernel 0.718(0.020) 0.726(0.036) 0.733(0.048)
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