
Electronic Journal of Statistics
Vol. 18 (2024) 1355–1393
ISSN: 1935-7524
https://doi.org/10.1214/24-EJS2226

A functional nonlinear mixed effects
modeling framework for longitudinal

functional responses
Linglong Kong1, Xinchao Luo2, Jinhan Xie3,1,

Lixing Zhu4, and Hongtu Zhu5

1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton,
Alberta T6G 2G1, Canada

e-mail: lkong@ualberta.ca; jinhanxie@163.com

2School of Finance and Statistics, East China Normal University, Shanghai 200062, China
e-mail: fallenstar0909@gmail.com

3Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University,
Kunming 650091, People’s Republic of China

e-mail: jinhanxie@163.com

4Department of Statistics, Beijing Normal University at Zhuhai, Zhuhai, China
e-mail: lzhu@bnu.edu.cn

5Department of Biostatistics and Biomedical Research Imaging Center, University of North
Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A.

e-mail: htzhu@email.unc.edu

Abstract: In this paper, we introduce a functional nonlinear mixed effects
modeling framework designed to quantify the random, nonlinear relation-
ship between individual spatiotemporal functional trajectories and longi-
tudinal responses. Our proposed framework accounts for within-individual
variability through a spatiotemporal process. We detail an estimation method
for determining fixed and random effect functions and spatiotemporal co-
variance operators and establish their asymptotic properties, including uni-
form consistency and weak convergence. We also develop global linear hy-
pothesis tests and bootstrap-based simultaneous confidence bands for fixed
effect functions. To assess the finite-sample performance of our method, we
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Our results demonstrate that the proposed model class is significantly more
flexible and effective in detecting functional fixed effects compared to ex-
isting nonlinear mixed effects models. We apply our approach to an autism
research database to investigate the impact of age and spatial dynamics on
fractional anisotropy along the corpus callosum white matter fiber skeleton.
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1. Introduction

There is a growing need for analyzing extensive, curated longitudinal data ob-
tained from large-scale neuroimaging studies [2, 36, 45, 38, 43], such as the
Alzheimer’s Disease Neuroimaging Initiative [27], the Baby Connectome project
[16], the Adolescent Brain Cognitive Development Study [5], and the National
Database for Autism Research [15]. Gaining insights into the correlations be-
tween clinical covariates, changes in brain function across spatial locations and
time, and the progression of neurodegenerative and neuropsychiatric diseases
will contribute to enhanced diagnostic and treatment methods for these condi-
tions [19, 9, 30]. Furthermore, there is considerable interest in utilizing longi-
tudinal neuroimaging data to accurately depict the changes and development
of brain cortical and subcortical structures (e.g., hippocampus) over time and
among different groups [2, 22]. Developing and implementing innovative statis-
tical methods for such data is a critical prerequisite for advancing our under-
standing of these complex relationships.

To formalize this setting, let’s consider longitudinal functional data from n
different subjects. Typically, these data are either observed or registered to a
large number of locations in a common compact set S, across multiple time
points {ti,j : i = 1, . . . , n; j = 1, . . . , ni}, where ni represents the total num-
ber of longitudinal measurements for the ith subject and ti,j denotes the jth
measurement time point for the ith subject. This dataset consists of observed
time-varying clinical variables xi,j = x(ti,j) ∈ R

q and longitudinal functional re-
sponses yi,j(sm) = y(tij , sm), with grid points sm in S. Throughout this paper,
functional data are measured densely on S and we focus on a fixed number of
time points with sparse longitudinal data across the set {ti,j : i = 1, . . . , n; j =
1, . . . , ni}, that is, maxi≤n ni < n0 < ∞. Spatial and temporal correlation refers
to correlations across s and t, respectively. For simplicity in notation, we assume
that S = [0, 1] and S0 = {sm : 0 = s1 < . . . < sM = 1} ⊂ S = [0, 1]. Our results
can be readily extended to two and three dimensions.

In many situations, fitting nonlinear models becomes particularly challeng-
ing, as their applications inherently encompass more intricate patterns of change
[21, 3]. Considering the intricacies inherent in certain longitudinal data, artic-
ulating a growth model that precisely captures the longitudinal process can be
demanding. While a quadratic growth model might provide a decent approxi-
mation for some nonlinear changes, it might falter in representing processes that
stabilize over time. In such cases, an exponential growth function could provide
a more accurate depiction of the process. As data complexity increases, there’s
a foreseeable need for more sophisticated models. For example, the double ex-
ponential function is commonly used to model human population growth [35];
The three-parameter logistic function is well employed to describe the S-shaped
pattern that is observed in the growth curve of soybean data [8]; The Gompertz
function has been used to characterize longitudinal white matter development
during early childhood [9, 19]. Indeed, nonlinear models often require fewer pa-
rameters than competing linear models, such as a polynomial, leading to a more
parsimonious description of the data. We refer to [28] for more comprehensive
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applications on nonlinear mixed effects functions.
In this paper, we develop a functional nonlinear mixed effects modeling frame-

work to elucidate dynamic changes in longitudinal functional data and to charac-
terize spatiotemporal variation and nonlinear associations with other covariates
of interest. Specifically, we consider the class of functional nonlinear random
effects models of the form:

yi,j(s) = f(φi(s), xi,j) + εi,j(s) = f(β(s) + bi(s), xi,j) + εi,j(s), (1)

where f : Rp × R
q → R is a differentiable link function encompassing various

forms such as exponential, logistic, double exponential functions, among others,
φi : S → R

p is a vector of random functions, and εi,j : S → R is a random
error term. In particular, when f takes an identical link function, the model
(1) simplifies to the functional linear mixed effects models as described by [41].
We further specify φi(s) = β(s) + bi(s), where β(s) = (β1(s), . . . , βp(s))� and
bi = (bi,1(s), . . . , bi,p(s))� are p×1 vectors of fixed and random effect functions,
respectively. The bi(s) and εi,j are assumed to be independent and identical
copies of G(0, Σb) and G(0, Σε), respectively, where G(μ, Σ) denotes a Gaussian
process with mean function μ : S → R and covariance function Σ : S × S → R.
Furthermore, we assume Σε(s, s′) = 1(s = s′)σ2

ε(s) and express the covariance
matrix of (Σb)(s, s) in the form of a relative precision factor, Δ(s), which is any
matrix that satisfies (Σb)−1(s, s) = σ−2(s)Δ(s)�Δ(s).

Model (1) can be viewed as a novel extension of numerous popular non-
linear random effects models [4, 24]. Like most other functional mixed effects
models [6, 45, 13, 26, 14], the proposed model includes both fixed and ran-
dom effect functions. The former characterizes varying associations between
the longitudinal functional response and covariates of interest, while the latter
captures medium-to-long-range spatiotemporal covariance and short-range co-
variance structures associated with certain repeated experimental factor levels.
The concept of functional mixed effects models for correlated functional data
was first introduced in [14]. Following this, [26] and subsequent work have ex-
panded upon general functional mixed effects models with multiple levels of
random effect functions as well as curve-to-curve deviations. Recently, several
functional mixed effects modeling methods for longitudinal functional data have
been developed; see [25, 41, 7]. To the best of our knowledge, little work has been
done on the theoretical properties of statistical estimators or related inference
procedures for this class of nonlinear models.

In this paper, we develop the functional nonlinear mixed effects models and
related tools for statistical inference mentioned above. Unlike most existing ap-
proaches, the model (1) and the framework proposed in this paper allow both
random and fixed effect functions to enter in a nonlinear fashion. This setup is
motivated by real-world data analytic needs: nonlinear link functions are rele-
vant to many disciplines such as forestry, agriculture, ecology, biomedicine, and
pharmacokinetics [18, 32, 24], and are commonly applied to the analysis of non-
linear growth data [19, 9, 30]. Our main contributions can be summarized in
three aspects. First, our proposed model offers greater flexibility by including
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a nonlinear link function, which results in higher statistical power in detecting
fixed effect significance based on the proposed global hypothesis test. Second,
our formulation explicitly incorporates spatial smoothness into the estimators
for the fixed effect functions and spatiotemporal covariance operators, allow-
ing for a more accurate representation of the underlying data structure. Third,
we comprehensively establish the theoretical properties of the proposed estima-
tors, including the weak convergence of the functional fixed effect estimator,
the uniform convergence rate of the estimator for the spatiotemporal covariance
operator, the asymptotic distribution of the test statistic in the proposed global
linear hypothesis test of fixed effect significance, and an asymptotic simultane-
ous confidence band for each fixed effect.

The rest of this paper is organized as follows. In Section 2, we present the
proposed estimation and inference procedures. In Section 3, we study the asymp-
totic properties of the proposed estimators and the test statistic. We evaluate
the performance of the proposed procedure through extensive simulation studies
in Section 4.1 and a real data application in Section 4.2. Technical details are
deferred to the Appendix.

2. Methodology

2.1. Estimation procedure

Our estimation procedure for model (1) consists of three key steps.

• First, starting from consistent point estimators β̂(sm) of β(sm) for each
sm ∈ S0, we construct a consistent functional estimator β̃(s) for the fixed
effect function β(s).

• Second, estimate the individual random-effect functions bi(s).
• Third, obtain estimates of the covariance operators for each component

and their spectral decompositions.

Each of these three steps is explained in detail below.
In the first step, we estimate the fixed-effect functions in β(s) at each observed

spatial grid point using a consistent estimator. For each sm ∈ S0, model (1) is
the nonlinear mixed effects model yi,j(sm) = f(β(sm) + bi(sm), xi,j) + εi,j(sm),
where bi(sm) ∼ N(0, Σb(sm, sm)) and εi,j(sm) ∼ N(0, σ2

ε (sm)). In this step, we
use the maximum likelihood estimator β̂(sm) for β(sm). Alternatively, one may
consider other consistent estimators such as the two-stage or Lindstrom–Bates
estimators [24, 10].

Assuming certain smoothness restrictions on β(s), given as Assumption 8 in
Section 3, we calculate a kernel density estimator of β(s) using the collection
of point estimators {β̂(sm) : sm ∈ S0}. Specifically, given a normalized kernel
function K̃h with bandwidth parameter h, the kernel density estimator of β(s) is
β̃(s) = β̃(s, h1) =

∑M
m=1 K̃h1(sm − s)β̂(sm) for any s ∈ S [37]. The bandwidth

parameter h1 can be set via leave-one-out cross validation as a minimizer of
CV(h1) =

∑M
m=1‖β̂(sm) − β̃(−m)(sm, h1)‖2/M over h1, where ‖·‖2 denotes the
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l2 norm and β̃(−m0)(sm0 , h1) is the kernel density estimator, after the exclusion
of the m = m0 term, evaluated at s = sm0 .

In the second step, we employ a local linear smoother [12] to estimate the
individual bi(s) values. The Taylor expansion of bi(sm) around s gives us the ap-
proximation bi(sm) ≈ bi(s)+ ḃi(s)(sm−s) = Bi(s)Z(sm−s), where Z(sm−s) =
(1, sm − s)� ∈ R

2 and Bi(s) = (bi(s), ḃi(s)) ∈ R
p×2 with ḃi(s) = (ḃi,1(s), . . .,

ḃi,p(s))�, and ḃi,l(s) = ∂bi,l(s)/∂s for l = 1, . . . , p. To estimate Bi(s) for each
i = 1, . . . , n and a given s, we minimize the weighted nonlinear least squares
objective function [42]

SM (Bi(s))

=
ni∑
j=1

M∑
m=1

{
yi,j(sm) − f(β̂(sm) + Bi(s)Z(sm − s), xi,j)

}2
K̃h2(sm − s)

over Bi(s). To find the minimizer B̂i(s) = (b̂i(s), ˆ̇bi(s)), we propose an iterative
procedure.

Define a⊗ = aa� for any vector a and let C ⊗ D denote the Kronecker
product of two matrices C and D. For a matrix C of size M1 × M2, we use
vec(C) to denote its vectorization, which is a vector of size M1M2 with elements
(c1,1, . . . , cM1,1, c2,1 . . . , c1,M2 , . . . , cM1,M2)�. Given a current estimate Bi(s)(r)
of Bi(s), we further define Wi,j(sm)(r) as

yi,j(sm) − f(β̂(sm) + Bi(s)(r)Z(sm − s), xi,j) + Ai,j(Bi(s)(r))�vec(Bi(s)(r)),

where Ai,j(Bi(s)) = ∂f(β̂(sm)+Bi(s)Z(sm−s), xi,j)/∂vec(Bi(s)). An updated
estimate Bi(s)(r+1) can be obtained as the minimizer of

ni∑
j=1

M∑
m=1

{
Wi,j(sm)(r) −Ai,j(Bi(s)(r))�vec(Bi(s))

}2
K̃h2(sm − s)

over Bi(s). The bandwidth parameter h2 can be determined through cross-
validation. An estimate of bi(s), as the first column of B

(r+1)
i (s), is given by

bi(s)(r+1) = B̂i(s)(r+1)(1, 0)�. The sequence bi(s)(r) converges to b̂i(s) as r →
∞.

In the third step, we estimate the covariance operator Σb using an empiri-
cal estimator with Σ̂b(s, s′) = (Σ̂b

l,l′(s, s′))l,l′ = N−1∑n
i=1 nib̂i(s)b̂i(s′)�, where

N =
∑n

i=1 ni. Asymptotic properties of the estimators in the second and third
steps rely on a Karhunen–Loeve expansion for Σb, presented in Section 3.

Remark 2.1. To extend our estimation procedure from S = [0, 1] to a two-
dimensional compact set Ω in R

2, model (1) has the following formula:

yi,j(s̃) = f(φi(s̃), xi,j) + εi,j(s̃) = f(β(s̃) + bi(s̃), xi,j) + εi,j(s̃),

where s̃ = (s̃1, s̃2)� denotes a point in Ω. For this model, we only need to modify
the above first and second estimation steps by changing ḃi(s) and s − sm into
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2×1 vectors. Except this, we can also adopt some existing works to approximate
the functions β(s̃) and bi(s̃) by splines which are piecewise polynomial bivariate
functions over a two-dimensional triangulated domain; see [23].

2.2. Inference procedure

We next propose an inference procedure consisting of four steps as follows. We
define f̂i,j(s) = f(β̂(s) + b̂i(s), xi,j), X̂i,j(s) = ∂f̂i,j(s)/∂β̂(s), and Ẑi,j(s) =
∂f̂i,j(s)/∂b̂i(s).

Step (I) is to approximate model (1) as follows:

yi,j(sm) ≈
f̂i,j(sm) + X̂i,j(sm)�{β(sm) − β̂(sm)} + Ẑi,j(sm)�{bi(sm) − b̂i(sm)} + εi,j(sm).

Thus, let ω̂i,j(s) = yi,j(s) − f̂i,j(s) + X̂i,j(s)�β̂(s) + Ẑi,j(s)�b̂i(s), we have

ω̂i(sm) = (ω̂i,1(sm), . . . , ω̂i,ni(sm))� = X̂i(sm)β(sm) + ei(sm), (2)

where ei(sm) = (Ẑi,j(sm)�bi(sm) + εi,1(sm), . . . , Ẑi,j(sm)�bi(sm) + εi,ni(sm))�

and X̂i(sm) = (X̂i,1(sm), . . . , X̂i,ni(sm))�. Furthermore, ei(sm) can be approx-
imated as a N(0,Σi(sm)) distribution with Σi(s) = σ2

ε(s)Ini + Ẑi(s)Σb(s, s)
Ẑi(s)� for s ∈ S, in which Ẑi(sm) = (Ẑi,1(sm), . . . , Ẑi,ni(sm))�.

Step (II) is to develop a global test statistic, denoted as SN , for the global
linear hypotheses

H0 : Rβ(s) = b0(s) for all s ∈ S versus H1 : Rβ(s) 
= b0(s) for some s ∈ S,

where R ∈ R
p0×p has rank p0, and b0 : S → R

p0 . We first use d(s) = R[β̃(s) −
bias{β̃(s)}]−b0(s) to approximate Rβ(s)−b0(s). As shown in Section 3, the bias
term bias{β̃(s)} can be approximated as {0.5β̈(s) + β̇(s)π̇(s)π(s)−1}h2

1μ2(K),
where μ2(K) =

∫
K(t)t2dt. Second, we approximate the covariance matrix of

β̃(s) to be Σ̂(s, s) ≈ HN (s)−1
{∑n

i=1 Ŝi(s)�Ŝi(s)
}
HN (s)−1, where HN (s) =∑n

i=1 X̂i(s)�Σi(s)−1X̂i(s) and Ŝi(s) = Si(s, β̂(s)) = X̂i(s)�Σi(s)−1{ω̂i(s) −
X̂i(s)β̂(s)}. Therefore, let πm = sm+1 − sm, the global test statistic SN can be
approximated as∫ 1

0
d(s)�{RΣ̂(s, s)R�}−1d(s)ds ≈

M−1∑
m=1

d(sm)�{RΣ̂(sm, sm)R�}−1d(sm)πm.

Step (III) is to propose a score-based bootstrap method to obtain the p-value
for the proposed test [17]. The complicated form of the asymptotic distribution
of SN makes it difficult to directly approximate the percentiles of SN under
H0. We proceed as follows. First, fit model (1) under H0 and estimate β̂∗(s).
For each g = 1, . . . , G, independently generate τ

(g)
i ∼ N(0, 1) and construct
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S∗
i (sm)(g) = X̂i(sm)�Σi(sm)−1{ω̂i(sm) − X̂i(sm)β̂∗(sm)}τ (g)

i and Si(sm)(g) =
X̂i(sm)�Σi(sm)−1{ω̂i(sm) − X̂i(sm)β̂(sm)}τ (g)

i for i = 1, . . . , n. Second, cal-
culate Σ̂(sm, sm)(g) = HN (sm)−1 {∑n

i=1 Si(sm)(g)TSi(sm)(g)
}
HN (sm)−1 and

compute

S
(g)
N =

M−1∑
m=1

S̃(sm)�{RΣ̂(sm, sm)(g)R�}−1S̃(sm)πm,

yielding {S(g)
N : g = 1, . . . , G}, where S̃(sm) = RHN (sm)−1∑n

i=1 S
∗
i (sm)(g).

Finally, calculate the p-value for the proposed test as p = G−1∑G
g=1 1{S(g)

N >
SN} and reject the null hypothesis H0 if p is smaller than some given significance
level α.

Step (IV) is to construct a 100(1 − α)% simultaneous confidence band for
βl(s) such that pr(β̃L,α

l (s) < βl(s) < β̃U,α
l (s) for all s ∈ S) = 1 − α, where

β̃L,α
l and β̃U,α

l are lower and upper limit functions, respectively. Following the
procedure of [42], we construct simultaneous confidence bands as(

β̃l(s) − bias{β̃l(s)} − n−1/2Cl(α), β̃l(s) − bias{β̃l(s)} + n−1/2Cl(α)
)

(3)

over s, where Cl(α) is approximated via wild bootstrap. More specifically, con-
sider the stochastic process G(s)(g) = n1/2∑M

m=1 K̃h1(sm−s){HN (sm)−1∑n
i=1

Si(sm)τ (g)
i }. The empirical (1−α)-level quantile of sups∈S |elG(s)(g)| is an esti-

mator of Cl(α), where el ∈ R
p has its ith element equal to 1{i = l}.

3. Asymptotic properties

To further explore the asymptotic properties of the proposed estimators and the
test statistic SN , we present some relevant notation and regularity assumptions.
First, we consider the spectral decomposition of Σb

l,l for l = 1, . . . , p [29]. Assum-
ing that Σb

l,l is continuous on S2, and that Σb
l,l admits a decomposition of the

form Σb
l,l(s, s′) =

∑∞
k=1 λk,lψk,l(s)ψk,l(s′), where {(λk,l, ψk,l(s)) : k = 1, . . .} is

the set of ordered eigenvalue-eigenfunction pairs, i.e., λk,l ≥ λk+1,l. By Mercer’s
theorem, the eigenfunctions form an orthonormal basis for the space of square-
integrable functions on S. Consequently, bi,l admits the Karhunen–Loeve ex-
pansion bi,l(s) =

∑∞
k=1 ξi,k,lψk,l(s), where ξi,k,l =

∫ 1
0 bi,l(s)ψk,l(s)ds is the kth

functional principal component score of bi,l. For a fixed i, the scores {ξi,k,l}k,l
are uncorrelated random variables with mean zero and variance λk,l.

Next, we define θ0(s) = {β(s), σ2
ε (s),Σb(s, s)} and let θ(s) be the correspond-

ing collection of estimates. We define Θ =
∏

s∈S B as the parameter space for
θ(s)s∈S , where B is a compact set in R

d with d = (p2 + 3p + 2)/2. We de-
fine yi = (yi,1, . . . , yi,ni)� and let Pθ(i, s) = pr(yi(s) | xi, θ(s)) =

∫
P
(
yi(s) |

xi, β(s), bi(s), σ2(s)
)
P
(
bi(s) | Δ(s)

)
dbi(s) be the marginal density of yi(s) con-

ditional on xi. Similarly, we define Pθ(s) = pr(y(s) | x, θ(s)) =
∫
P
(
y(s) |
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x, β(s), b(s), σ2(s)
)
P
(
b(s) | Δ(s)

)
db(s). At each s, the model likelihood [28] can

be expressed as

Lθ(s)

= |Δ(s)|n
{2πσ2(s)}(N+nq)/2

n∏
i=1

∫
exp

{
−‖yi − f(φi(s), xi)‖2 + ‖Δ(s)bi(s)‖2

2σ2(s)

}
dbi(s).

We make the following assumptions to facilitate the technical details through-
out the paper. The current set of assumptions simplifies the proof even though
some of them might be weakened.

Assumption 3.1. For some κ > 4 and for all sm ∈ S0, supsm∈S0
E{|εi,j(sm)|κ}

< ∞.

Assumption 3.2. The covariate vector xi,j = (xi,j,1, . . . , xi,j,q)� ∈ R
q may or

may not be time-dependent with ‖xi,j‖∞ ≤ c0 < ∞ for some universal positive
constant c0.

Assumption 3.3. For all s ∈ S, suppose that θ0(s) ∈ B is the unique maximizer
of E{logPθ(s) | x, θ(s)}, where the expectation is taken with respect to the true
distribution of y(s) given x.

Assumption 3.4. The set Θ is compact and, for all s ∈ S and θ(s) ∈ B,
suppose that log{Pθ(s)} is twice continuously differentiable on Θ. For all j, k =
1, . . . , p, E{|∂j log{Pθ(s)}|} < ∞ and log{Pθ(s)}, |∂j log{Pθ(s)}|, and
|∂j∂k log{Pθ(s)}| are dominated by an integral function G(y(s), x) such that
E{sups∈S |G(y(s), x)|r} < ∞ for some r ≥ 1, where ∂j = ∂/∂θj(s).

Assumption 3.5. The set of grid points S0 is randomly generated from a den-
sity function π(s) that is positive for all s ∈ S and has bounded support and a
continuous second-order derivative.

Assumption 3.6. Assume that each component of the functions in the classes
{I−1

β(s)∂ logPθ(s)/ ∂β(s) : s ∈ S} and {b(s)b(t)� : (s, t) ∈ S2} is P -Donsker,
where Iβ(s) denotes an information matrix.

Assumption 3.7. The kernel function K is a continuous, symmetric, bounded
density function with [−1, 1] as its support and

∫ 1
−1 K(μ)dμ = 1,

∫ 1
−1 μK(μ)dμ =

0, and μ2(K) =
∫ 1
−1 μ

2K(μ)dμ < ∞.

Assumption 3.8. Each component of β(s) has a finite, continuous second-
order derivative on S.

Assumption 3.9. As both M and n tend to infinity, logM ≤ nν for some
0 < ν < 1, h1 → 0, h2 → 0, Mh1 → ∞, Mh2 → ∞, and h−1

1 |log h1|1−2/q1 ≤
M1−2/q1 , where q1 ∈ (2, 4).

Assumption 3.10. The link function f satisfies E{supθ∈Θ‖f (k1)‖2} < ∞ for
derivative orders k1 = 1, 2, where f (k1)(φ, x) = ∂k1f(φ, x)/∂φk1 . Similarly, for
k2 = 1, 2, 3, E{‖bi(s)‖r12 } < ∞ and E{sups∈S‖bi(s)(k2)‖r22 } < ∞ for some
r1, r2 ∈ (2,∞).
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Assumption 3.11. For each l, there is a finite, positive integer El such that
λ1,l > · · · > λEl,l ≥ λE1+1,l ≥ · · · ≥ 0.

Remark 3.1. Assumption 1 requires a uniform bound on a high-order moment
of εi,j(sm) for all grid points sm ∈ S0. Assumption 2 can be relaxed for equality
of the distribution of covariate vectors xi,j. Assumptions 3 and 4 are generaliza-
tions of standard conditions used to guarantee first-order asymptotic properties
of M-estimators [33]. Assumption 3 is an identifiability condition, while As-
sumption 4 is a uniform smoothness and integrability condition. Assumption 5
is a weak condition on the random grid points [42]. In many neuroimaging ap-
plications, M is often much larger than n so, for sufficiently large M , a regular
grid of voxels is well-approximated by voxels generated by a uniform distribu-
tion in a compact subset of a Euclidean space. Assumption 6 is used to avoid
smoothness conditions on the sample path, while Assumption 7 is a common
assumption for kernel density methods. Assumption 8 is a standard smoothness
condition on β. The portion of Assumption 9 pertaining to bandwidth is similar
to that in [42]. Assumption 10 requires a uniform bound on the derivative of
the nonlinear link and random effect functions. Finally, Assumption 11 regards
the multiplicity of the largest El eigenvalues for each l and is only required for
investigating asymptotic properties of the corresponding eigenfunctions.

As shown by [33], for each grid point sm ∈ S0 and under Assumptions 1-3,
the maximum likelihood estimator has consistency and asymptotic normality
properties. Additionally, [11] calculated the asymptotic variance of the maxi-
mum likelihood estimator in a one-parameter balanced exponential model and
established that the estimator attains its absolute lower bound. Our work builds
on these asymptotic results by investigating the properties of β̂ and the corre-
sponding kernel density estimator β̃.

Theorem 3.1. Under Assumptions 1–9, (i) supsm∈S0
‖β̂(sm) − β(sm)‖2 =

Op(n−1/2) and (ii) the process {n1/2[β̃(s)−β(s)−{0.5β̈(s)+ β̇(s)π̇(s)π(s)−1}h2
1

μ2(K)] : s ∈ S} converges weakly to a centered Gaussian process with covariance
function Σ. Precise definitions of β̇, β̈, Σ, π, and π̇ are given in the accompa-
nying supplementary materials.

Remark 3.2. The asymptotic bias of β̃(s) is of the order h2
1 as in nonparametric

regression. Despite the complex form of the asymptotic conditional covariance
matrix of β̃(s) due to within-curve dependence, it converges to the covariance
matrix of the maximum likelihood estimator with order n−1 as M → ∞. Select-
ing an optimal bandwidth h1 for model (1) can be a challenging task, however,
any bandwidth h1 that satisfies the conditions of h1 → 0 and Mh1 → ∞ can
ensure the weak convergence of β̃(s) : s ∈ S.

We continue by investigating the asymptotic properties of b̂i(s). We define
v0(K) =

∫
K2(μ)dμ, K∗(u) =

∫
K(μ)K(μ + u)dμ, X = {xi,j : i = 1, . . . , n; j =

1, . . . , ni}, and b = {b1, . . . , bn}. Further define fi,j(s, s′) = f(β(s)+ bi(s′), xi,j),
fk1,k2
i,j (s, s′) = ∂k1+k2fi,j(s, s′)/∂β(s)k1 ∂bi(s′)k2 , and fk1,k2∗

i,j (s, s′) = ∂k1+k2

f(β(s) + Bi(s′)Z(s− s′), xi,j)/∂β(s)k1∂Bi(s′)k2
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Theorem 3.2. Under Assumptions 1–10, (i) b̂i(s) is uniformly consistent, with

sup
s∈S

‖b̂i(s) − bi(s)‖2 = Op

[
h2

2 + n−1/2 +
{
|log h2|/(Mh2)

}1/2
]
.

(ii) The asymptotic bias, bias{b̂i(s) | S0, X, b(s)} and covariance, cov{b̂i(s),
b̂i(s′) | S0, X, b(s)}, are, respectively, given by

Fi(s)
ni∑
j=1

{
0.5f0,1

i,j (s, s)�b̈i(s)h2
2 + f1,0

i,j (s, s)� �Op(n−1/2)
}
f0,1
i,j∗(s, s)

{
1 + op(1)

}
,

(Mh2)−1K∗((s− s′)/h)π(s′)−1Fi(s)
ni∑
j=1

f0,1
i,j∗(s, s)f

0,1
i,j∗(s

′, s′)�Fi(t)Op(1),

where Fi(s) = {
∑ni

j=1 f
0,1∗
i,j (s, s)2}−1. A full definition of f0,1

i,j∗(s, s) is given in
the accompanying supplementary materials.
(iii) The mean integrated square error, conditional on (X, b), is∫

E[{b̂i(s) − bi(s)}⊗ | X, b]π(s)ds

=(Mh2)−1v0(K)Op(1)
∫

Fi(s)
ni∑
j=1

f0,1∗
i,j (s, s)⊗Fi(s)ds + {1 + op(1)}·

∫ [
Fi(s)

ni∑
j=1

{0.5f0,1
i,j (s, s)�b̈i(s)h2

2 + f1,0
i,j (s, s)� �Op(n−1/2)}f0,1

i,j∗(s, s)
]⊗

π(s)ds.

(iv) The optimal bandwidth h∗
2 for minimizing the mean integrated square error

in (iii) is O(M−1/5) if M4/5 = o(n) and O(nM−1) if n = o(M4/5).

Remark 3.3. Theorem 3.2 provides insights into the statistical properties of the
smoothed random effect estimates b̂i(s). Theorem 3.2 (i) establishes the uniform
consistency of the kernel density estimator b̂i(s). Given individual random effects
bi(s), Theorem 3.2 (ii) shows that the bias of b̂i(s) is made up of two terms, each
of order n−1/2, which are due to the maximum likelihood estimation and random
effects smoothing. The mean integrated square error of b̂i(s) in Theorem 3.2 (iii)
can be decomposed into an Op(n−1) term introduced by the maximum likelihood
estimation of β and an Op(h4

2 +M−1h−1
2 ) term introduced by the reconstruction

of bi(s). The optimal bandwidth is of the same order as that for local polynomial
kernel smoothers. Under the optimal bandwidth described in Theorem 3.2 (iv),
the mean integrated square error can be of order n−1 or M−4/5, depending on
the relationship between n and M .

The following theorem states that as the sample size n grows, the estimator
Σ̂b converges in probability to the true covariance matrix Σb. Additionally, the
eigenfunctions ψ̂l,k and eigenvalues λ̂l,k of Σ̂b converge in probability to the
corresponding eigenfunctions ψl,k and eigenvalues λl,k of Σb. These results hold
under appropriate regularity conditions on Σb and the estimation procedure.
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Theorem 3.3. (i) Under Assumptions 1–10, with h∗
2 denoting the optimal band-

width described in Remark 3,

sup
(s,s′)∈S2

|Σ̂b(s, s′) − Σb(s, s′)| = Op

(
(h∗

2)2 + (Mh∗
2)−1 + (logn/n)1/2

)
.

(ii) Under Assumptions 1–11, for k = 1, 2, . . .,

{∫ 1

0
[ψ̂l,k(s) − ψl,k(s)]2ds

}1/2

= Op

{
(h∗

2)2 + (Mĥ∗
2)−1 + (logn/n)1/2

}
and |λ̂l,k − λl,k| = Op

{
(h∗

2)2 + (Mh∗
2)−1 + (logn/n)1/2

}
.

Remark 3.4. Theorem 3.3 characterizes the uniform weak convergence rate of
Σ̂b, ψ̂k, and λ̂k, similar to Theorem 3 in [42]. In contrast, none of the rates in
this result include an Op(h2

1) term since only an estimate of β is used, without
any smoothing. For further discussion, see [42].

Let ⇒ denote weak convergence of a sequence of stochastic process and G(s)
a centered Gaussian process indexed by s ∈ S. Theorem 3.1 establishes that
n1/2[β̃l(s) − β(s) − bias{β̃l(s)}] ⇒ G(s). Consequently, we can construct a
simultaneous confidence band for each fixed effect function, namely, each com-
ponent of β. For Cl(α) satisfying pr(sups∈S |G(s)| ≤ Cl(α)) = 1 − α, where
sups∈S |n1/2[β̃l(s) − β(s) − bias{β̃l(s)}]| ⇒ sups∈S |G(s)|, the confidence band
given in (3) is a 1 − α simultaneous confidence band for βl.

Theorem 3.4. Under Assumptions 1–10, we have the following results:
(i) SN ⇒

∫ 1
0 G(s)�G(s)ds under the null hypothesis H0,

(ii) P (SN ≥ SN,α|H1n) → 1 as n → ∞ for a sequence of local alternatives
H1n : Rβ(s) − b0(s) = n−κ/2d(s), where κ is any scalar in [0, 1), SN,α is the
upper 100α percentile of SN under H0, and 0 <

∫
S ‖d(s)‖2ds < ∞.

Remark 3.5. Theorem 7 of [40] and Thereom 2 of [39] characterize the asymp-
totic distribution of SN : the accompanying discussion is also valid for Theo-
rem 3.4.

As a final asymptotic result, we verify that the bootstrapped process {G(s)(g) :
s ∈ S} can be used to approximate the null distribution of SN .

Theorem 3.5. Under Assumptions 1–9, G(s)(g) ⇒ G(s), conditional on the
data.

Remark 3.6. Theorem 3.5, which follows immediately from Theorem 5 of [42],
validates the use of the bootstrapped process G(s)(g). Again, β(s) is estimated
solely via maximum likelihood, so the bias correction is unnecessary, resulting
in a substantial reduction in computational load.
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4. Numerical studies

4.1. Simulation results

To provide an initial demonstration of the finite performance of estimation and
inference procedures for the model (1), we conduct a series of Monte Carlo
simulation studies. In this subsection, we consider simulated longitudinal func-
tional data and clinical variables from n independent samples. Let ni be the
total number of longitudinal measurements for the ith sample and ti,j be the
jth measurement time point for the ith subject, so j = 1, . . . , ni, i = 1, . . . , n.
Specifically, for the ith sample at time ti,j , j = 1, . . . , ni, i = 1, . . . , n, we gen-
erate data from the following models:

1. yi,j(s) = 1 + 0.1{xi,j,1φ1,i(s) + xi,j,2φ2,i(s) + 2}3 + εi,j(s);
2. yi,j(s) = 5{sin(xi,j,1φ1,i(s) + xi,j,2φ2,i(s))}3 + εi,j(s);
3. yi,j(s) = 1 − 2.5 exp{− exp{xi,j,1φ1,i(s) + xi,j,2φ2,i(s)}} + εi,j(s),

where φl,i(s) = βl(s) + bl,i(s) for l = 1, 2. Notice that each sample is observed
ni times. Model 3 is the double exponential function, which is commonly em-
ployed in population dynamics to model human population growth; see [35].
Let sm be equidistant points in [0, 1] with s1 = 0 and sM = 1, εi,j(s) ∼
N(0, 0.1), and (xi,j,1, xi,j,2)� ∼ N((0, 0)�,Σ), where Σ = (σj,k)j, k ∈ R

p×p

and σj, k = 0.3|k−j|. The functional random effects are defined as bi(s) =
sin(2πs)N((0, 0)�, 0.1Σ) + cos(2πs) N((0, 0)�, 0.2Σ), and the functional fixed
effects are given by β1(s) = cs2 and β2(s) = (1 − s)2. Setting c = 0 results in
β1(s) = 0 for all s. We employ two simulation studies to examine the proposed
estimation and inference procedures. In each simulation study, we consider the
Epanechnikov kernel function, i.e., K̃(u) = 0.75(1 − u2)I(|u| ≤ 1), where I(·)
is an indicator function. The codes for this paper are written in R and can be
obtained at https://github.com/statisticalxjh/FNMEM.

In the first simulation study, we evaluate the proposed SN -based test for
the null hypothesis H0 : β1(s) = 0 across all s, as opposed to the alternative
hypothesis H1 : β1(s) 
= 0 for at least one s. Our primary focus is the test’s
rejection rate, specifically its Type I error rate when c = 0 and its power for
values of c = 0.05, 0.1, 0.15, and 0.2. Additionally, we explore varying sample
sizes with n = 50 and 100 for each c and set M = 25 and ni = 5. We then
compute the rejection rate for the score bootstrap method using G = 500 in each
scenario, applying the significance levels α = 0.05 and 0.01, and conducting 200
replications. In this simulation study, we also evaluate an alternative method:
the standard nonlinear mixed-effects model which only uses longitudinal data,
without any functional components, denoted by NMEM [28];

Figure 1 displays power curves at the specified significance levels α and sample
sizes n for both a functional nonlinear mixed effects model and a nonlinear
mixed effects model. For both models, Σ is estimated using the asymptotic
covariance matrix without any smoothing. We observe that the Type I error
rates derived from the score bootstrap are well-controlled at both significance
levels. It is also evident that the NMEM is much less powerful compared to the

https://github.com/statisticalxjh/FNMEM
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Fig 1. Power curves illustrating the results of the first simulation study, calculated at five
values of c for a functional nonlinear mixed effects model (FNMEM) and nonlinear mixed
effects model (NMEM). The SN -based rejection rates are obtained using the wild bootstrap
method. Upper panel: Model 1; Middle panel: Model 2; Lower panel: Model 3. The sample
size n and significance level α are noted in each subplot.

FNMEM. The analogy here is the standard NMEM with just longitudinal data
(i.e. no functional components), since FNMEM is an extension of NMEM. As
anticipated, the power increases with a larger sample size.

In the second simulation study, we investigate the finite-sample performance
of the proposed simultaneous confidence bands. Employing the same data gener-
ation procedure as before, we consider different sample sizes n = 50 and 100 and
fix c = 1, ni = 5, and M = 25, 50, and 75. For each of the 200 replications, we
use a wild bootstrap with G = 500 to compute simultaneous confidence bands
for each component of β. In Table 1, we present empirical coverage probabilities
for two α values. We observe that increasing the number of grid points M en-
hances the coverage probability, and the coverage probabilities are close to the
corresponding confidence level 1−α. The Monte Carlo errors are approximately
0.015 for α = 0.05, given by the formula (0.95× 0.05/200)1/2. Figures depicting
typical 95% and 99% simultaneous confidence bands for n = 50, M = 75, and
n = 100,M = 75 are presented in Figures 2-4.

4.2. Real data analysis

In the second numerical study, we examine a real-world dataset acquired from
the National Database for Autism Research (NDAR) (http://ndar.nih.gov/),

http://ndar.nih.gov/
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Table 1

Empirical coverage probabilities of the simultaneous 100(1 − α)% confidence bands for each
component of β in the second simulation, based on 200 simulated data sets. The number of

uniform grid points M and the significance level α are noted for each result.
Model 1

M β1 β2 β1 β2
n = 50, α = 0.05 n = 50, α = 0.01

25 0.940 0.965 0.995 0.985
50 0.970 0.955 0.990 0.980
75 0.960 0.965 0.990 0.995

n = 100, α = 0.05 n = 100, α = 0.01
25 0.955 0.940 0.970 0.980
50 0.950 0.975 0.985 0.995
75 0.960 0.965 0.995 0.995

Model 2
n = 50, α = 0.05 n = 50, α = 0.01

25 0.955 0.965 0.990 0.990
50 0.945 0.970 0.985 0.990
75 0.970 0.940 0.990 0.985

n = 100, α = 0.05 n = 100, α = 0.01
25 0.945 0.935 0.975 0.970
50 0.930 0.960 0.985 0.995
75 0.940 0.940 0.995 0.980

Model 3
n = 50, α = 0.05 n = 50, α = 0.01

25 0.920 0.950 0.980 0.990
50 0.960 0.970 0.985 0.990
75 0.950 0.950 0.985 1.000

n = 100, α = 0.05 n = 100, α = 0.01
25 0.940 0.960 0.980 0.980
50 0.960 0.965 0.995 0.985
75 0.960 0.960 0.995 0.990

Fig 2. Typical 95% and 99% simultaneous confidence bands in the first and second rows,
respectively, for n = 50,M = 75 (left panel) and n = 100,M = 75 (right panel) in the
second simulation study under Model 1. The solid black, solid green, and dashed red curves
represent, respectively, the true curves, estimated curves, and corresponding simultaneous
confidence bands for βj in the jth column (j = 1, 2).
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Fig 3. Typical 95% and 99% simultaneous confidence bands in the first and second rows,
respectively, for n = 50,M = 75 (left panel) and n = 100,M = 75 (right panel) in the
second simulation study under Model 2. The solid black, solid green, and dashed red curves
represent, respectively, the true curves, estimated curves, and corresponding simultaneous
confidence bands for βj in the jth column (j = 1, 2).

Fig 4. Typical 95% and 99% simultaneous confidence bands in the first and second rows,
respectively, for n = 50,M = 75 (left panel) and n = 100,M = 75 (right panel) in the
second simulation study under Model 3. The solid black, solid green, and dashed red curves
represent, respectively, the true curves, estimated curves, and corresponding simultaneous
confidence bands for βj in the jth column (j = 1, 2).
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Table 2

A summary of age at each repeated visit. The mean, standard deviation (SD), and range of
subject ages, measured in years, are presented for each group. In total, n = 253 unique

subjects are represented.

Visit number Number of scans Age (SD) Age range
1 58 10.53 (5.96) [0, 18]
2 148 12.25 (4.62) [0, 21]
3 160 12.29 (5.14) [1, 22]
4 19 1.84 (1.42) [1, 6]
5 7 1.57 (0.79) [1, 3]
6 10 2.70 (0.67) [2, 4]
7 6 3.17 (0.75) [2, 4]
8 5 3.40 (1.14) [2, 5]
9 3 3.67 (1.15) [3, 5]

a research data repository funded by the National Institutes of Health (NIH).
The dataset consists of 416 high-quality MRI scans for 253 children, including
126 males. Summaries of subject age, stratified by the number of visits per
subject, are presented in Table 2.

The data processing involved two stages: a weighted least squares procedure
for constructing diffusion tensors [1, 44], and a tract-based statistics pipeline im-
plemented in the Functional Magnetic Resonance Imaging of the Brain Software
Library (FSL) [31]. Specifically, fractional anisotropy maps were computed for
each subject from diffusion tensors after eddy current correction and automatic
brain extraction using FSL. The aforementioned tract-based pipeline aligned
fractional anisotropy maps from each subject into a common space through
nonlinear registration and generated a mean fractional anisotropy skeleton rep-
resenting the centers of all white matter tracts shared by the entire sample. The
aligned fractional anisotropy data for each subject was then projected onto this
skeleton. Our analysis focuses solely on the midsagittal corpus callosum skele-
ton, where fractional anisotropy is measured at M = 45 spatial grid points. The
corpus callosum, the largest fiber tract in the human brain, is a topologically or-
ganized structure responsible for communication between the two hemispheres.

Recently, nonlinear mixed effects models based on the Gompertz function
have been employed to characterize longitudinal white matter development dur-
ing early childhood [19, 30]. These models take the form y = φ1 exp{−φ2φ

�
3 },

where φ1 represents the asymptote, φ2 the delay, and φ3 the reciprocal of expo-
nentiated speed. Due to its asymptotic nature, the Gompertz function described
in previous works can only account for developmental changes observed in ado-
lescence and adulthood [20]. Following [9], we utilize the modified Gompertz
function that allows for continued growth and extend it to the functional non-
linear mixed effects model. Specifically, we consider the following model:

yi,j(s) = φ1,i(s) exp{−φ2,i(s)φ3,i(s)ti,j + φ4,iti,j} + εi,j(s), (4)

where φi = (φ1,i, φ2,i, φ3,i, φ4,i)� = β + bi, β = (β1, β2, β3, β4)� contains the
fixed effects, bi = (b1,i, b2,i, 0, 0)� contains the random effects for the ith subject,
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Fig 5. Observed fractional anisotropy for each subject (solid red lines), varying as a func-
tion of age t at a fixed spatial location sm, with m = 5, . . . , 24 varying across the subplots.
Estimated fractional anisotropy values obtained from the proposed model are superimposed
(dotted black lines).

and the temporal variable t represents subject age at observation, in years. Note
that b3,i and b4,i are set to zero in order to reduce the number of random effects
in model (4).

We selected 116 children, who underwent at least two repeated MRI scans,
resulting in a total of 279 scans. The variation of fractional anisotropy (y) with
age (t) is illustrated in Figure 5 at fixed spatial positions (sm) along the corpus
callosum skeleton, with m = 5, . . . , 24. The figure shows significant subject-level
variability in the data at each grid point and in the effect of age.

We used the estimation procedure outlined in Section 2.1 to fit the model
(4). The population-level predictions for y, with bi = 0, are also displayed in
Figure 5. Figure 6 shows the functional fixed effect estimates and corresponding
95% and 99% simultaneous confidence bands, which were constructed using a
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Fig 6. Estimates (solid green lines) and 100(1 − α)% simultaneous confidence bands (dotted
red lines) for the fixed effect βj from the real-world data neuroimaging analysis in the jth
column (j = 1, 2, 3, 4). In the first and second rows, α = 0.05 and α = 0.01, respectively.

Fig 7. Left panel: the 100(1 − α)% cumulative proportion from one to twelve eigenvalues;
Middle panel: the first six eigenfunctions corresponding to b1,i; Right panel: the first six
eigenfunctions corresponding to b2,i.

wild bootstrap with 500 replications. The horizontal line at βj = 0 serves as
a reference, allowing us to conclude that the first three fixed effect functions
(βj , j = 1, 2, 3) are non-zero, while the last function (β4) is non-zero only at
the spatial location sm with m = 30, . . . , 40. The remaining locations have
a close-to-zero value for β4. Additionally, the first twelve eigenvalues and six
eigenfunctions of Σ̂b(s, s′) are displayed in Figure 7. We found that the first six
eigenvalues explain 93.29% of the total variance, while the remaining eigenvalues
explain close to 0%.

While the age effect, as shown in Figure 5, appears to level off quickly at
some spatial positions, the proposed global test statistic (SN = 455.93, p-value
< 0.001) with R = (0, 0, 1, 1) suggests a global age effect.

Appendix

We present the technique proofs of the theorems and lemmas in Section 3 in
this paper.
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A.1. Proofs of supporting lemmas

We first introduce some notation. Define K0(s, h1) =
∫
Kh1(t− s)π(t)dt,

V (s) =
{

n∑
i=1

X̂i(s)�Σi(s)−1X̂i(s)
}−1 n∑

i=1
X̂i(s)�Σi(s)−1Ẑi(s)bi(s), (5)

R(s) =
{

n∑
i=1

X̂i(s)�Σi(s)−1X̂i(s)
}−1 n∑

i=1
X̂i(s)�Σi(s)−1εi,j(s), (6)

and

Δ(s, h1) =
M∑

m=1
K̃h1(sm − s)V (sm) − 1

K0(s, h1)

∫
Kh1(t− s)V (t)π(t)d(t). (7)

Further define M{θ(s)} = E{logPθ(i, s)}, Mn{θ(s)} = n−1∑n
i=1 logPθ(i, s),

and

ε̄i(s) = n−1
i

ni∑
j=1

M∑
m=1

εi,j(sm)K̃h2(sm − s).

Lemma A.1. Under Assumptions 2–4 and 9, supsm∈S0
d(θ̂(sm), θ0(sm)) con-

verges in probability to 0.

Proof. Define F = {logPθ(sm) : sm ∈ S0, θ(sm) ∈ B} and the envelope function
F = supsm∈S0

G(y(sm), x). We first show that F is pr-Glivenko-Cantelli, that
is, that

sup
θ∈Θ

sup
sm∈S0

|Mn(θ(sm)) −M(θ(sm))| → 0 (8)

almost surely. Since E∗(F ) < ∞ under Assumption 4, we need to prove that
logN(ε,FK , L1(Mn)) = o∗p(n) for all K < ∞ and ε > 0, where FK is the class
of functions {f(·)1(F ≤ K) : f ∈ F}. For each s0 ∈ S0, define Fs0

K = {f ∈
FK : f(sm) = f(s0)}. Theorem 2.6.7 in [34] implies that N(ε,Fs0

K , L1(M)) ≤
C1
(
C2
ε

)p for some positive constants C1 and C2 such that

N(ε,FK , L1(Mn)) ≤ M ×N(ε,Fs0
K , L1(Mn))

→M ×N(ε,Fs0
K , L1(M)) ≤ MC1

(
C2

ε

)p

.

in probability. It follows that

logN(ε,FK , L1(Mn))
=O∗

P (log(M) + log(C1) + p log(C2/ε))
=O∗

P {nν + O(1)}
=o∗p(n)
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under Assumption 9. By Assumptions 3 and 4,

sup
d(θ(sm),θ0(sm))>ε

sup
sm∈S0

M{θ(sm)} < sup
sm∈S0

M{θ0(sm)}. (9)

Finally, we follow the arguments in Theorem 5.7 in [33]. Since (8) implies that
supsm∈S0

|Mn{θ0(sm)}−M{θ0(sm)}| → 0, then for each sm ∈ S0, Mn{θ0(sm)} >

M{θ̂(sm)}, and so

sup
sm∈S0

[M{θ0(sm)} −M{θ̂(sm)}] (10)

≤ sup
sm∈S0

[M{θ0(sm)} −Mn{θ0(sm)}] + sup
sm∈S0

[Mn{θ0(sm)} −M{θ̂(sm)}]

≤ op(1) + sup
sm∈S0

[Mn{θ̂(sm)} −M{θ̂(sm)}]

≤ op(1) + sup
θ∈Θ

sup
sm∈S0

|Mn{θ(sm)} −M{θ(sm)}|

→ 0. (11)

By (9), for any arbitrary ε > 0, there exists a positive constant δ depending
only on ε such that supsm∈S0

M{θ(sm)} ≤ supsm∈S0
M{θ0(sm)}− δ(ε) for every

θ(sm) when supsm∈S0
d(θ(sm), θ0(sm)) > ε. Consequently, by (10),

P

(
sup

sm∈S0

d(θ̂(sm), θ0(sm)) > ε

)
≤P

(
sup

sm∈S0

M{θ̂(sm)} < sup
sm∈S0

M{θ0(sm)} − δ(ε)
)

≤P
(

sup
sm∈S0

[M{θ0(sm)} −M{θ̂(sm)}] > δ(ε)
)

→0.

Lemma A.2. Under Assumptions, 1, 5, 7, and 9, for any r ≥ 0,

sup
s∈S

∣∣∣∣∫ Kh1(t− s) (t− s)r

hr
1

d{ΠM (t) − Π(t)}
∣∣∣∣ = Op{(Mh1)−1/2}

and

sup
s∈S

∣∣∣∣∫ Kh1(t− s) (t− s)r

hr
1

εi,j(t)dΠM (t)
∣∣∣∣ = Op{(Mh1)−1/2|log h1|1/2},

where ΠM is the sampling distribution function based on S0 and Π is the distri-
bution function of s.

Proof. The proof follows that of Lemma 2 in [42].

Lemma A.3. Under Assumptions 1, 5, 6, 7, and 9, sups∈S |Δ(s, h1)| = op(1).
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Proof. By Lemma 2 with r = 0,

sup
s∈S0

∣∣∣∣∣ 1
M

M∑
m=1

Kh1(sm − s) −K0(s, h1)

∣∣∣∣∣
= sup

s∈S0

∣∣∣∣∫ Kh1(t− s)d{ΠM (t) − Π(t)}
∣∣∣∣ = Op{(Mh1)−1/2},

and so we can write

Δ(s, h1)

= 1
K0(s, h1) + Op{(Mh1)−1/2}

{
1
M

M∑
m=1

Kh1(sm − s)V (sm)

−
∫

Kh1(t− s)V (t)dΠ(t)
}

=1 + Op{(Mh1)−1/2}
K0(s, h1)

[
1
M

M∑
m=1

Kh1(sm − s){V (sm) − V (s)}

+
{

1
M

M∑
m=1

Kh1(sm − s) −
∫

Kh1(t− s)dΠ(t)
}
V (s)

+
∫

Kh1(t− s){V (s) − V (t)}dΠ(t)
]

=1 + op(1)
K0(s, h1)

{(I) + (II) + (III)}.

By Assumption 6, V converges weakly to a Gaussian process. It then follows
from the Donsker Theorem [34] that sups∈S‖V (s)‖2 = Op(1). Thus, examining
the three terms (I), (II), and (III), we can conclude that

(I)
K0(s, h1)

≤ 1
K0(s, h1)

1
M

M∑
m=1

Kh1(sm − s)|V (sm) − V (s)|

≤ sup
|s′−s|≤h1

|V (s′) − V (s)| sup
s∈S

1
MK0(s, h1)

M∑
m=1

Kh1(sm − s)

= op(1) × K0(s, h1) + Op{(Mh1)−1/2}
K0(s, h1)

= op(1),

(II)
K0(s, h1)

≤ 1
K0(s, h1)

sup
s∈S

|V (s)| sup
s∈S

∣∣∣∣∫ Kh1(t− s)d{ΠM (t) − Π(t)}
∣∣∣∣

= Op(h1) ×Op(1) ×Op((Mh1)−1/2)
= op(1),
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and

(III)
K0(s, h1)

≤ 1
K0(s, h1)

∫
Kh1(t− s)|V (s) − V (t)|dΠ(t)

≤ sup
|s′−s|≤h1

|V (s′) − V (s)| sup
s∈S

1
K0(s, h1)

∫
Kh1(t− s)dΠ(t)

= op(1) × 1
= op(1).

This completes the proof of Lemma A.3.

Lemma A.4. Under Assumptions 1, 2, 5, 7, and 9,

sup
s∈S

n−1/2h1

∣∣∣∣∣
n∑

i=1

M∑
m=1

K̃h1(sm − s)X̂i(sm)�Σi(sm)−1εi,j(sm)

∣∣∣∣∣
=Op{(Mh1|log h1|)1/2} = op(Mh1).

Proof. The proof follows that of Lemma 1 in [41].

Lemma A.5. Under Assumptions 1–10,

sup
(s,t)

N−1|
n∑

i=1
niε̄i(s)bi(t)| = Op{(logn/n)1/2},

sup
(s,t)

N−1|
n∑

i=1
niε̄i(s)ε̄i(t)| = Op{(Mh2)−1 + (logn/n)1/2},

and

sup
(s,t)

N−1|
n∑

i=1
niε̄i(s)b̈i(t)h2

2| = Op{(logn/n)1/2}.

Proof. The proof follows from those of Lemmas 6 and 7 in [42].

A.2. Proof of Theorem 1

Proof of Theorem 1 (i). By Lemma A.1, maximum likelihood estimation is uni-
formly consistent. We can apply a Taylor expansion to obtain

0 =
∂ logLθ̂(sm)

∂β(sm) =
∂ logLθ(sm)

∂β(sm) +
∂2 logLθ∗(sm)

∂β(sm)β(sm)� {β̂(sm) − β(sm)},

where each element of the β(sm) component of θ∗(sm) is between β(sm) and
β̂(sm). Rewriting the above result,

n1/2{β̂(sm) − β(sm)} = −
{

1
n

∂2 logLθ∗(sm)

∂β(sm)∂β(sm)�

}−1{
n−1/2 ∂ logLθ(sm)

∂β(sm)

}
.
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By Assumption 4 and the uniform strong law of large numbers,

sup
sm∈S0

∣∣∣∣− 1
n

∂2 logLθ∗(sm)

∂β(sm)∂β(sm)� − Iβ∗(sm)

∣∣∣∣→ 0

and the information matrix Iβ∗(sm) converges to Iβ(sm) by the continuity of
Iβ(sm). Then as n → ∞, n1/2{β̂(sm) − β(sm)} converges to a Gaussian process
by Assumption 6 [34] with mean function zero and covariance operator⎡⎣ I−1

β(s) I−1
β(s)E

{
∂ logPθ(s)

∂β (∂ logPθ(t)
∂β )�

}
I−1
β(t)

I−1
β(t)E

{
∂ logPθ(t)

∂β (∂ logPθ(s)
∂β )�

}
I−1
β(s) I−1

β(t)

⎤⎦ .

Consequently, supsm∈S0

∥∥∥n1/2{β̂(sm) − β(sm)}
∥∥∥

2
= Op(1), completing the proof

of Theorem 1 (i).

Proof of Theorem 1 (ii). Using the smoothed estimator of β,

n1/2{β̃(s) − β(s)} =n1/2
M∑

m=1
K̃h1(sm − s)β̂(sm) − n1/2β(s)

=n1/2
M∑

m=1
K̃h1(sm − s){β̂(sm) − β(sm)}

+ n1/2
M∑

m=1
K̃h1(sm − s){β(sm) − β(s)}

=U1(s) + U2(s),

where the last equality defines U1 and U2. We first prove that U1 converges
weakly to a centered Gaussian Process. We may write that

β̂(sm) − β(sm)

=
{

n∑
i=1

X̂i(sm)�Σi(sm)−1Xi(sm)
}−1 n∑

i=1
X̂i(sm)�Σi(sm)−1Ẑi(sm)bi(sm)

+
[
{

n∑
i=1

X̂i(sm)�Σi(sm)−1Xi(sm)
}−1 n∑

i=1
X̂i(sm)�Σi(sm)−1εi,j(sm)

=V (sm) + R(sm).

By (5) and (7), we can write

M∑
m=1

K̃h1(sm − s)V (sm) = Δ(s, h1) + 1
K0(s, h1)

∫
Kh1(t− s)V (t)π(t)d(t)

= Δ(s, h1) + 1
K0(s, h1)

V (s)
∫

Kh1(t− s)π(t)d(t)
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+ 1
K0(s, h1)

∫
Kh1(t− s)[V (t) − V (s)]π(t)d(t)

= Δ(s, h1) + (I) + (II).

Lemma 3 implies that Δ(s, h1) converges uniformly to zero. (I) is asymptotically
tight since

(I) = 1
K0(s, h1)

V (s)K0(s, h1) = V (s),

where V (s) converges weakly to a Gaussian process. It follows that, when h1 →
0,

(II) ≤ sup
|t−s|≤h1

|V (t) − V (s)| 1
K0(s, h1)

∫
Kh1(t− s)π(t)d(t) = op(1) × 1 = op(1).

Consequently,
∑M

m=1 K̃h1(sm − s)V (sm) → V (s).
Moreover, n1/2∑M

m=1 K̃h1(sm−s)R(sm) = op(1) according to Lemma A.4, so
U1 converges to a Gaussian process with mean of zero and a covariance function
of

Σ(s, t)

= lim
n→∞

ΣX(s) 1
n

n∑
i=1

X̂i(s)�Σi(s)−1

⎡⎢⎣ Ẑ1(s)Σb(s, t)Ẑ1(t) . . .
...

. . .
...

. . . Ẑni(s)Σb(s, t)Ẑni(t)

⎤⎥⎦
Σi(t)−1X̂i(t)ΣX(t),

where ΣX(s) =
{ 1

n

∑n
i=1 X̂i(s)�Σi(s)−1X̂i(s)

}−1.
We next calculate U2(s). By a Taylor expansion,

U2(s) (12)

=n1/2
∑M

m=1 Kh1(sm − s){β(sm) − β(s)}∑M
m=1 Kh1(sm − s)

=n1/2Mh1
∫
K(μ){β(s + h1μ) − β(s)}π(s + h1μ)dμ[1 + Op{(Mh1)−1/2}]

Mh1
∫
K(μ)π(s + h1μ)dμ{1 + Op(Mh

−1/2
1 )}

=n1/2
∫
K(μ){β̇(s)h1μ + 0.5β̈(s)h2

1μ
2 + o(h2

1)}{π(s) + π̇(s)h1μ + o(h1)}dμ∫
K(μ){π(s) + π̇(s)h1μ + o(h1)}dμ

·

{1 + op(1)}

=n1/2 {0.5β̈(s)π(s) + β̇(s)π̇(s) + o(h1)}h2
1μ2(K)

π(s) + o(h1)
{1 + op(1)}

=n1/2{0.5β̈(s) + β̇(s)π̇(s)/π(s)}h2
1μ2(K){1 + op(1)}, (13)

where π̇(s) = ∂π(s)/∂s, β̇(s) = (∂β1(s)/∂s, . . . , ∂βp(s)/∂s)�, and
β̈(s) = (∂β2

1(s)/ ∂s2, . . . , ∂β2
p(s)/∂s2)�. This completes the proof of Theorem

1 (ii).
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A.3. Proof of Theorem 2

Proof of Theorem 2 (i). Define f0,1
i,j∗(s, s) = f0,1∗

i,j (s, s)(1, 0)�. Note that mini-
mizing SM (Bi(s)) is equivalent to minimizing

S∗
M (Bi(s))

=1
2

ni∑
j=1

M∑
m=1

{
yi,j(sm) − f(β̂(sm) + Bi(s)Z(sm − s), xi,j)

}2
K̃h2(sm − s).

The desired estimator is thus the solution to S′
M (Bi(s)) = 0.

Because S′
M is a continuous function, by the mean-value theorem, there ex-

ists B∗
i (s) whose elements are between those of Bi(s) and B̂i(s), satisfying

S′
M (B̂i(s)) = S′

M (Bi(s)) + S′′
M (B∗

i (s))(B̂i(s) − Bi(s)). As S′
M (B̂i(s)) = 0, we

have, by definition, that

B̂i(s) −Bi(s) = −S′′
M (B∗

i (s))−1S′
M (Bi(s)). (14)

We first calculate S∗′
M (Bi(s)). Recall that yi,j(sm) = f(β(sm) + bi(sm), xi,j) +

εi,j(sm) and f(β(sm) + Bi(s)Z(sm − s), xi,j) = f(β(sm) + bi(s) + ḃi(s)(sm −
s), xi,j). Under Assumptions 7–10 and by a Taylor expansion,

S∗′
M (Bi(s))

=
ni∑
j=1

M∑
m=1

{
yi,j(sm) − f(β̂(sm) + Bi(s)Z(sm − s), xi,j)

}
·

∂f(β̂(sm) + Bi(s)Z(sm − s), xi,j)/∂Bi(s) · K̃h2(sm − s)

=
ni∑
j=1

M∑
m=1

{
f(β(sm) + bi(sm), xi,j) − f(β̂(sm) + Bi(s)Z(sm − s), xi,j)

+ εi,j(sm)
}
× f0,1∗

i,j (sm, sm)K̃h2(sm − s){1 + Op(h2
2)}{1 + Op(n−1/2)}

=
[ ni∑

j=1

M∑
m=1

{
f(β(sm) + bi(sm), xi,j) − f(β(sm) + Bi(s)Z(sm − s))

}
·

f0,1∗
i,j (sm, sm)K̃h2(sm − s) +

ni∑
j=1

M∑
m=1

{
f(β(sm) + Bi(s)Z(sm − s), xi,j)

− f(β̂(sm) + Bi(s)Z(sm − s), xi,j)
}
f0,1∗
i,j (sm, sm)K̃h2(sm − s)

+
ni∑
j=1

M∑
m=1

εi,j(sm)f0,1∗
i,j (sm, sm)K̃h2(sm − s)

]
{1 + Op(h2

2) + Op(n−1/2)}

={S′
i,1(s) + S′

i,2(s) + S′
i,3(s)}{1 + Op(h2

2) + Op(n−1/2)}. (15)
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Similar to calculating U2 in (12), the three terms above can be bounded, with

S′
i,1(s)

=
ni∑
j=1

M∑
m=1

{f0,1
i,j (sm, s)� + Op(h2)}{0.5b̈i(s)(sm − s)2 + op(h2

2)}f0,1∗
i,j (sm, sm)·

K̃h2(sm − s)

=
ni∑
j=1

M∑
m=1

{f0,1
i,j (s, s)� + Op(h2)}{0.5b̈i(s)(sm − s)2 + op(h2

2)}·

{f0,1∗
i,j (s, s) + Op(h2)}K̃h2(sm − s)

→
[{∫

{f0,1
i,j (s, s)� + Op(h2)}{0.5b̈i(s)h2

2μ
2 + op(h2

2)}{f0,1∗
i,j (s, s) + Op(h2)}·

K(μ)π(s + h2μ)dμ
}
/{π(s) + Op(h2

2)}
]
× [1 + Op{(Mh2)−1/2}]

=
ni∑
j=1

0.5f0,1
i,j (s, s)�b̈i(s)h2

2f
0,1∗
i,j (s, s)[1 + Op(h2

2) + Op{(Mh2)−1/2}]. (16)

S′
i,2(s)

=
ni∑
j=1

M∑
m=1

{f1,0
i,j (s, s)� + �O�

p (h2)} �Op(n−1/2){f0,1∗
i,j (s, s) + Op(h2)}K̃h2(sm − s)

→
ni∑
j=1

f1,0
i,j (s, s)� �Op(n−1/2)f0,1∗

i,j (s, s){1 + Op(h2)}π(s)
π(s) + Op(h2

2)
[1 + Op{(Mh2)−1/2}],

(17)

where �Op(rn) denotes a vector whose elements are all Op(rn); and

S′
i,3(s) =

ni∑
j=1

M∑
m=1

εi,j(sm){f0,1∗
i,j (s, s) + Op(h2)}K̃h2(sm − s)

=
ni∑
j=1

f0,1∗
i,j (s, s){1 + Op(h2)}

M∑
m=1

εi,j(sm)K̃h2(sm − s). (18)

By Assumption 10 and Theorem 1 (i),

sup
s∈S

|S′
i,1(s)|

≤
ni∑
j=1

sup
s∈S

∣∣∣∣0.5f0,1
i,j (s, s)�b̈i(s)h2

2f
0,1∗
i,j (s, s)[1 + Op(h2

2) + Op{(Mh2)−1/2}]
∣∣∣∣

=Op(nih
2
2), (19)
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sup
s∈S

|S′
i,2(s)|

≤
ni∑
j=1

sup
s∈S

∣∣∣∣f1,0
i,j (s, s)� �Op(n−1/2)f0,1∗

i,j (s, s){1 + Op(h2)}[1 + Op{(Mh2)−1/2}]
∣∣∣∣

=Op(nin
−1/2), (20)

and

sup
s∈S

|S′
i,3(s)|

≤
ni∑
j=1

sup
s∈S

∣∣∣∣ f0,1∗
i,j (s, s){1 + Op(h2)}

M−1∑M
m=1 Kh2(sm − s)

∣∣∣∣ sup
s∈S

∣∣∣∣M−1
M∑

m=1
εi,j(sm)Kh2(sm − s)

∣∣∣∣
≤

ni∑
j=1

sup
s∈S

∣∣∣∣f0,1∗
i,j (s, s){1 + Op(h2)}

π(s) + Op(h2
2)

∣∣∣∣Op{(Mh2)−1/2|log h2|1/2}

→Op{ni(Mh2)−1/2|log h2|1/2}. (21)

We next calculate S′′
M (B∗

i (s)). Define

b∗i (s) = B∗
i (s)(1, 0)�,

f0,k∗
i,j (β̂(sm), B∗

i (s)Z(sm − s)) = ∂kf(β̂(sm) + B∗
i (s)Z(sm − s), xi,j)/∂B∗

i (s)k,

f0,k
i,j (β(s), b∗i (s)) = ∂kf(β(s) + b∗i (s), xi,j)/∂b∗i (s)k,

we have

f0,k
i,j (β̂(sm), B∗

i (s)Z(sm − s)) = f0,k
i,j (β(s), b∗i (s)){1 + Op(h2) + Op(n−1/2)}.

Similar to (15), we have that

S′′
M (B∗

i (s))

=
ni∑
j=1

M∑
m=1

[
− f0,1∗

i,j (β̂(sm), B∗
i (s)Z(sm − s))f0,1∗

i,j (β̂(sm), B∗
i (s)Z(sm − s))�

+ {yi,j(sm) − f(β̂(sm) + B∗
i (s)Z(sm − s), xi,j)}f0,2∗

i,j (β̂(sm), B∗
i (s)Z(sm − s))

]
·

K̃h2(sm − s)

=
[
−

ni∑
j=1

M∑
m=1

f0,1∗
i,j (β(s), b∗i (s))2K̃h2(sm − s)

+
ni∑
j=1

M∑
m=1

{
f(β(sm) + bi(sm), xi,j) − f(β(sm) + Bi(s)Z(sm − s), xi,j)

}
·

f0,2∗
i,j (β(s), b∗i (s))K̃h2(sm − s)

+
ni∑
j=1

M∑
m=1

{
f(β(sm) + Bi(s)Z(sm − s), xi,j)
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− f(β(sm) + B∗
i (s)Z(sm − s), xi,j)

}
f0,2∗
i,j (β(s), b∗i (s))K̃h2(sm − s)

+
ni∑
j=1

M∑
m=1

{
f(β(sm) + B∗

i (s)Z(sm − s), xi,j)

− f(β̂(sm) + B∗
i (s)Z(sm − s), xi,j)

}
f0,2∗
i,j (β(s), b∗i (s))K̃h2(sm − s)

+
ni∑
j=1

M∑
m=1

εi,j(sm)f0,2∗
i,j (β(s), b∗i (s))K̃h2(sm − s)

]
{1 + Op(h2) + Op(n−1/2)}

= {S′′
i,1(s) + S′′

i,2(s) + S′′
i,3(s) + S′′

i,4(s) + S′′
i,5(s)}{1 + Op(h2) + Op(n−1/2)}.

(22)

It follows that

S′′
i,1(s) = −

ni∑
j=1

f0,1∗
i,j (β(s), b∗i (s))2, (23)

so by a Taylor expansion,

S′′
i,3(s)

=
ni∑
j=1

M∑
m=1

f0,1∗
i,j (β(sm), B∗∗

i (s)Z(sm − s)){B∗∗
i (s) −B∗

i (s)}·

f0,2∗
i,j (β(s), b∗i (s))K̃h2(sm − s)

→
ni∑
j=1

f0,1∗
i,j (β(s), b∗∗i (s)){B∗∗

i (s) −B∗
i (s)}f0,2∗

i,j (β(s), b∗i (s))·

[1 + Op(h2) + Op{(Mh2)−1/2}], (24)

where all elements of B∗∗
i (s) are between those of B∗

i (s) and Bi(s), and b∗∗i (s) =
B∗∗

i (s)(1, 0)�. Furthermore, similar to (19)–(21), we have that

sup
s∈S

|S′′
i,2(s)| → Op(nih

2
2), (25)

sup
s∈S

|S′′
i,4(s)| → Op(nin

−1/2), (26)

and

sup
s∈S

|S′′
i,5(s)| → Op{ni(Mh2)−1/2|log h2|1/2}. (27)

We next show the uniform consistency of b̂i(s). From (23), we know that S′′
i,1(s) =

Op(1) under Assumption 10. Combining (14), (19)–(21), and (23)–(27),

sup
s∈S

|b̂i(s) − bi(s)|

={Op(1) + op(1)}−1[Op(h2
2) + Op(n−1/2) + Op{(Mh2)−1/2|log h2|1/2}]·
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{1 + Op(h2
2) + Op(n−1/2)}

=Op{h2
2 + n−1/2 + (Mh2)−1/2|log h2|1/2},

thus completing the proof of Theorem 2 (i).

Proof of Theorem 2 (ii). By (i),

sup
s∈S

|S′′
i,3(s)| = niOp{h2

2 + n−1/2 + (Mh2)−1/2|log h2|1/2}.

Consequently,

S′′
M (B∗

i (s))

→−
ni∑
j=1

f0,1∗
i,j (s, s)2{1 + Op(h2

2) + Op(n−1/2) + (Mh2)−1/2|log h2|1/2}. (28)

On the other hand, since E(−S−1
M ′′S′

i,3(s) | S0, X, b) = 0, by (16)–(18),

S′
M (Bi(s))

→
ni∑
j=1

[0.5f0,1
i,j (s, s)�b̈i(s)h2

2{1 + op(1)} + f1,0
i,j (s, s)� �Op(n−1/2)]f0,1∗

i,j (s, s)

× [1 + Op(h2
2) + Op(n−1/2)]. (29)

Combining (29) and (28), it can be shown that

E{b̂i(s)|S0, X, b} − bi(s)

=[E{B̂i(s)|S0, X, b} −Bi(s)](1, 0)�

=Fi(s)
ni∑
j=1

{0.5f0,1
i,j (s, s)�b̈i(s)h2

2 + f1,0
i,j (s, s)� �Op(n−1/2)}f0,1

i,j∗(s, s){1 + op(1)},

where Fi(s) =
{∑ni

j=1 f
0,1∗
i,j (s, s)2

}−1
.

Furthermore,

b̂i(s) −E{b̂i(s) | S, X, b} = S′′
M (B∗

i (s))−1S′
i,3(s)(1, 0)�{1 + op(1)}

= Fi(s)
ni∑
j=1

f0,1
i,j∗(s, s)

M∑
m=1

εi,j(sm)K̃h2(sm − s){1 + op(1)}.

Consequently,

cov{b̂i(s), b̂i(t) | S0, X, b}

= Fi(s)
ni∑
j=1

f0,1
i,j∗(s, s)f

0,1
i,j∗(t, t)

�
∑M

m=1 σ
2
ε(sm)Kh2(sm − s)Kh2(sm − t)

{
∑M

m=1 Kh2(sm − s)}{
∑M

m=1 Kh2(sm − t)}
·
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Fi(t){1 + op(1)}

= Fi(s)
ni∑
j=1

(Mh2)−1 ∫ σ2
ε(s + h2μ)K(μ)K(μ + s−t

h2
)π(s + h2μ)dμ∫

K(μ)π(s + h2μ)dμ
∫
K(μ)π(t + h2μ)dμ

·

f0,1
i,j∗(s, s)f

0,1
i,j∗(t, t)

�[1 + Op{(Mh2)−1/2}]

⎧⎨⎩
ni∑
j=1

f0,1
i,j∗(t, t)

2

⎫⎬⎭
−1

{1 + op(1)}

= (Mh2)−1Fi(s)
ni∑
j=1

f0,1
i,j∗(s, s)f

0,1
i,j∗(t, t)

�π(s)Op(1)K∗((s− t)/h)
π(s)π(t) Fi(t)·

{1 + op(1)},

thus completing the proof of Theorem 2 (ii).

Proof of Theorem 2 (iii)–(iv). By (i) and (ii),

E[{b̂i(s) − bi(s)}⊗ | S0, X, b]
= [E{b̂i(s) − bi(s) | S0, X, b}]⊗ + var[{b̂i(s) − bi(s)} | S0,X,b]

=

⎡⎣Fi(s)
ni∑
j=1

{0.5f0,1
i,j (s, s)�b̈i(s)h2

2 + f1,0
i,j (s, s)� �Op(n−1/2)}f0,1

i,j∗(s, s)

⎤⎦⊗

·

{1 + op(1)}

+ (Mh2)−1v0(K)π(s)−1Fi(s)
ni∑
j=1

f0,1
i,j∗(s, s)

⊗Fi(s)Op(1).

As E[{b̂i(s) − bi(s)}⊗ | X, b] = E(E[{b̂i(s) − bi(s)}⊗ | S, X, b] | S), we conclude
that (iii) and (iv) hold.

A.4. Proof of Theorem 3

Proof of Theorem 3. Since (ii) follows immediately from (i) [42], we only prove
(i) here. Defining Δi(s) = b̂i(s) − bi(s), it can be shown that

Σ̂b(s, t) = N−1
n∑

i=1
nib̂i(s)b̂i(t)�

= N−1
n∑

i=1
nibi(s)bi(t)� + N−1

n∑
i=1

nibi(s)Δi(t)�

+ N−1
n∑

i=1
niΔi(s)bi(t)� + N−1

n∑
i=1

niΔi(s)Δi(t)�

= (I) + (II) + (III) + (IV). (30)
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We first examine (I). By Assumption 6, {bi(s)bi(t)�} is P -Donsker so that
N−1∑n

i=1 nibi(s)bi(t)� converges to a centered Gaussian process with a co-
variance matrix of Σb(s, t). Therefore,

sup
(s,t)

|N−1
n∑

i=1
nibi(s)bi(t)� − Σb(s, t)| = Op(n−1/2). (31)

We next examine (II). Define S∗
i,k(s) =

{∑ni

j=1 f
0,1∗
i,j (s, s)2

}−1
S′
i,k(s)(1, 0)�

(k = 1, 2, 3). From the proof of Theorem 1, Δi(s) = {S∗
i,1(s) + S∗

i,2(s) +
S∗
i,3(s)}{1 + op(1)}. Consequently,

N−1
n∑

i=1
nibi(s)Δi(t)�

≤ N−1{|
n∑

i=1
nibi(s)S∗

i,1(t)�| + |
n∑

i=1
nibi(s)S∗

i,2(t)�| + |
n∑

i=1
nibi(t)S∗

i,3(t)�|}·

{1 + op(1)},

where

N−1|
n∑

i=1
nibi(s)S∗

i,1(t)�|

≤N−1
n∑

i=1
ni sup

s∈S
|bi(s)|(1, 0) sup

t∈S
|S′

i,1(t)�|Fi(t) = Op(h2
2).

Similarly,

N−1|
n∑

i=1
nibi(s)S∗

i,2(t)�|

≤N−1
n∑

i=1
ni sup

s∈S
|bi(s)|(1, 0) sup

s∈S
|S′

i,2(t)�|Fi(t) = Op(n−1/2).

It follows from Lemma A.5 that

sup
(s,t)

N−1|
n∑

i=1
nibi(s)S∗

i,3(t)�|

≤ sup
(s,t)

N−1|
n∑

i=1
niε̄i(t)bi(s)|(1, 0) sup

t,xi,j

|f0,1∗
i,j (t, t)�| sup

t,xi,j

niFi(t){1 + op(1)}

= Op{(logn/n)1/2},

from which we obtain that

sup
(s,t)

(II) = Op{h2
2 + (logn/n)1/2}. (32)
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Similarly, for (III),

sup
(s,t)

(III) = Op{h2
2 + (logn/n)1/2}. (33)

Lastly, express (IV) as

|
n∑

i=1
niΔi(s)Δi(t)�|

≤ sup
(s,t)

|
n∑

i=1
niS

∗
i,1(s)S∗

i,1(t)�| + sup
(s,t)

|
n∑

i=1
niS

∗
i,2(s)S∗

i,2(t)�|

+ sup
(s,t)

|
n∑

i=1
niS

∗
i,3(s)S∗

i,3(t)�| + 2 sup
(s,t)

{|
n∑

i=1
niS

∗
i,1(s)S∗

i,2(t)�|

+ |
n∑

i=1
niS

∗
i,1(s)S∗

i,3(t)�| + |
n∑

i=1
niS

∗
i,1(s)S∗

i,3(t)�|}.

Since

sup
s∈S

|S∗
i,1(s)|

= sup
s∈S

∣∣∣∣Fi(s)
ni∑
j=1

0.5f0,1
i,j (s, s)�b̈i(s)h2

2f
0,1∗
i,j (s, s)[1 + op(1)]

∣∣∣∣ = Op(h2
2),

we have that

sup
(s,t)

N−1|
n∑

i=1
niS

∗
i,1(s)S∗

i,1(t)�| = Op(h4
2). (34)

Similarly,

sup
s∈S

|S∗
i,2(s)|

= sup
s∈S

∣∣∣∣Fi(s)
ni∑
j=1

f1,0
i,j (s, s)� �Op(n−1/2)f0,1∗

i,j (s, s){1 + op(1)}
∣∣∣∣ = Op(n−1/2),

and so

sup
(s,t)

N−1|
n∑

i=1
niS

∗
i,2(s)S∗

i,2(t)�| = Op(n−1). (35)

By Lemma A.5,

sup
(s,t)

N−1|
n∑

i=1
niS

∗
i,3(s)S∗

i,3(t)�|

= sup
(s,t)

N−1

∣∣∣∣∣
n∑

i=1
niε̄i(s)ε̄i(t)nFi(s)nFi(t){1 + op(1)}

∣∣∣∣∣
= Op(1) sup

(s,t)
N−1|

n∑
i=1

niε̄i(s)ε̄i(t)| = Op{(Mh2)−1 + (logn/n)1/2}, (36)



Functional nonlinear mixed effects model 1387

sup
(s,t)

N−1|
n∑

i=1
niS

∗
i,1(s)S∗

i,2(t)�|

= sup
(s,t)

N−1
∣∣∣∣ n∑
i=1

niFi(s)
ni∑
j=1

0.5f0,1
i,j (s, s)�b̈i(s)h2

2f
0.1∗
i.j (s, s)Op(n−1/2)

∣∣∣∣
= Op(h2

2n
−1/2), (37)

and

sup
(s,t)

N−1|
n∑

i=1
niS

∗
i,1(s)S∗

i,3(t)�|

= sup
(s,t)

N−1
∣∣∣∣ n∑
i=1

niε̄i(t)
{
Fi(s)

ni∑
j=1

0.5f0.1
i.j (s, s)�b̈i(s)h2

2f
0,1∗
i,j (s, s)

}
nFi(t)·

{1 + op(1)}
∣∣∣∣

= Op(1) sup
(s,t)

N−1|
n∑

i=1
niε̄i(t)b̈i(s)h2

2|

= Op{(logn/n)1/2}. (38)

Then by Lemma A.2,

sup
(s,t)

N−1|
n∑

i=1
niS

∗
i,2(s)S∗

i,3(t)�| = sup
(s,t)

N−1
∣∣∣∣ n∑
i=1

niε̄i(t)Op(n−1/2)nFi(t)
∣∣∣∣

= Op{(Mnh2)−1/2|log h1|1/2}. (39)

Combining (34)–(39),

sup
(s,t)

(IV) = Op{h4
2 + (Mh2)−1 + (logn/n)1/2}. (40)

Consequently, combining (31)–(33) and (40) with (30),

sup
(s,t)

|Σ̂b(s, t) − Σb(s, t)| = Op{h2
2 + (Mh2)−1 + (logn/n)1/2}.

This completes the proof of Theorem 3.

A.5. Proof of Theorem 4

Proof. Using similar arguments as in Theorem 7 of Zhang & Chen (2007), the
conclusion of Theorem 4(i) holds. Therefore we omit the proof of Theorem 4(i)
here.

We next show Theorem 4(ii). Recall that d(s) = R[β̃(s) − bias{β̃(s)}] −
b0(s). Let ν(s) = {RΣ̂(s, s)R�}−1/2d(s) and AGP(η, γ) denotes an asymptotic
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Gaussian process with mean function η(t) and covariance function γ(s, t). Under
H1n, from the proof of Theorem 1(ii), we know ν(s) ∼ AGP(ην , γν), where
ην(s) = {RΣ̂(s, s)R�}−1/2n−κ/2d(s) and γν(s, t) = {γν,ij(s, t)}1≤i,j≤p0 with
γν,ij(s, t) = cov(νi(s), νj(t)). Using Mercer’s theorem, then there exists a set of
orthonormal basis functions ζk = (ζk1, · · · , ζkp0) in H such that

γν(s, t) =
∞∑
k=1

λkζk(s)ζ
�
k (t),

where H is a Hibert space of p0-dimensional vectors of functions in L2(S) with
〈ζk, ζk′〉H = δkk′ and λ1, . . . , λk, . . . are the decreasingly-ordered eigenvalues of
γν(s, t). Without loss of generality, let m denote the number of positive eigen-
values. When all the eigenvalues are positive, we let m = ∞. Let ξk = 〈ν, ζk〉H,
we know ξk ∼ N(μk, λk), where μk = 〈ην , ζk〉H. It then follows Thereom 1 of
[39], we have

SN =
∫ 1

0
ν(s)�ν(s)ds =

m∑
k=1

λkAk +
∞∑

k=m+1

μ2
k,

where Ak ∼ χ2(λ−1
k μ2

k). Note that the null distribution of SN is mixture of
χ2 since μk = 0 holds under H0. Under H1n, we have μ2

k = n1−κφ2
k, where

φk =
∑p0

j=1
∫ 1
0 {RnΣ̂(s, s)R�}−1/2dj(s) ζkj(s)ds. Therefore, we have

SN =
m∑

k=1

λkZ
2
k + 2n(1−κ)/2φλZk + n1−κφ2,

where φλ =
∑m

k=1 λ
1/2
k φk, φ2 =

∑m
k=1 φ

2
k > 0, and ZK ∼ N(0, 1). Using similar

arguments in Theorem 3 of [39], we know that SN ∼ AN(n1−κφ2, 4n1−κφ2
k)

under H1n. Therefore, we have P (SN > SN,α|H1n) = Φ{n(1−κ)/2φ2/(2φk)} +
o(1) → 1 as n → ∞. Hence, we have completed the proof of Theorem 4.

A.6. Proof of Theorem 5

Proof. Recalling the uniform consistency of β̂ and b̂i established in Theorems 1
and 2, we approximate logLθ(s) as

logL∗
θ(s)

= − 1
2

n∑
i=1

[log|Σi(s)| + σ2
ε(s){ω̂i(s) − X̂i(s)β(s)}�Σi(s)−1{ω̂i(s) − X̂i(s)β(s)}]

− N

2 log(2πσ2).

Define ri(s) = ω̂i(s) − X̂i(s)β(s) and

G̃(s)(g) =n1/2
M∑

m=1
K̃h1(sm − s)

{
ΣX(sm)

n∑
i=1

X̂i(sm)�Σi(sm)−1ri(sm)τ (g)
i

}
.
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We will prove Theorem 5 in three steps. First, we establish the unconditional
weak convergence of G̃(s)(g). Second, we prove the weak convergence of G̃(s)(g)
conditional on the data. Third, we prove the weak convergence of G(s)(g) con-
ditional on the data by showing that G̃(s)(g) and G(s)(g) are asymptotically
equivalent as n → ∞.

First, noting that

∂ logL∗
θ(s)

∂β(s) = −σ2
ε(s)

n∑
i=1

X̂i(s)�Σi(s)−1{ω̂i(s) − X̂i(s)β(s)}

and
∂2 logL∗

θ(s)

∂β(s)2 = σ2
ε(s)

n∑
i=1

X̂i(s)�Σi(s)−1X̂i(s),

we have that

G̃(s)(g) ≈ n1/2
M∑

m=1
K̃h1(sm − s)

[{
∂2 logL∗

θ(sm)

∂β(sm)2

}−1 n∑
i=1

τ
(g)
i

∂ logPθ(i, sm)
∂β(sm)

]
.

Treating τ
(g)
i ∂ logPθ(i, sm)/∂β(sm) as a new covariate vector, we can apply the

arguments in the proof of Theorem 1 (i) to conclude that G̃(s)(g) converges
weakly to G̃(s) and, thus, G̃(s)(g) is asymptotically measurable.

Second, rewrite G̃(s)(g) as

G̃(s)(g) ≈ n1/2
n∑

i=1
τ

(g)
i

M∑
m=1

K̃h1(sm − s)
{
∂2 logL∗

θ(sm)

∂β(sm)2

}−1
∂ logPθ(i, sm)

∂β(sm) .

Therefore, conditional on the data, G̃(s)(g) is a normal random vector with a
mean of zero. To calculate its variance, we take an expectation with respect to
τ

(g)
i and obtain

varτ [G̃(s)(g)] ≈ n

n∑
i=1

⎧⎨⎩
M∑

m=1
K̃h1(sm − s)

(
∂2 logL∗

θ(sm)

∂β(sm)2

)−1
∂ logPθ(i, sm)

∂β(sm)

⎫⎬⎭
⊗

→ n−1
n∑

i=1

{
M∑

m=1
K̃h1(sm − s)I−1

β(sm)
∂ logPθ(i, sm)

∂β(sm)

}⊗

.

Since E{∂ logPθ(i, sm)/∂β(sm)} = 0,

varτ{G̃(s)(g)} → E

{
M∑

m=1
K̃h1(sm − s)I−1

β(sm)
∂ logPθ(i, sm)

∂β(sm)

}⊗

= var
{

M∑
m=1

K̃h1(sm − s)I−1
β(sm)

∂ logPθ(i, sm)
∂β(sm)

}
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= var
[
V (s)π(s) + Op(h2

2)
π(s) + Op(h2

2)
{1 + (Mh2)−1/2}

]
= Σ(s, s) + Op{h2

2 + (Mh2)−1/2}.

Similarly, we can show that

covτ{G̃(s)(g), G̃(t)(g)} = Σ(s, t) + Op{h2
2 + (Mh2)−1/2}.

Following the proof of Theorem 5 in [42], we can obtain the weak convergence of
G̃(s)(g) via the Cramer-Wald method. From these arguments, we can conclude
that

Δn,β = n−1 sup
s∈S

n∑
i=1

tr
{ M∑

m=1
K̃h1(sm − s)

(
ΣX(sm)[X̂i(sm)�Σi(sm)−1

{β̂(sm) − β(sm)}]⊗
)}

= n−1 sup
s∈S

tr
[ M∑
m=1

K̃h1(sm − s) {ΣX(sm)Op(1)}
]

= Op(n−1).

This completes the proof of Theorem 5.
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