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Abstract: Compositional data arise in many areas of research in the nat-
ural and biomedical sciences. One prominent example is in the study of the
human gut microbiome, where one can measure the relative abundance of
many distinct microorganisms in a subject’s gut. Often, practitioners are
interested in learning how the dependencies between microbes vary across
distinct populations or experimental conditions. In statistical terms, the
goal is to estimate a covariance matrix for the (latent) log-abundances of
the microbes in each of the populations. However, the compositional na-
ture of the data prevents the use of standard estimators for these covariance
matrices. In this article, we propose an estimator of multiple covariance ma-
trices which allows for information sharing across distinct populations of
samples. Compared to some existing estimators, which estimate the covari-
ance matrices of interest indirectly, our estimator is direct, ensures positive
definiteness, and is the solution to a convex optimization problem. We com-
pute our estimator using a proximal-proximal gradient descent algorithm.
Asymptotic properties of our estimator reveal that it can perform well in
high-dimensional settings. We show that our method provides more reliable
estimates than competitors in an analysis of microbiome data from subjects
with myalgic encephalomyelitis/chronic fatigue syndrome and through sim-
ulation studies.
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1. Introduction

High-dimensional compositional data arise in many areas of modern science. To
study the human gut microbiome, for example, practitioners measure the rela-
tive abundances of various microbes using next-generation sequencing followed
by alignment and normalization [14]. For each subject in a study, the resulting
measurement is a p-dimensional vector which has nonnegative entries and sums
to one [18, 33]. More generally, compositional data arise when, for example, one
observes multivariate count-valued data wherein the total counts in a sample is
an experimental artifact. Here, we focus on compositional data which belong to
the set

C
p−1 =

⎧⎨⎩x ∈ R
p :

p∑
j=1

xj = 1, xj > 0 for each j ∈ [p]

⎫⎬⎭ ,

where [p] = {1, . . . , p} for a positive integer p.
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To make matters concrete, let X = (X1, . . . , Xp)� ∈ C
p−1 be a random

composition whose components correspond to the variables of interest. Letting
W = (W1, . . . ,Wp)� denote the corresponding latent abundances, also known
as the basis [1], we assume

Xj = Wj∑p
k=1 Wk

, j ∈ [p],

where each Wj ∈ (0,∞). When characterizing the dependence between any two
components from the compositional vector, the parameter of interest is often
the basis covariance matrix Ω∗ ∈ S

p
+, where

Ω∗
jk = Cov {log(Wj), log(Wk)} , (j, k) ∈ [p] × [p],

and S
p
+ denotes the set of p× p symmetric positive definite matrices.

In many studies involving compositional microbiome data, practitioners are
interested in modeling the interactions and dependencies between microbe abun-
dance [11, 22]. For instance, one may want to estimate whether two microbes
occur in higher frequencies jointly. The basis covariance matrix Ω∗ provides one
route for addressing such questions [19, 23, 16], but is not straightforward to
estimate from independent realizations of X because W is latent. One common
approach relies on the estimation of the variation matrix Θ∗ [2, Chapter 4],
defined elementwise by

Θ∗
jk = Var {log(Xj/Xk)} ,

= Var {log(Wj) − log(Wk)}
= Var {log(Wj)} + Var {log(Wk)} − 2Cov {log(Wj), log(Wk)} .

Thus, letting ω∗ = diag(Ω∗) ∈ R
p and 1p = (1, 1, . . . , 1)� ∈ R

p,

Θ∗ = ω∗1�
p + 1pω

∗� − 2Ω∗. (1.1)

To define an estimator of Θ∗, let xi = (xi1, . . . , xip)� ∈ C
p−1, i ∈ [n], de-

note independent realizations of X. Let also zijk = log(xij/xik) and z̄jk =
n−1∑n

i=1 zijk for all (j, k) ∈ [p] × [p]. The sample estimator Θ̂ is defined ele-
mentwise by

Θ̂jk = 1
n

n∑
i=1

(zijk − z̄jk)2.

While Θ̂ is a natural estimator of Θ∗, it is unclear how to use it to estimate Ω∗

in general because there are infinitely many Ω̂ such that Θ̂ = ω̂1�
p +1pω̂

�−2Ω̂.
Namely, the diagonal entries of Θ̂ and ω̂1�

p + 1pω̂
� − 2Ω̂ are zero, so there

are p(p − 1)/2 unique equalities but p(p + 1)/2 unknowns in Ω̂. However, if
one assumes that many entries of Ω∗ are zero, then it can be estimated based
on (1.1). Cao, Lin and Li [7] proved that if p ≥ 5 and Ω∗ has fewer than (p− 1)
nonzero off-diagonal entries, then no two Ω∗ correspond to the same Θ∗. Thus,
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if one could assume s < p− 1 off-diagonal entries of Ω∗ are nonzero, one could
consider the estimator

arg min
Ω=Ω�

‖Θ̂ − ω1�
p − 1pω

� + 2Ω‖2
F subject to ‖Ω−‖0 ≤ s, (1.2)

where Ω− denotes the matrix Ω with its diagonal entries set to zero, ‖A‖2
F =

tr(A�A) =
∑

j,k A
2
jk is the squared Frobenius norm of a matrix A, and ‖A‖0 =∑

j,k 1(Ajk �= 0) counts the number of nonzero entries in A. In practice, assum-
ing only s < p− 1 off-diagonal elements are non-zero is often too restrictive. Of
course, (1.2) could also be used with s ≥ p−1, but due to the L0 constraint, (1.2)
is the solution to a nonconvex optimization problem and is computationally
challenging for large p.

In view of (1.2) and its limitations, and given that the L1 norm is a convex
relaxation of the L0 norm, a natural alternative is

arg min
Ω=Ω�

{
‖Θ̂ − ω1�

p − 1pω
� + 2Ω‖2

F + λ‖Ω−‖1

}
, (1.3)

where ‖A‖1 =
∑

j,k |Ajk| for a matrix A. Cao, Lin and Li [7] described their
estimator as a “one-step approximation to (1.3)”, but did not study (1.3). Ap-
pealingly, the problem in (1.3) can be recast as an L1-penalized least squares
problem and computed via existing algorithms. However, neither (1.2), (1.3),
nor the method of Cao, Lin and Li [7] provide estimates which are guaranteed
to be positive definite, or even nonnegative definite (see Section 2.2). Replacing
the feasible set in (1.2) or (1.3) by S

p
+, or a subset thereof, complicates com-

putation substantially. For example, even in the context of standard covariance
matrix estimation (i.e., when the log(Wj) are observable), enforcing sparsity
and positive definiteness simultaneously is challenging [4, 31, 38, 37].

In many applications, one requires a basis covariance matrix estimate from
multiple distinct populations. For example, in our motivating data analysis, the
goal is to compare how the microbes interact in the gut of patients with myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS) versus controls [13]. To
estimate the two basis covariance matrices, one could apply existing estimators
to each of the populations (ME/CFS patients and controls) separately. However,
sample sizes are often small relative to the dimension of the basis covariance. For
example, there are only 37 and 47 control and ME/CFS patients, respectively,
used to estimate both 39 × 39 basis covariance matrices.

A more efficient approach would estimate the two covariance matrices jointly
in order to borrow information across populations. If, for instance, the basis
covariances have similar sparsity patterns, exploiting this shared information
across populations can substantially improve efficiency. Joint estimation is es-
pecially common in the literature on estimating sparse covariance and inverse
covariance matrices from multivariate normal data collected on multiple popu-
lations [5, 15, 8, 28, 21, 6, 32, 29]. In the context of estimating basis covariance
matrices from microbiome data, it is natural to assume the covariance matri-
ces have similar sparsity patterns. Biologically, it is often reasonable to assume
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Fig 1. Estimated correlation networks for controls and patients with ME/CFS [13] using the
method of Cao, Lin and Li [7]. Each node corresponds to an OTU as described in Section
7. Green edges denote positive estimated correlations, red edges denote negative estimated
correlations, and the absence of an edge indicates an estimated correlation of zero. The thick-
ness of an edge indicates the magnitude of the correlation: thicker corresponds to a larger
magnitude. Panel (a) is the network estimated from control patients while panel (b) is the
network estimated from patients with ME/CFS.

there are microbes whose abundances are uncorrelated in all the populations
in a study. For example, in Section 7, when we estimate the basis covariance
matrices for ME/CFS patients and controls using our method, which shares
information across populations, we estimate identical sparsity patterns. In con-
trast, when we estimate these matrices separately using an existing method, few
estimated nonzero correlations are shared between populations (Figure 1). We
investigate the reliability of these estimates in Section 7.2.

In this article, we study (1.3) under positive definite constraints, and propose
a generalization of (1.3) for estimating multiple covariance matrices simultane-
ously. We establish asymptotic error bounds for both the single and multiple
population versions of our estimator, and we propose an efficient algorithm for
their computation. In simulation studies and our analysis of the ME/CFS mi-
crobiome data, we demonstrate that our methods can provide more reliable
estimates of the covariance matrices of interest than existing competitors.

2. Methodology

2.1. Multiple basis covariance matrix estimation

In the remainder of this article, we let the subscript (h) denote data or popula-
tion parameters from the hth population, h ∈ [H] for some H ≥ 1. For example,
x(h)i ∈ R

p is the vector with compositional data for observation i ∈ [n(h)] in the
hth population. Similarly, Ω∗

(h) is the basis covariance for the hth population.
We focus on estimating Ω∗

(1), . . . ,Ω∗
(H) using the data {x(h)i ∈ R

p : h ∈
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[H], i ∈ n(h)}. As argued in Section 1, one can estimate any Θ∗
(h) using

Θ̂(h)jk = 1
n(h)

n(h)∑
i=1

(z(h)ijk − z̄(h)jk)2, (j, k) ∈ [p] × [p],

where z(h)ijk = log(x(h)ij/x(h)ik) and z̄(h)jk = n−1
(h)
∑n(h)

i=1 z(h)ijk.
To describe our estimator, define Ω ∈ R

H×p×p as the three-way tensor where
Ωh·· = Ω(h) ∈ R

p×p for h ∈ [H] and Ω·jk = (Ω(1)jk, . . . ,Ω(H)jk)� ∈ R
H for

(j, k) ∈ [p] × [p]. We present a visualization of the tensor Ω in Figure 2. The
mode-1 fibers, Ω·jk, are vectors containing the (j, k)th entry of all the Ω(h).
Assuming sparsity patterns are shared across populations is thus equivalent to
assuming Ω∗

·jk = 0 for many pairs (j, k). Finally, let ω(h) = diag(Ω(h)) for
h ∈ [H].

Generalizing (1.3) with an additional positive definiteness constraint, we pro-
pose to estimate Ω∗ using

arg min
Ω∈RH×p×p

H∑
h=1

(
‖Θ̂(h) − ω(h)1

�
p − 1pω

�
(h) +2Ω(h)‖2

F + λ‖Ω−
(h)‖1

)
+ γ

∑
j �=k

‖Ω·jk‖2

subject to Ω(h) = Ω�
(h), Ω(h) � εIp for all h ∈ [H], (2.1)

where λ ≥ 0, γ ≥ 0, and ε ≥ 0 are user-specified tuning parameters, ‖ · ‖2
denotes the Euclidean norm of a vector, and A � εIp means that A − εIp is
positive semidefinite.

The estimator (2.1) imposes both a lasso-type penalty on the off-diagonal
entries of the Ω(h), as well as a group lasso penalty on the mode-1 fibers of
the tensor Ω. Note that if H = 1, taking either λ = 0 or γ = 0 with the
other nonzero, (2.1) simplifies to (1.3) with a positive definiteness constraint.
For example, if γ = 0, then (2.1) simplifies to the estimator

arg min
Ω(h)∈Rp×p

(
‖Θ̂(h) − ω(h)1

�
p − 1pω

�
(h) + 2Ω(h)‖2

F + λ‖Ω−
(h)‖1

)
, (2.2)

subject to Ω(h) = Ω�
(h), Ω(h) � εIp,

applied to each of the H populations separately. The estimator (2.2) can be seen
as a convex approximation to (1.2) where we have replaced the L0 constraint
with an L1 constraint, and replaced the feasible set with the closed convex set
{Ω ∈ R

p×p : Ω = Ω�,Ω � εI}. The tuning parameter ε serves as a lower bound
on the smallest eigenvalue of the solution. For this reason, we do not recommend
tuning ε, but rather fixing it at some reasonably small quantity like 10−4, as in
Xue, Ma and Zou [38].

By taking γ > 0, however, (2.1) ties the estimators of Ω∗
(1), . . . ,Ω∗

(H) together.
For large values of the tuning parameter γ, the second penalty in (2.1) will
require that the solution to (2.1) has some Ω·jk = 0, i.e., that sparsity is partially
shared across all H basis covariance matrix estimates. In the leftmost subfigure
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Fig 2. Visualization of (a) the fibers of Ω which are penalized by the final term in (2.1), (b)
the organization of Ω into the Ω(h), and (c) the three way tensor Ω.

of Figure 2, (a), we provide an example of the group of parameters—the (1,2)th
element of each Ω(h)—which are jointly penalized by the group lasso penalty.
The tuning parameter γ controls whether this group is entirely zero or not,
whereas the tuning parameter λ controls sparsity in the individual entries of
the Ω(h), as displayed in subfigure (b).

Importantly, (2.1) is a convex optimization problem and as we discuss in
Section 3, can be solved using first-order methods.

2.2. Positive definiteness

To understand why enforcing positive definiteness can be necessary, consider
estimating a single Ω∗ whose off-diagonal entries are assumed to be zero. Then
the problem reduces to estimation of the variances of the log abundances and
(1.2) admits a closed-form solution.

Proposition 1. If p ≥ 3, the solution to (1.2) with s = 0 (or equivalently, (1.3)
with λ = ∞) is unique and is given by

ω̂j = 1
p− 1

∑
k �=j

Θ̂jk − 1
2(p− 1)(p− 2)

∑
k �=j

∑
l �=j

Θ̂lk, j ∈ [p].

The factor 2 in the denominator is due to the double sum running over both
the upper and lower triangular parts of the symmetric Θ̂. The proposition re-
veals variance estimates can be negative if positive definiteness is not enforced.
Roughly speaking, for large p, ω̂j will be negative if the average of the elements
in Θ̂ not in the jth row or column is larger than the average of the elements in
the jth row and column. It is not difficult to produce such examples. As an illus-
tration, the following Θ̂ resulted from simulating n = 10 compositional xi ∈ C

2

by drawing the log(W ) independently from a multivariate normal distribution
with mean zero and identity covariance matrix:

Θ̂ =

⎛⎝ 0 3.83 2.45
3.83 0 1.24
2.45 1.24 0

⎞⎠ .



Direct covariance matrix estimation with compositional data 1709

Thus, ω̂3 = (2.45 + 1.24)/2 − 3.83/2 = −0.07. Intuitively, negative variance
estimates are more likely when p is large relative to n.

2.3. Existing estimators

An alternative estimator of a single basis covariance matrix Ω∗ is based on the
centered log-ratio covariance matrix [2], Γ∗, whose (j, k)th entry is

Γ∗
jk = Cov [log{Xj/g(X)}, log{Xk/g(X)}]

where g(X) = (
∏p

i=1 Xi)1/p is the geometric mean of X. Specifically,

Θ∗
jk = Var{log(Xj/Xk)}

= Var[log{Xj/g(X)} − log{Xk/g(X)}]
= Var[log{Xj/g(X)}] + Var[log{Xk/g(X)}]
− 2Cov[log{Xj/g(X)}, log{Xk/g(X)}]

so that Θ∗ = γ∗1�
p + 1pγ

∗� − 2Γ∗, where γ∗ = diag(Γ∗). Cao, Lin and Li [7]
show there exists a unique Γ∗ such that Θ∗ = γ∗1�

p + 1pγ
∗� − 2Γ∗ and that

maxj,k |Ω∗
jk−Γ∗

jk| ≤ (3/p)(maxj∈[p]
∑p

k=1 |Ω∗
jk|). Thus, by proposing a two-step

procedure to get an estimate of Γ∗ from Θ̂, they also get an indirect estimate
of Ω∗ that can perform well when p is large. However, their estimator is not
guaranteed to be positive definite, nor is it the solution to an optimization
problem amenable to analysis.

Fang et al. [10] proposed a different estimator, using that with F = Ip −
1p1

�
p /p, FΩ∗F = FCov(logX)F . Thus, replacing Cov(logX) with its sample

version, say, Ω̂X , a natural estimating equation is F (Ω − Ω̂X)F = 0. To ac-
count for differing variances in each element of F (Ω∗− Ω̂X)F , they propose the
weighted least squares estimator

arg min
Ω=Ω�

{
1
2‖F (Ω − Ω̂X)F‖2

V + λ‖Ω−‖1

}
, (2.3)

where V is a diagonal matrix with diag(V ) = {diag(F Ω̂XF )}−1 and ‖A‖2
V =

tr(A�V A). While Fang et al. [10] suggest including a positive definiteness con-
straint on the optimization variable Ω in (2.3), their computational algorithm
does not enforce this constraint. Instead, if the solution to (2.3) is not positive
definite, they estimate Ω∗ using its nearest positive definite matrix. This can be
appropriate, but often leads to a non-sparse estimate [35].

In contrast to the methods of Cao, Lin and Li [7] and Fang et al. [10], our
estimator is “direct” in the sense that we do not rely on estimation of inter-
mediate quantities like Γ∗, nor do we rely on post-hoc adjustments to achieve
positive definiteness.

Many other estimators of Ω∗ exist, though we do not cover them in detail
here. In general, these estimators do not enforce both positive definiteness and
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sparsity, and are not specifically designed to estimate multiple covariance ma-
trices simultaneously: see Friedman and Alm [12], Ban, An and Jiang [3], He
et al. [16], Li et al. [20], for example, and see Ma, Yue and Shojaie [22] for a
comprehensive review.

As mentioned in Section 1, our work is related to the literature on jointly es-
timating sparse precision (inverse covariance) matrices for multiple populations
[e.g., 15, 8, 28, 32, 29]. However, our work is distinct in at least two important
ways. First, these existing methods are largely focused on estimating precision
matrices, rather than covariance matrices. Sparse precision matrix estimation
and sparse covariance matrix estimation are fundamentally different tasks. Sec-
ond, these methods, broadly speaking, assume the observed data are normally
distributed or utilize a normal negative log-likelihood as a loss function. These
methods are thus not directly applicable to either covariance matrix estimation,
nor the analysis of compositional data.

Differences in motivation aside, there are some similarities between our work
and that of Guo et al. [15] and Danaher, Wang and Witten [8], for example.
Danaher, Wang and Witten [8] use the same penalty as (2.1), but applied to
precision matrices for normally distributed data. Guo et al. [15] use a group
lasso-type penalty to encourage shared sparsity patterns across populations in
the same context as Danaher, Wang and Witten [8]. The existing work most
closely related to that of our own is Bigot et al. [5], who use a group lasso
penalty in the context of estimating multiple sparse covariance matrices from
data observed with additive noise. One could not straightforwardly use their
method for estimating basis covariance matrices from compositional data, and
moreover, neither their theory nor algorithms apply to our estimator.

3. Computation

3.1. Proximal-proximal gradient descent algorithm

In order to solve the optimization problem to compute (2.1), we must address
both the nondifferentiability of the objective function and the positive defi-
niteness constraint. To do so, we use the proximal-proximal gradient descent
algorithm [9], which allows us to handle the nondifferentiable penalty and posi-
tive definiteness constraint separately. The algorithm generalizes the well-known
proximal gradient descent algorithm [25, Section 4.2] to handle problems where
the objective function to be minimized is the sum of three convex functions.
Specifically, supposing f and g are closed, proper, and convex functions; and
� is convex and differentiable with β−1-Lipschitz continuous gradient for some
β > 0; consider a problem of the form

minimize
u∈Rd

{�(u) + f(u) + g(u)} . (3.1)

Further suppose there exists u� ∈ R
d such that 0 ∈ ∂f(u�) + ∂g(u�) + ∇�(u�)

where ∂f(u) denotes the subdifferential of f at u. The proximal operator of a
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function f evaluated at u is

proxf (u) = arg min
y∈domf

{
1
2‖u− y‖2

2 + f(y)
}
.

Davis and Yin [9] show that (3.1) can be solved by an algorithm whose (t)th
iterates are computed using the updating equations

u(t)
g = proxαg(v(t))

u
(t)
f = proxαf{2u(t)

g − v(t) − α∇�(u(t)
g )}

v(t+1) = v(t) + u
(t)
f − u(t)

g ,

where v(0) is an arbitrary point in R
d and α ∈ (0, 2β) is fixed. Here, the super-

script (t) denotes the (t)th iterate. As t → ∞, u(t)
g → u� and u

(t)
f → u� [9]. In

practice, however, this algorithm can be slow to converge: fixing the step size
α ∈ (0, 2β) can sometimes lead to incremental progress. Therefore, we use a
modified version of the proximal-proximal gradient descent algorithm proposed
by Pedregosa and Gidel [26], which allows us to start with a step size α larger
than 2β and reduce its value as needed, thus potentially accelerating the descent.
The (t + 1)th iterates of the algorithm use the updating equations

u
(t+1)
f = proxαf{u(t)

g − αv(t) − α∇�(u(t)
g )} (3.2)

u(t+1)
g = proxαg(u

(t+1)
f + αv(t)) (3.3)

v(t+1) = v(t) + α−1(u(t+1)
f − u(t+1)

g ). (3.4)

At each step, after (3.2) is carried out, the value

Q(u(t+1)
f , α) = �(u(t)

g ) + 〈∇�(u(t)
g ), u(t+1)

f − u(t)
g 〉 + 1

2α‖u(t+1)
f − u(t)

g ‖2
2

is compared to �(u(t+1)
f ). If �(u(t+1)

f ) ≤ Q(u(t+1)
f , α), then the algorithm proceeds

to (3.3). If �(u(t+1)
f ) > Q(u(t+1)

f , α), then α is replaced with τα, where τ ∈ (0, 1)
is a constant, and (3.2) is carried out again. This process is repeated until
�(u(t+1)

f ) ≤ Q(u(t+1)
f , α).

The efficiency of this algorithm hinges on the ability to compute the proximal
operators of the functions g and f efficiently. As we will show momentarily, we
can write the optimization problem from (2.1) as (3.1) and the corresponding g
and f have proximal operators which can be solved in closed form.

3.2. Application to proposed estimator

In order to express the problem in (2.1) in a form analogous to (3.1), we must
define the corresponding �, f , and g. First, let χε : R

p×p → {0,∞} be the
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function χε(Ω) = ∞ · 1({εIp � Ω} ∪ {Ω �= Ω�}), with the convention ∞ · 0 = 0.
Then, the unconstrained objective function from (2.1) is

H∑
h=1

{
‖Θ̂(h) − ω(h)1

�
p − 1pω

�
(h) + 2Ω(h)‖2

F + λ‖Ω−
(h)‖1 + χε(Ω(h))

}
+ γ

∑
j �=k

‖Ω·jk‖2.

(3.5)

If we minimize (3.5) over all Ω ∈ R
H×p×p, the minimizer with respect to each

Ω(h) must belong to the set {Ω ∈ R
p×p : Ω = Ω�,Ω � εIp}. Thus, defining

�(Ω) =
∑H

h=1 ‖Θ̂(h) − ω(h)1
� − 1ω�

(h) + 2Ω(h)‖2
F , f(Ω) = λ

∑H
h=1 ‖Ω−

(h)‖1 +
γ
∑

j �=k ‖Ω·jk‖2, and g(Ω) =
∑H

h=1 χε(Ω(h)), (3.5) has the form of (3.1). More-
over, f and g are closed, proper, and convex functions; and the function � is
convex and differentiable with Lipschitz continuous gradient.

Specifically, letting Θ̂ ∈ R
H×p×p be the three-way tensor made up of Θ̂(1), . . . ,

Θ̂(H) so that Θ̂hjk = Θ̂(h)jk, the function � is differentiable with respect to Ω
with gradient

[∇�(Ω)]hjk =

⎧⎨⎩
∑

l∈[p]\{j}
(4Ωhjj − 4Θ̂hjl − 8Ωhjl + 4Ωhll) : j = k

8Ωhjk − 4Ωhjj − 4Ωhkk + 4Θ̂hjk : j �= k
,

for all (h, j, k) ∈ [H]×[p]×[p]. The updating equations corresponding to (3.2)–(3.4)
are

Ω(t+1) = arg min
Ω∈RH×p×p

{
1
2‖|Ω − Λ(t)‖|2F + αλ

H∑
h=1

‖Ω−
(h)‖1 + αγ

∑
j �=k

‖Ω·jk‖2

}
(3.6)

Ω̃(t+1) = arg min
Ω∈RH×p×p

{
1
2‖|Ω − Ω(t+1) − αΨ(t)‖|2F + α

H∑
h=1

χε(Ω(h))
}

(3.7)

Ψ(t+1) = Ψ(t) + α−1(Ω(t+1) − Ω̃(t+1)), (3.8)

where Λ(t) = Ω̃(t)−αΨ(t)−α∇�(Ω̃(t)) and ‖|A‖|2F =
∑

h,j,k A
2
hjk for a three-way

tensor A. Because (3.8) is immediate, we focus on (3.6) and (3.7).
First, (3.6) can be separated across the second and third mode of Ω since for

all (j, k) ∈ [p] × [p] such that j �= k,

Ω(t+1)
·jk = arg min

ν∈RH

{
1
2‖ν − Λ(t)

·jk‖2
2 + αλ ‖ν‖1 + αγ ‖ν‖2

}
, (3.9)

and Ω(t+1)
·jj = Λ(t)

·jj for j ∈ [p]. The solution to (3.9) is

Ω(t+1)
·jk =

(
1 − αγ

‖soft(Λ(t)
·jk, αλ)‖2

)
+

soft
(
Λ(t)

·jk, αλ
)
,
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where (a)+ = max(a, 0) and soft(y, τ) = max(|y| − τ, 0)sign(y) is applied ele-
mentwise [34]. The second step, (3.7), also has a closed form solution. In partic-
ular, (3.7) can be solved with respect to each Ω(h) separately, in parallel, using
that

Ω(t+1)
(h) = arg min

Ω(h)∈Rp×p

{
1
2‖Ω(h) − Ω(t+1)

(h) − αΨ(t)
h··‖2

F + χε

(
Ω(h)

)}

=
p∑

j=1
u(h)ju

�
(h)j max(ξ(h)j , ε),

where u(h)j and ξ(h)j are the jth eigenvector and eigenvalue of Ω(t+1)
(h) + αΨ(t)

h··,
respectively, for h ∈ [H] [17]. This is the projection of Ω(t+1)

(h) + αΨ(t)
h·· onto the

convex set {Ω ∈ R
p×p : Ω � εIp and Ω = Ω�}.

The convergence of the algorithm follows immediately from results in Pe-
dregosa and Gidel [26]. The specific algorithm we implement is given in Algo-
rithm 1. Without the positive definiteness constraint (e.g., by taking ε = −∞),
a version of this algorithm simplifies to the standard proximal gradient descent
algorithm [25, Chapter 4.2].

Enforcing the positive definiteness constraint on each of the Ω(h) requires the
eigendecomposition of a p×p matrix, a computation costing O(p3) floating point
operations. To reduce the computational burden imposed by this additional con-
straint, our software implementation first solves (2.1) without the positive defi-
niteness constraint. To do so, we use accelerated proximal gradient descent [25,
Section 4.3]. If the solution to the unconstrained problem satisfies the constraint,
then we know this is also the solution to the constrained problem. If the solution
does not satisfy the constraint, we then apply the proximal-proximal gradient
descent algorithm, Algorithm 1, initializing at the solution to the unconstrained
problem. This scheme can significantly improve the computing time, especially
when n is large relative to p.

An R package implementing our estimators, along with code for reproduc-
ing the results in Section 6, can be downloaded from https://github.com/
ajmolstad/SpPDCC.

4. Practical considerations

To select tuning parameters (λ, γ), we use V -fold cross-validation. Given can-
didate tuning parameter sets λ and γ, for (2.1) we select tuning parameters
according to

arg min
(λ,γ)∈λ×γ

V∑
v=1

H∑
h=1

‖Θ̂(h),v − ω̃λ,γ
(h),−v1

�
p − 1p[ω̃λ,γ

(h),−v]
� + 2 Ω̃λ,γ

(h),−v‖
2
F ,

where Ω̃
λ,γ

−v is the solution to (2.1) with input sample variation matrices Θ̂−v,
which are computed using all the data from outside the vth fold.

https://github.com/ajmolstad/SpPDCC
https://github.com/ajmolstad/SpPDCC
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Algorithm 1 Adaptive proximal-proximal gradient descent algorithm for com-
puting multiple covariance matrices for compositional data.
Initialize Ψ(0) ∈ RH×p×p, Ω̃(0) ∈ RH×p×p, α > 0, and τ ∈ (0, 1). Set t = 0 and proceed to 1.

1. For (j, k) ∈ [p] × [p]

1.1. If j = k

1.1.1. Set Ω(t+1)
·jj = Ω̃(t)

·jj − αΨ(t)
·jj − α[∇�(Ω̃(t))]·jj

1.2. If j �= k

1.2.1. Set y = Ω̃(t)
·jk − αΨ(t)

·jk − α[∇�(Ω̃(t))]·jk
1.2.2. Set wh = (|yh| − αλ)+sign(yh) for h ∈ [H]

1.2.3. Set Ω(t+1)
·jk =

(
1 − αγ

‖w‖2

)
+
w

2. If �(Ω(t+1)) ≤ Q(Ω(t+1), α), proceed to 3. Else, set α = τα, and return to 1.

3. For h ∈ [H]

3.1. Decompose Ω(t+1)
h·· + αΨ(t)

h·· =
∑p

j=1 ξjuju
�
j , where u�

j uk = 0 for j �= k

and ‖uj‖2 = 1 for all j ∈ [p]

3.2. Set Ω̃(t+1)
h·· =

∑p
j=1 max(ξj , ε)uju

�
j

4. Set Ψ(t+1) = Ψ(t) + α−1(Ω(t+1) − Ω̃(t+1))
5. If the objective function value converged, terminate. Else, set t = t+ 1 and go to 1.

In some applications, it may be preferable to let populations with larger
samples sizes have a greater effect on the objective function. To do so, we propose
an alternative variation of (2.1), defined as the argument minimizing

H∑
h=1

(n(h)

N
‖Θ̂(h) − ω(h)1

�
p − 1pω

�
(h) + 2Ω(h)‖2

F + λ‖Ω−
(h)‖1

)
+ γ

∑
j �=k

‖Ω·jk‖2

(4.1)

subject to Ω(h) = Ω�
(h), Ω(h) � εIp for all h ∈ [H], where N =

∑H
h=1 n(h). The

objective function (4.1) accounts for the distinct sample sizes by weighting each
populations’ contribution to the likelihood according to its relative contribution
to the total sample size N . When using this estimator, we also recommend mod-
ifying the cross-validation criterion so that the tuning parameter pair selected
is

arg min
(λ,γ)∈λ×γ

V∑
v=1

H∑
h=1

n(h),v

Nv
‖Θ̂(h),v − ω̃λ,γ

(h),−v1
�
p − 1p[ω̃λ,γ

(h),−v]
� + 2 Ω̃λ,γ

(h),−v‖
2
F ,

where n(h),v is the number of samples in the vth fold from the hth population,
and Nv =

∑H
h=1 n(h),v. We compare the performance of (4.1) to (2.1), among

other competitors, in Section A.3.
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5. Statistical properties

5.1. Asymptotics for single population estimator

Though our primary focus is the multipopulation estimator (2.1), the estima-
tor (2.2) is itself a novel and useful estimator of a single basis covariance matrix.
In this section, we study its asymptotic properties. Specifically, we study Ω̂ de-
fined as

arg min
Ω=Ω�

{
‖Θ̂ − ω1�

p − 1pω
� + 2Ω‖2

F + λ‖Ω−‖1

}
subject to Ω � εIp. (5.1)

We will require the following assumptions.

A1. (Sub-Gaussian log abundances). The sample variation matrix, Θ̂, is
computed from n independent and identically distributed samples W =
(W1, . . . ,Wp)� such that each log(Wj) is sub-Gaussian and Cov{log(W )} =
Ω∗.

A2. (Row-wise sparsity). As n → ∞, maxj sj/p → 0 where sj is the
number of nonzero off-diagonal entries in the jth row of Ω∗.

A3. (Alignment of n and p). As n → ∞, p → ∞ and log(p)/n → 0.

The assumptions A1—A3 are natural in the context of high-dimensional com-
positional data. Assumption A2 is needed to establish the restricted strong
convexity of the loss function ‖Θ̂ − ω1�

p − 1pω
� + 2Ω‖2

F in a neighborhood of
Ω∗. Cao, Lin and Li [7] assume similar sparsity, which in their setting ensures
approximate identifiability (see their Proposition 1 and the comments following
it). An analogous interpretation is possible here: unidentifiable parameters of-
ten lead to loss functions that are constant in some directions, but Assumption
A2 ensures the loss function is strictly convex around Ω∗ in the directions that
matter [see 24, Section 2.4, for details]. For this assumption to hold, we need
p to grow with n. This is congruous with the assumptions in Cao, Lin and Li
[7], who require p → ∞ as n → ∞ for consistency and characterize this as a
“blessing of dimensionality”. Assumption A3 is standard in high-dimensional
covariance matrix estimation.

We now state our first result concerning the asymptotic error of our estimator.
The proof of this and all subsequent results can be found in the Appendix.
Recall s =

∑p
j=1 sj and let ϕp be the pth largest eigenvalue of its matrix-valued

argument.

Theorem 5.1. Suppose A1–A3 hold. If ε < ϕp(Ω∗) and λ =
√
c1 log(p)/n for

fixed constant c1 > 0 sufficiently large, then there exists a constant b1 ∈ (0,∞)
such that

‖[Ω̂ − Ω∗]−‖F√
p

+ ‖ω̂ − ω∗‖2 ≤ b1

(√
s log(p)

pn
+
√

p log(p)
n

)
(5.2)

and ‖ω̂ − ω∗‖2 ≤ b1
√
p log(p)/n with probability tending to one as n → ∞.
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The error bound in (5.2) consists of two parts: the error for estimating off-
diagonals and the diagonals. The asymptotic Euclidean norm error for the diag-
onals is b1

√
p log(p)/n. The Frobenius norm error for the off-diagonals, however,

cannot be disentangled from the diagonal error. Though our results would seem
to suggest that ‖[Ω̂−Ω∗]−‖F ≤ b1

√
s log(p)/n with probability tending to one,

we are only able to establish a bound for ‖[Ω̂ − Ω∗]−‖F /
√
p + ‖ω̂ − ω∗‖2. We

cannot isolate the asymptotic error for the off-diagonals because of the intrin-
sic connection between the diagonals and off-diagonals in the objective func-
tion (5.1). This is in contrast to some traditional covariance matrix estimators,
where off-diagonals can be estimated in a way which is not dependent on the
diagonals.

Note that although (5.1) is the solution to a penalized least squares problem,
we do not assume any type of restricted eigenvalue condition [30]. Instead, in
our proof we first show that Ω̂ − Ω∗ belongs to a restricted set, then establish
a quadratic lower bound on �(Ω̂) − �(Ω∗) − tr{∇�(Ω∗)�(Ω̂ − Ω∗)} over this set
where here, � is the objective function from (1.3) with λ = 0. Our technique
for establishing this bound may be applicable in other penalized least squares
problems.

Direct comparison of our estimation error bound to those established in Cao,
Lin and Li [7] is not possible as their results are given in terms of the spectral
norm, and under a different set of assumptions.

5.2. Asymptotics for multiple population estimator

Next, we consider the multiple population estimator (2.1) with λ = 0. By doing
so, we are able to illustrate how our method exploits shared sparsity across the
populations. Our results will apply with N =

∑H
h=1 n(h) tending to infinity. To

establish error bounds for this estimator, we will need a slightly different set of
assumptions than in the single population case.

A4. (Bounded log abundances). The sample variation matrix Θ̂(h) is com-
puted from n(h) independent and identically distributed samples W(h) =
(W(h)1, . . . ,W(h)p)� such that log(W(h)k) ∈ [−L,L] for all k ∈ [p] and
Cov{log(W(h))} = Ω∗

(h) for all h ∈ [H].

A5. (Fiber-wise sparsity). As N → ∞, maxj s̃j/p → 0 where s̃j = |{k :
Ω∗

·jk �= 0, k �= j}| for j ∈ [p].

A6. (Nonvanishing n(h)/N). There exists π > 0 such that for N sufficiently
large, minh∈[H] n(h)/N ≥ π.

A7. (Alignment of n(h), p, H, and L). As N → ∞, p → ∞, log(p)/n(h) →
0, and L4H/n(h) → 0 for all h ∈ [H].

Assumption A4 requires that the log abundances take values over the inter-
val [−L,L]. When W(h)k is a normalized count—as is standard in microbiome
data—this assumption requires that all counts are bounded away from zero and
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infinity. A positive lower bound on W(h)k is often assumed implicitly in the
analysis of compositional data. Of course, A4 is stronger than A1, but allows
us to establish a concentration inequality on the Euclidean norm of the fibers
of ∇�(Ω∗). The quantity L will appear in our asymptotic error bound, so this
assumption is not so restrictive since L can be arbitrarily large.

Assumption A5 requires that the number of nonzero off-diagonal entries in
any of the Ω∗

(h) does not grow too quickly with p. Like A2, A5 implicitly requires
that p grows as N → ∞. Assumption A6 is a requirement on how frequently,
as N → ∞, we sample from each of the H populations. This assumption re-
quires that we do not systemically undersample from any of the H populations.
Our error bounds will depend on π, so we can quantify how sampling affects
estimation accuracy.

We are ready to state our asymptotic error bound for (2.1) with λ = 0. Our
bound will depend on s̃ =

∑p
j=1 s̃j .

Theorem 5.2. Suppose A4–A7 hold. Define Ω̂ as the solution to (2.1) with λ =
0. Let ω∗ = (ω∗

(1), . . . , ω
∗
(H)) and ω̂ = (ω̂(1), . . . , ω̂(H)). If ε < minh∈[H] ϕp(Ω∗

(h))
and γ =

√
c2L4H/πN +

√
c2 log(p)/πN for fixed constant c2 > 0 sufficiently

large, then there exists a constant b2 ∈ (0,∞) such that

‖|[Ω̂− Ω∗]−‖|F√
p

+ ‖ω̂ − ω∗‖F ≤ b2

{(√
s̃ + p
√
p

)(√
L4H

πN
+
√

log(p)
πN

)}

and

‖ω̂ − ω∗‖F ≤ b2

(√
pL4H

πN
+
√

p log(p)
πN

)
with probability tending to one as N → ∞.

The bound in Theorem 5.2 can be interpreted in a similar way as the bound
in Theorem 5.1. Specifically, we cannot separate the error for estimating the off-
diagonals of the Ω∗

(h) from the error for estimating the diagonals. In particular,
where the diagonals and off-diagonals affect the error bound are through their
contribution to numerator in the leftmost term of the error bound: the

√
s̃ comes

from having to estimate nonzero entries in s̃ off-diagonals of the Ω∗
(h), whereas

the √
p comes from having to estimate p diagonal entries in each Ω∗

(h).
Just as in Theorem 5.1, we can establish a bound specifically for the diagonals.

If there exists a constant b3 ∈ (0,∞) such that L4H ≤ b3 log(p) for N sufficiently
large, which is natural since one would not expect H nor L to grow with N , we
then achieve essentially the same result as in Theorem 5.1: there exists a constant
b4 ∈ (0,∞) such that ‖ω̂−ω∗‖F ≤ b4

√
p log(p)/(πN) with probability tending

to one.
If each Ω∗

(h) had a substantial number of zeros which were not shared across
all H populations, (2.1) should perform better with λ > 0. Specifically, we
conjecture that in this case, one could replace A5 with a combination of A2
(applied to each population separately) and a relaxed version of A5, and obtain
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an improved error bound relative to that in Theorem 5.2 by taking λ > 0.
However, proving this type of result is technically challenging, and it is unclear
whether some of our intermediate results can be generalized (e.g., Lemma B.1).

6. Numerical experiments

6.1. Data generating models and competing methods

In this section, we compare the proposed estimator, (2.1), to existing estimators
under three data generating models, Models 1–3, with H = 4 and (n, p) ∈
{50, 100, 150} × {40, 80, 120, 160, 200} where n(1) = · · · = n(H) = n. In each
replication, we generate log(W(h)1), . . . , log(W(h)n(h)) for h ∈ [H] independently
with each log(W(h)i) ∈ R

p drawn from Np(0,Ω∗
(h)).

The three models allow us to examine the methods’ performance under differ-
ent types of shared sparsity. In Model 1, all covariance matrices are tridiagonal
with Ω∗

(1) = Ω∗
(2) and Ω∗

(3) = Ω∗
(4). This is the ideal scenario for our method

since the sparsity patterns are identical across populations. In Model 2, only
one p/4 × p/4 diagonal block is nonzero in each covariance matrix, though the
block is in a different position for each Ω∗

(h). Finally, in Model 3, Ω∗
(1) and Ω∗

(4) do
not share any nonzero off-diagonal elements, though Ω∗

(2) and Ω∗
(3) share some

nonzero off-diagonals with each other, and with both Ω∗
(1) and Ω∗

(4).
The specific models we consider are as follows.

Model 1. The Ω∗
(h) are tridiagonal with either all positive or all negative

correlations:

Ω∗
(h)jk =

{
0.3 · 1(1 ≤ |j − k| ≤ 2) + 1(j = k) : h ∈ {1, 2}

−0.2 · 1(1 ≤ |j − k| ≤ 2) + 1(j = k) : h ∈ {3, 4} ,

for (h, j, k) ∈ [4] × [p] × [p].

Model 2. The Ω∗
(h) are block diagonal with each block having an AR(1)

structure:

Ω∗
(h)jk =

{
0.8|j−k| : |j − k| < p/4, (j, k) ∈ Ah

1 : (j, k) �∈ Ah, j = k
, (h, j, k) ∈ [4]×[p]×[p],

and A1 = [p/4]× [p/4], A2 = {p/4+1, . . . , p/2}×{p/4+1, . . . , p/2}, A3 =
{p/2 + 1, . . . , 3p/4} × {p/2 + 1, . . . , 3p/4}, and A4 = {3p/4 + 1, . . . , p} ×
{3p/4 + 1, . . . , p}.
Model 3. The Ω∗

(h) have heterogeneous variances and are block diagonal
with diagonal blocks having an AR(1) structure, i.e., Ω∗

(h) = DΞ∗
(h)D

where

Ξ∗
(h)jk =

{
0.9|j−k| : (j, k) ∈ Bh

1 : (j, k) �∈ Bh, j = k
, (h, j, k) ∈ [4] × [p] × [p],

D ∈ R
p×p is a diagonal matrix with diagonal entries equally spaced from 3

to 1, and B1 = [p/2]×[p/2], B2 = {p/6+1, . . . , 2p/3}×{p/6+1, . . . , 2p/3},
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B3 = {p/3+1, . . . , 5p/6}×{p/3+1, . . . , 5p/6}, and B4 = {p/2+1, . . . , p}×
{p/2 + 1, . . . , p}

In order to select tuning parameters for each of the methods, we also generate
independent validation sets of the same size as the training set.

To estimate Ω∗, we consider multiple methods. All methods but (2.1) esti-
mate Ω∗

(1), . . . ,Ω∗
(4) separately. Specifically, we use the method of Cao, Lin and

Li [7] with adaptive soft-thresholding, COAT, and use the method of Fang et al.
[10], cclasso. We also use an oracle estimator, Oracle, which is the adaptively
soft-thresholded sample covariance matrix of each log(W(h)1), . . . , log(W(h)n(h)).
This is an oracle method in the sense that we do not have access to the under-
lying abundances in practice. Finally, we consider two versions of our method,
SCC and SCC-H, where SCC is short for sparse compositional covariance matrices.
The estimator SCC is defined in (2.1), whereas SCC-H is (2.2) with a separate
tuning parameter λ chosen for each h ∈ [H]. The method SCC-H estimates the
covariances separately, but using a version of our criterion. Including both SCC
and SCC-H serves to illustrate to what degree the improvement in performance
is driven by the loss function versus the sharing of sparsity patterns across the
fibers of Ω∗.

To assess the performance of each method, we measure the average (over
H populations and 50 independent replications) Frobenius norm error and L1
matrix norm error of the estimated covariance matrices on the correlation scale.
We use the correlation scale because cclasso was designed specifically for cor-
relation matrix estimation. Relative performances under both Frobenius norm
and L1 matrix norm error on the covariance scale are similar and thus relegated
to the Appendix.

We also measure true positive (TPR) and true negative rates (TNR) for each
method so that we may assess the recovery of nonzero correlations. Given an
estimate of Ω∗, Ω̂, TPR and TNR are defined as, respectively,

1
H

H∑
h=1

|{(j, k) : Ω̂hjk �= 0 ∩ Ω∗
hjk �= 0}|∣∣{(j, k) : Ω∗

hjk �= 0
}∣∣ ,

1
H

H∑
h=1

|{(j, k) : Ω̂hjk = 0 ∩ Ω∗
hjk = 0}|∣∣{(j, k) : Ω∗

hjk = 0
}∣∣ .

6.2. Results

In Figure 3, we display average Frobenius norm errors (divided by p). With
p = 40, the cclasso software would sometimes return undefined estimates (NA
in R), so we omit comparisons in these settings. Unsurprisingly, under Model
1, SCC substantially outperforms all of the competitors, including Oracle. This
illustrates the utility of exploiting shared sparsity patterns when estimating
multiple covariance matrices. Notably, Oracle, COAT, and SCC-H all perform
similarly in each setting under Model 1. Under Model 2, SCC outperforms all
competitors, including Oracle, once p ≥ 120. Comparing the competitors which
could be used in practice, SCC-H performs better than COAT and cclasso in all
situations. The estimator COAT performs worse than cclasso for small p, but
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Table 1

True positive and true negative rates for each of the methods averaged over 50 independent
replications under Model 1–3.

n = 50 n = 100 n = 150
40 80 120 160 200 40 80 120 160 200 40 80 120 160 200

Model 1

T
P

R

SCC 0.953 0.928 0.904 0.890 0.875 0.999 0.998 0.996 0.996 0.996 1.000 1.000 1.000 1.000 0.999
SCC-H 0.570 0.499 0.448 0.422 0.397 0.832 0.778 0.747 0.719 0.695 0.924 0.905 0.884 0.867 0.851
COAT 0.636 0.548 0.484 0.449 0.427 0.888 0.820 0.784 0.757 0.730 0.957 0.930 0.907 0.890 0.876
Oracle 0.653 0.567 0.498 0.464 0.438 0.888 0.821 0.788 0.760 0.733 0.951 0.927 0.905 0.889 0.875
cclasso 0.851 0.843 0.811 0.807 0.777 0.990 0.996 0.987 0.984 0.985 1.000 0.999 0.997 0.997 0.998

T
N

R

SCC 0.718 0.825 0.880 0.901 0.919 0.657 0.798 0.847 0.876 0.889 0.649 0.770 0.827 0.858 0.879
SCC-H 0.892 0.949 0.968 0.977 0.983 0.800 0.890 0.923 0.941 0.952 0.771 0.860 0.900 0.920 0.933
COAT 0.828 0.921 0.953 0.966 0.974 0.702 0.857 0.902 0.927 0.940 0.636 0.823 0.880 0.906 0.923
Oracle 0.858 0.924 0.953 0.966 0.973 0.777 0.874 0.909 0.929 0.942 0.762 0.850 0.890 0.912 0.926
cclasso 0.231 0.281 0.374 0.395 0.465 0.023 0.028 0.085 0.104 0.111 0.001 0.007 0.024 0.035 0.054

Model 2

T
P

R

SCC 0.904 0.709 0.569 0.489 0.414 0.954 0.798 0.653 0.554 0.489 0.970 0.821 0.697 0.589 0.522
SCC-H 0.766 0.529 0.404 0.333 0.277 0.856 0.631 0.486 0.401 0.340 0.883 0.672 0.529 0.434 0.374
COAT 0.805 0.607 0.468 0.388 0.320 0.886 0.747 0.590 0.481 0.400 0.921 0.810 0.678 0.548 0.461
Oracle 0.897 0.632 0.478 0.391 0.326 0.953 0.707 0.544 0.443 0.379 0.975 0.743 0.580 0.476 0.407
cclasso 0.999 0.997 0.995 0.989 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000

T
N

R

SCC 0.238 0.481 0.605 0.663 0.722 0.136 0.374 0.532 0.618 0.661 0.098 0.350 0.490 0.583 0.630
SCC-H 0.536 0.718 0.792 0.827 0.858 0.462 0.644 0.749 0.797 0.824 0.436 0.625 0.725 0.776 0.807
COAT 0.326 0.586 0.715 0.774 0.819 0.196 0.412 0.601 0.706 0.764 0.137 0.329 0.511 0.638 0.714
Oracle 0.576 0.704 0.765 0.799 0.831 0.544 0.667 0.737 0.782 0.808 0.521 0.645 0.726 0.768 0.795
cclasso 0.002 0.004 0.006 0.013 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000

Model 3

T
P

R

SCC 0.933 0.732 0.623 0.550 0.488 0.984 0.804 0.696 0.616 0.545 0.992 0.880 0.761 0.655 0.597
SCC-H 0.696 0.556 0.463 0.404 0.342 0.794 0.654 0.567 0.492 0.430 0.831 0.696 0.618 0.534 0.469
COAT 0.838 0.740 0.638 0.556 0.470 0.920 0.869 0.803 0.715 0.628 0.942 0.920 0.873 0.810 0.731
Oracle 0.960 0.772 0.620 0.524 0.445 0.988 0.830 0.700 0.596 0.504 0.994 0.872 0.726 0.619 0.544
cclasso 0.999 0.998 0.997 0.994 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000

T
N

R

SCC 0.106 0.395 0.521 0.598 0.640 0.025 0.324 0.467 0.555 0.616 0.011 0.210 0.396 0.519 0.571
SCC-H 0.433 0.652 0.744 0.791 0.825 0.322 0.561 0.668 0.738 0.784 0.292 0.518 0.639 0.713 0.759
COAT 0.288 0.514 0.630 0.701 0.750 0.137 0.333 0.462 0.575 0.653 0.089 0.225 0.369 0.477 0.565
Oracle 0.560 0.647 0.697 0.745 0.773 0.515 0.617 0.662 0.708 0.757 0.543 0.587 0.657 0.707 0.745
cclasso 0.001 0.002 0.003 0.006 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

significantly outperforms cclasso once p ≥ 120. Finally, under Model 3, SCC
and SCC-H perform similarly in every setting. The only method to outperform
SCC and SCC-H is Oracle, which cannot be used in practice. The fact that
Oracle outperforms the other methods so substantially speaks to the difficulty
of estimating the covariances under this data generating model relative to Model
1 and 2.

One should be careful drawing conclusions based on Frobenius norm error
results alone, however, because our methods, SCC and SCC-H, both minimize a
Frobenius norm criterion, whereas COAT does not. Thus, these results may be
biased in favor of SCC and SCC-H. For this reason, we also included L1 matrix
norm results in Figure 4. Here, the L1 matrix norm is the maximum of the L1
vector-norm of the columns of a matrix. Under Model 1 with n = 50, there
appears to be little difference between the methods—other than cclasso—in
terms of L1 matrix norm. However, when n ≥ 100, SCC significantly outperforms
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Fig 3. Average Frobenius norm error divided by p (on the correlation scale) over 50 indepen-
dent replications under (top row) Model 1, (middle row) Model 2, and (bottom row) Model 3
with (n, p) ∈ {50, 100, 150} × {40, 80, 120, 160, 200}.

all competitors. Under Model 2, the results more closely mirror those in Figure 3:
SCC outperforms all competitors, including Oracle, when p ≥ 120. The results
under Model 3, relatively speaking, are similar to those observed under Model
3 using Frobenius norm error. The method Oracle performs best, but among
the methods which could be used in practice, SCC and SCC-H clearly outperform
cclasso and COAT.

The performance of SCC and SCC-H can be partially explained by their per-
formance in recovering the true set of nonzero off-diagonals. In Model 1, SCC
has nearly perfect TPR, and TNR only slightly lower than the best performing
competitor. SCC-H tends to have similar TPR as COAT, but also tends to have
higher TNR. A similar conclusion can be drawn under Model 2. Under Model 3,
however, COAT tends to have higher TPR and similar TNR to SCC, whereas SCC-
H has lower TPR and higher TNR than COAT. Note that under Model 3, oracle
does well in part due to the fact that the covariances have varying diagonals.

In Section A of the Appendix, we provide additional simulation study re-
sults. First, we present the results from Figures 3 and 4, but on the covariance
scale. Relative performances closely mirror those in Figures 3 and 4. Second, we
present results comparing SCC-H to COAT and cclasso in terms of estimating
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Fig 4. Average L1 matrix norm error divided by p (on the correlation scale) over 50 indepen-
dent replications under (top row) Model 1, (middle row) Model 2, and (bottom row) Model 3
with (n, p) ∈ {50, 100, 150} × {40, 80, 120, 160, 200}.

Ω∗
(1) under Models 1–3. Our results clearly demonstrate that SCC-H can signif-

icantly outperform both COAT and cclasso for single population basis covari-
ance matrix estimation. Finally, we also perform additional simulation studies
wherein the sample sizes (n(1), n(2), n(3), n(4)) = (100, 75, 50, 25). We compare
the same competitors as in Section 6.2, but also include (4.1). Under Model
1, (4.1) outperforms the competitors, though under Models 2 and 3, there is
little difference between (2.1) and (4.1).

7. Analysis of microbiome in myalgic encephalomyelitis/chronic
fatigue syndrome

7.1. Basis covariance matrix estimation

We illustrate our method by analyzing data on the gut microbiome of patients
diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)
versus controls from Giloteaux et al. [13]. In order to obtain the microbial pro-
files, Giloteaux et al. [13] sequenced 16S rRNA genes from stool samples using
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Illumina MiSeq. After first filtering patients based on total reads (≥ 5000),
we filter operational taxonomic units (OTUs) to only those that comprise at
least 10% of total reads in one or more patients. This reduced the original 138
OTUs to p = 39 OTUs, though led to us filtering out only 8% and 10% of
each subjects’ total reads (on average) in controls and ME/CFS, respectively.
Following Cao, Lin and Li [7], we add 0.5 to all counts to avoid zeros before
converting counts to compositions. To be clear, these counts Y(h)i are distinct
from the latent abundances W(h)i, which are assumed to be independent and
identically distributed for all k ∈ [n(h)]. For example, we may assume that
Y(h)ij = M(h)iW(h)ij where M(h)i is a positive random variable [22], so that
Y(h)ij/

∑p
k=1 Y(h)ik = X(h)ij = W(h)ij/

∑p
k=1 W(h)ik. In Section D of the Ap-

pendix, we demonstrate that our estimates do not change much when we use a
pseudocount of 0.01 instead of 0.5 to handle zeros.

Our estimates of the covariance matrices, with tuning parameters chosen
using ten-fold cross-validation, are in Figure 5. Each node in these graphs rep-
resents a unique OTU. The nodes are colored according to OTU’s phylum and
each node’s family, genus, and species is provided in the Table 4. The thickness
of the edge corresponds to the strength of the association: stronger associations
are represented by thicker edges. Positive and negative correlations are colored,
respectively, with green and red, while a zero correlation is represented by the
absence of an edge.

Examining the estimated covariance matrices, the majority of associations
occur within two OTUs belonging to the same phylum. We also see that our
method estimates the two groups’ covariance matrices to have identical spar-
sity patterns, in sharp contrast with the estimates based on COAT, the method
of Cao, Lin and Li [7] (Figure 1). Most strong positive and negative associa-
tions are shared across the two groups. Notably, one of the eight associations
whose direction differ across controls and ME/CFS is (23–3; Ruminococcus
bromii–Bacteroides ovatus). Ruminococcus bromii is known to degrade resis-
tant starch particles inaccessible to other bacteria, whereas Bacteroides ovatus
digests inulin [27]. That these two OTUs are estimated to be associated is in-
teresting since both resistant starch and inulin are fermentable carbohydrates
whose joint behavior has been of interest in past studies [39].

In addition, an insight gleaned from our estimates is that more negative asso-
ciations are observed in chronic fatigue syndrome patients than in controls. This
coheres with the reduced diversity in the microbiome communities for ME/CFS
patients observed by Giloteaux et al. [13]. Moreover, the positive associations
between (25–35) and (6–17) are much stronger in ME/CFS than in controls.
This too suggests reduced diversity in ME/CFS as OTUs labeled 6, 35, 25, and
17 all belong to the same phylum, Firmicutes (see Table 4 for details).

Estimates using COAT are more difficult to interpret. First, there is a larger
number of nonzero entries in both estimates, and their sparsity patterns differ
substantially. In total, COAT identifies 185 associations in one population not
present in the other. Moreover, the estimates from COAT disagree in terms of their
strongest associations. For example, one of the strongest positive associations
estimated in controls is between (29–13), whereas in patients with ME/CFS,
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Fig 5. Estimated correlation networks using (2.1) for (a) control patients and (b) ME/CFS
patients. The thickness of the edge corresponds to the strength of the association: stronger
associations are represented by thicker edges. Positive and negative correlations are colored,
respectively, with green and red, while a zero correlation is represented by the lack of an edge.

their method estimates these two OTUs to be uncorrelated.
Finally, we emphasize that our estimator (2.1) does not require that sparsity

patterns are identical across CFS and controls. Instead, the similarity of sparsity
patterns is determined by the combination of tuning parameters (γ, λ), which
are selected by cross-validation. Thus, in this application, it is the data which
suggest that the sparsity patterns are identical.

7.2. Stability assessment

We perform a stability assessment to determine to what degree our respective
estimates, displayed in Figures 1 and 5, are reliable. Following Cao, Lin and Li
[7], we generate 100 independent bootstrap samples and refit both estimators
to the bootstrapped samples. We say an estimated nonzero correlation is stable
if it is nonzero in at least 80 of the 100 bootstrap samples. In Table 2, we report
the stability of each correlation estimate.

In the first four columns, we assess the stability of all correlations: in rows
labeled positive and negative, we report the number of correlations estimated
to be positive and negative, respectively, in the estimates displayed in Figures 1
and 5. In the row labeled stability, we report the percentage of these correlations
which were estimated to be nonzero at least 80 of the 100 bootstrap samples.
For example, SCC estimated 22 positive and 16 negative correlations (Figure 5a);
of these 38 correlations, 89.5% of them were estimated to be nonzero in at least
80 bootstrap samples. For our method, in both controls and ME/CFS basis
covariance matrix estimates, almost all of the edges we estimated to be nonzero
are stable. COAT, on the other hand, has lower stability in both controls and
ME/CFS.

In the first row of the “shared correlations” columns of Table 2, we report
the number of estimated correlations where a correlation was positive in both
estimates (controls and ME/CFS), or negative in both estimates. Our method
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Table 2

Stability for all correlations, shared correlations, and distinct correlations over 100
bootstrap samples. For the distinct correlation columns, D1 refers to a correlation which was
nonzero in controls, but zero in ME/CFS, whereas D2 refers to a correlation which was zero

in controls but nonzero in ME/CFS.

All correlations Shared correlations Distinct correlations

SCC COAT
Control ME/CFS Control ME/CFS SCC COAT SCC COAT

Positive 22 21 53 30 Same sign 29 19 D1 0 111
Negative 16 17 82 68 Diff. sign 9 5 D2 0 74
Stability 89.5% 86.8% 83.0% 84.7% Stability 86.8% 58.3% Stability — 00.0%

estimated that all correlations are shared, and has reasonably high stability. In
particular, this column suggests that of the 40 shared correlations, 90% were
estimated in at least 80 bootstrap samples. COAT has slightly lower stability
for its shared correlations despite estimating fewer than half as many as our
method.

Finally, the most telling result comes in the “distinct correlations” columns
of Table 2. Here, we report the number of correlations which were nonzero
in controls and zero in ME/CFS (D1) and the number of correlations which
were zero in controls and nonzero in ME/CFS (D2). We see that SCC estimates
no correlations to be distinct, whereas COAT estimates 185 correlations to be
distinct. However, the stability of these correlations is zero: none of these distinct
correlations appeared in 80 or more of the bootstrap samples. These results
suggest that the estimates provided by our method may be more reliable than
COAT.

8. Discussion

In this article, we proposed a new method for estimating basis covariance ma-
trices from compositional data. An important question about our method is
whether it could provide reasonable estimates of the basis precision (inverse co-
variance) matrix. Though our method can provide estimates of Ω−1

∗(h) (since our
estimates are always positive definite), these estimates will not, in general, be
sparse. If a practitioner is interested in sparse precision matrix estimation, we
recommend using methods specifically designed for this task, e.g., Zhang, Wang
and Lin [40]. To the best of knowledge, there exist no methods for jointly esti-
mating multiple sparse precision matrices from compositional data. This could
be a fruitful direction for future research.

There are two aspects of our data analysis which could be improved. First, the
original data were counts (reads per OTU), which we converted to compositions.
It has been argued that total reads per patient is an experimental artifact, and
thus, microbiome sequencing data should be converted to compositions [e.g.,
see 14, and references therein]. However, as pointed out by a referee, there is
nonetheless some loss of information when we ignore total reads per patient.
Ideally, an estimator could somehow make use of this additional information.
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Second, our method assumes that components of the observed composition are
positive with probability one. In 16S rRNA sequencing (microbiome) data, how-
ever, it is common to observe many zeros. Thus, as future work, we hope to
extend our method to address these two issues.

Appendix A: Supplemental numerical experiments

A.1. Additional results from Section 6

In Figures 6 and 7, we display both the average Frobenius norm and average L1
matrix norm errors on the covariance scale (i.e., for the Ω∗

(h) directly). In terms
of Frobenius norm error, under Models 1 and 2, SCC outperforms all competitors.
Under Model 3, SCC-H can sometimes outperform SCC: the same result as the
correlation scale. Errors under Model 3 are much larger overall because the
elements of the covariance matrices tend to be larger by construction. Result
using the L1 matrix norm as performance metric are similar to those on the
correlation scale (Figure 4).

A.2. Performance of SCC-H with H = 1

Though our simulation study focused on the performance of SCC with H = 4, our
simulation study can also provide some insight as to how SCC-H would perform
in a setting where H = 1. In an application where H = 1, COAT and SCC-H are
direct competitors in the sense that both are designed for estimation of a single
sparse basis covariance matrix. To assess how the two estimators compare with
H = 1, we consider the same simulation settings as in Section 6, but focus our
attention on the estimation of Ω∗

(1) under Models 1–3. Average Frobenius norm
errors p−1‖Ω∗

(1)−Ω̂(1)‖F and L1 matrix norm errors p−1 maxj∈[p](
∑p

k=1 |Ω∗
(1)jk−

Ω̂(1)jk|) are displayed in Figures 8 and 9. In both figures, SCC-H outperforms
COAT and cclasso under all three models. The difference between SCC-H and
COAT is quite small under Model 1 when p is large, but in all other scenarios,
SCC-H clearly outperforms competitors. This suggests that our method could
also be quite useful for estimating a single covariance basis covariance matrix.

A.3. Performance with imbalanced sample sizes

We consider the performance of our estimators when the sample sizes differ
across the four populations. When the sample sizes are imbalanced, it may be
useful to weight each populations’ contribution to the loss function. In this
section, we compare the same competitors as in Section 6 to wSCC, the esti-
mator defined in (4.1). In the simulation settings considered in Section 6, (4.1)
and (2.1) are equivalent as we set n(h) = n for each h ∈ [H]. Here, we consider
the same data generating models, Model 1–3, but set (n(1), n(2), n(3), n(4)) =
(100, 75, 50, 25).
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Fig 6. Average Frobenius norm error divided by p (on the covariance scale) over 50 indepen-
dent replications under (top row) Model 1, (middle row) Model 2, and (bottom row) Model 3
with (n, p) ∈ {50, 100, 150} × {40, 80, 120, 160, 200}.

Results are presented in Figure 10. In many replications with p = 40 or
p = 80, the software for cclasso returned undefined estimates of some of the
covariance matrices (NAs in R), so we omit cclasso in this case. Overall, under
Model 1, wSCC appears to provide a substantial performance gain over SCC, SCC-
H, COAT, and cclasso. Recall that it was Model 1 under which we saw the most
substantial performance improvement in SCC relative to SCC-H in the simulation
settings from Section 6. Under Models 2 and 3, however, the improvement wSCC
provides relative to SCC is less substantial than under Model 1. We recommend
that practicioners consider other variables when determining which version of
our loss function to use: for example, is it reasonable to expect Ω∗

(1) and Ω∗
(2)

to have elements on similar scales? If not, then perhaps another reweighting
scheme (i.e., replacing n(h)/N in (4.1) with properly calibrated weights wh > 0)
would be preferable.
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Fig 7. Average L1 matrix norm error divided by p (on the covariance scale) over 50 indepen-
dent replications under (top row) Model 1, (middle row) Model 2, and (bottom row) Model 3
with (n, p) ∈ {50, 100, 150} × {40, 80, 120, 160, 200}.

Appendix B: Theorem proofs

B.1. Notation and key lemmas

For a tensor Δ ∈ RH×p×p, define the norm ‖|Δ‖|1,2 =
∑

j,k ‖Δ·jk‖2 and for a
set M ⊆ [p]× [p] define ΔM as the tensor whose (h, j, k)th entry equals Δhjk if
(j, k) ∈ M and zero otherwise. Let Δ− be the tensor which has (h, j, j)th entry
equal to zero for all j ∈ [p] and h ∈ [H], but is otherwise equal to Δ, and let
Δ+ = Δ−Δ−. Define ξ = maxj �=k ‖Θ̂·jk − τ ∗

·jk‖2, η = {
∑p

j=1 ‖
∑

k �=j(Θ̂·jk −
τ ∗
·jk)‖2

2}1/2, and τ ∗
(h)jk = ω∗

(h)j +ω∗
(h)k−2Ω∗

(h)jk. Let š = maxj s̃j and note that,
when H = 1, s̃j = sj . When H > 1, define nmin = minh∈[H] n(h). Lastly, define
S = {(j, k) : Ω∗

(h)jk �= 0 for any h ∈ [H], (j, k) ∈ [p]× [p]} and Sc = [p]× [p]\S.
Let �(Ω) =

∑H
h=1 �(h)(Ω(h)) where

�(h)(Ω) = ‖Θ̂(h) − ω1�
p − 1pω

� + 2Ω‖2
F .

We denote the Hessian of vec(Ω) �→ �(h)(Ω) by ∇2� ∈ R
p2×p2 ; it does not depend

on Ω or h since �(h) is quadratic.
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Fig 8. Average Frobenius norm error divided by p for estimating Ω∗
(1) (on the correlation

scale) over 50 independent replications under (top row) Model 1, (middle row) Model 2, and
(bottom row) Model 3 with (n, p) ∈ {50, 100, 150} × {40, 80, 120, 160, 200}.

We will use the following lemmas. Proofs of the lemmas are in the subsequent
section.

Lemma B.1 (Quadratic lower bound). For any a1 > 0 and a2 > 0, it holds
for every Δ ∈ Ca := {Δ ∈ RH×p×p : ‖|Δ−

Sc‖|1,2 ≤ a1‖|Δ−
S ‖|1,2 + a2,Δ(h)·· =

Δ�
(h)··, h ∈ [H]} that, when p ≥ 5,∑

h∈[H]

vec(Δ(h))�∇2� vec(Δ(h)) ≥(
4 − 32š(1 + a1)2

p− 4

)
‖|Δ−‖|2F + p‖|Δ+‖|2F − 32a2

2
p(p− 4) .

Lemma B.2. Letting Δ̂ = Ω̂ − Ω∗, it holds that

γ(‖|Δ̂
−
S ‖|1,2 − ‖|Δ̂

−
Sc‖|1,2) ≥

1
2
∑

h∈[H]

vec(Δ̂(h))�∇2� vec(Δ̂(h)) − 4ξ‖|Δ̂−‖|1,2 − 4η‖|Δ̂+‖|F .
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Fig 9. L1 matrix norm error divided by p for estimating Ω∗
(1) (on the correlation scale) over

50 independent replications under (top row) Model 1, (middle row) Model 2, and (bottom
row) Model 3 with (n(1), p) ∈ {50, 100, 150} × {40, 80, 120, 160, 200}.

For the remainder, when H = 1, let Wij be the jth component of ith obser-
vation’s random basis vector. When H > 1, let W(h)ij be the jth component
of the random basis vector for observation i ∈ [n(h)] from the hth population.
The following lemma is used only when analyzing the proposed estimator for
one population, that is, when H = 1.

Lemma B.3. Suppose H = 1 and that the log(Wij) are independent over i ∈ [n]
with sub-Gaussian norms bounded by K < ∞. Let c1 > 0 be a fixed constant. If
λ =

√
c1 log(p)/n → 0, then for n sufficiently large

P

(
max
j �=k

|Θ̂jk − τ∗jk| ≥ λ

)
≤ 6p2−νc1/K

4
,

where ν > 0 is a universal constant.

When H > 1, the following lemma is used in place of the previous.

Lemma B.4. Suppose that the log(W(h)ij) are independent over i ∈ [n(h)], h ∈
[H], and that each log(W(h)ij) is supported on [−L,L] for L ∈ (0,∞). If γ =
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Fig 10. Average Frobenius and L1 matrix norm errors divided by p (on the correlation scale)
over 50 independent replications under (left column) Model 1, (middle column) Model 2,
and (right column) Model 3 with p ∈ {40, 80, 120, 160, 200} and (n(1), n(2), n(3), n(4)) =
(100, 75, 50, 25).

{
√
c2HL4/nmin +

√
c2 log(p)/nmin} for fixed constant c2 > 0 sufficiently large,

then there exists a constant d1 ∈ (0,∞) such that

P

(
max
j �=k

‖Θ̂·jk − τ ∗
·jk‖2 ≥ γ

)
≤ p

2− 2c2nmin
d2
1L4N .

Note that the conditions of Lemma B.3 are satisfied under A1 and A3,
whereas the conditions of Lemma B.4 are satisfied under A4.

B.2. Proof of Theorem 5.1

Proof of Theorem 5.1. Specializing notation to the case with H = 1 and drop-
ping the nonnegative quadratic term, Lemma B.2 implies

(λ−4ξ)‖Δ̂−
Sc‖1 ≤ (λ+4ξ)‖Δ̂−

S ‖1 +4η‖Δ̂+‖F ≤ (λ+4ξ)‖Δ̂−
S ‖1 +4ξp3/2‖Δ̂+‖F ,

where the last inequality follows from η ≤ ξp3/2. Thus, by Lemma B.3, we can,
for any v1 > 0, pick c1 > 0 sufficiently large so that with probability tending to
one,

‖Δ̂−
Sc‖1 ≤ 2‖Δ̂−

S ‖1 + (p3/2/v1)‖Δ̂+‖F . (B.1)
Next, by Lemma B.1, specializing notation to the case H = 1 with a1 = 2 and
a2 = (p3/2/v1)‖Δ̂+‖F , (B.1) implies

vec(Δ̂)�∇2� vec(Δ̂) ≥
(

4 − 288š
p− 4

)
‖Δ̂−‖2

F + p‖Δ̂+‖2
F − 32p3

v2
1p(p− 4)‖Δ̂

+‖2
F .
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Thus, for v1 large enough, it holds with probability tending to one that

vec(Δ̂)�∇2� vec(Δ̂) ≥ 2‖Δ̂−‖2
F + p

2‖Δ̂
+‖2

F , (B.2)

which follows from assumption A2. Next, by Lemma B.2 and (B.2)

0 ≥ 1
2 vec(Δ̂)∇2� vec(Δ̂) − 4ξ‖Δ̂−‖1 − 4p3/2ξ‖Δ̂+‖F + λ‖Δ̂−

Sc‖1 − λ‖Δ̂−
S ‖1

≥ ‖Δ̂−‖2
F + p

4‖Δ̂
+‖2

F + (λ− 4ξ)‖Δ̂−
Sc‖1 − (λ + 4ξ)‖Δ̂−

S ‖1 − 4p3/2ξ‖Δ̂+‖F

≥ ‖Δ̂−‖2
F + p

4‖Δ̂
+‖2

F − (λ + 4ξ)‖Δ̂−
S ‖1 − 4p3/2ξ‖Δ̂+‖F

≥ ‖Δ̂−‖2
F + p

4‖Δ̂
+‖2

F − (λ + 4ξ)
√
s‖Δ̂−‖F − 4p3/2ξ‖Δ̂+‖F .

where s =
∑p

j=1 sj . Recall that λ =
√
c1 log(p)/n. Thus, by Lemma B.3, for

finite v2 > 0 and v3 > 0 sufficiently large, λ+4ξ ≤ v2 log(p)/n, 4ξ ≤ v3 log(p)/n
and

0 ≥ ‖Δ̂−‖2
F − v2

√
s log(p)

n
‖Δ̂−‖F + p

4‖Δ̂
+‖2

F − v3

√
p3 log(p)

n
‖Δ̂+‖F , (B.3)

with probability tending to one for c1 > 0 sufficiently large.
To establish the error bound for ‖Δ̂+‖F , suppose for the sake of contradic-

tion that ‖Δ̂+‖F ≥ 8v3
√
p log(p)/n. Then the sum of the last two terms on the

right-hand side of (B.3) is no smaller than 16v2
3p

2 log(p)/n − 8v2
3p

2 log(p)/n =
8v2

3p
2 log(p)/n. Additionally, by minimizing the quadratic in ‖Δ̂−‖F , one gets

that the sum of the first two terms is no smaller than −v2
2s log(p)/(4n). Thus,

since maxj sj = o(p) and s ≤ pmaxj sj the last right-hand side in (B.3) is posi-
tive for large enough p, so Ω̂ is not a minimizer. This is the desired contradiction,
so we conclude ‖Δ̂+‖F < 8v3

√
p log(p)/n with probability tending to one.

To establish the main result, observe (B.3) implies

‖Δ̂−‖2
F−v2

√
s log(p)

n

∥∥∥∥Δ̂− +
√

p

4Δ̂+
∥∥∥∥
F

+ p

4‖Δ̂
+‖2

F

− v3

√
4p2 log(p)

n

∥∥∥∥Δ̂− +
√

p

4Δ̂+
∥∥∥∥
F

≤ 0.

Rearranging terms,

‖Δ̂−‖2
F + p

4‖Δ̂
+‖2

F ≤
(
v2

√
s log(p)

n
+ v3

√
4p2 log(p)

n

)∥∥∥∥Δ̂− +
√

p

4Δ̂+
∥∥∥∥
F

,

so that by dividing both sides by ‖Δ̂− +
√

p
4 Δ̂+‖F , we have∥∥∥∥Δ̂− +

√
p

4Δ̂+
∥∥∥∥
F

≤
(
v2

√
s log(p)

n
+ v3

√
4p2 log(p)

n

)
. (B.4)
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Finally, because ‖Δ̂−‖F +
√

p
4‖Δ̂+‖F ≤

√
2‖Δ̂− +

√
p
4 Δ̂+‖F , we can conclude

‖Δ̂−‖F√
p

+‖Δ̂+‖F ≤
√

4
p
‖Δ̂−‖F+‖Δ̂+‖F ≤

√
8
p

(
v2

√
s log(p)

n
+ v3

√
4p2 log(p)

n

)
with probability tending to one.

B.3. Proof of Theorem 5.2

Proof of Theorem 5.2. In order to prove Theorem 5.2, we use a similar series of
arguments as in the proof of Theorem 5.1. First, notice that Lemma B.2 implies

(γ − 4ξ)‖|Δ̂
−
Sc‖|1,2 ≤ (γ + 4ξ)‖|Δ̂

−
S ‖|1,2 + 4η‖|Δ̂

+
‖|F

≤ (γ + 4ξ)‖|Δ̂−
S ‖|1,2 + 4ξp3/2‖|Δ̂+‖|F ,

where the last inequality follows from η ≤ ξp3/2. By Lemma B.4, we can, for
any v1 > 0, pick c2 > 0 sufficiently large so that with probability tending to
one,

‖|Δ̂−
Sc‖|1,2 ≤ 2‖|Δ̂−

S ‖|1,2 + (p3/2/v1)‖|Δ̂
+‖|F . (B.5)

Next, by Lemma B.1 with a1 = 2 and a2 = (p3/2/v1)‖|Δ̂
+‖|F , (B.5) implies

H∑
h=1

vec(Δ̂(h))�∇2� vec(Δ̂(h)) ≥(
4 − 288š

p− 4

)
‖|Δ̂

−
‖|

2

F + p‖|Δ̂
+
‖|

2

F − 32p3

v2
1p(p− 4)‖|Δ̂

+
‖|

2

F .

Thus, for v1 large enough, it holds with probability tending to one that

H∑
h=1

vec(Δ̂(h))�∇2� vec(Δ̂(h)) ≥ 2‖|Δ̂−‖|
2

F + p

2‖|Δ̂
+‖|

2

F ,

which follows from assumption A5. Next, by Lemma B.2,

0 ≥ 1
2

H∑
h=1

vec(Δ̂(h))�∇2� vec(Δ̂(h)) − 4ξ‖|Δ̂−‖|1,2 − 4p3/2ξ‖|Δ̂+‖|F

+ γ‖|Δ̂−
Sc‖|1,2 − γ‖|Δ̂−

S ‖|1,2

≥ ‖|Δ̂−‖|
2

F + p

4‖|Δ̂
+‖|

2

F + (γ − 4ξ)‖|Δ̂−
Sc‖|1,2

− (γ + 4ξ)‖|Δ̂
−
S ‖|1,2 − 4p3/2ξ‖|Δ̂

+
‖|F

≥ ‖|Δ̂−‖|
2

F + p

4‖|Δ̂
+‖|

2

F − (γ + 4ξ)‖|Δ̂−
S ‖|1,2 − 4p3/2ξ‖|Δ̂+‖|F
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≥ ‖|Δ̂−‖|
2

F + p

4‖|Δ̂
+‖|

2

F − (γ + 4ξ)
√
s̃‖|Δ̂−‖|F − 4p3/2ξ‖|Δ̂+‖|F

where s̃ =
∑p

j=1 s̃j . Then, based on our choice of γ with c2 > 0 sufficiently large,
there exists finite v2 > 0 and v3 > 0 such that (γ + 4ξ) ≤ v2[(HL4/nmin)1/2 +
{log(p)/nmin}1/2] and 4ξ ≤ v3[(HL4/nmin)1/2 + {log(p)/nmin}1/2] with proba-
bility tending to one by Lemma B.4. Thus, with probability tending to one

0 ≥ ‖|Δ̂
−
‖|

2

F − v2
√
s̃

⎛⎝√HL4

nmin
+

√
log(p)
nmin

⎞⎠ ‖|Δ̂
−
‖|F (B.6)

+ p

4‖|Δ̂
+
‖|

2

F − v3p
3/2

⎛⎝√HL4

nmin
+

√
log(p)
nmin

⎞⎠ ‖|Δ̂
+
‖|F .

By the same arguments as in the proof of Theorem 5.1, one can show that (B.6)
implies

‖|Δ̂+‖|F < 8v3

⎛⎝√pHL4

nmin
+

√
p log(p)
nmin

⎞⎠
with probability tending to one, and also that there exists v4 ∈ (0,∞) such that

‖|Δ̂−
+
√
p/4Δ̂

+‖|F ≤ v4(
√
s̃ + p)

⎛⎝√HL4

nmin
+

√
log(p)
nmin

⎞⎠ ,

with probability tending to one. The conclusion as stated follows from the ar-
guments after equation (B.4), along with the fact that under A6, nmin ≥ πN
for N sufficiently large.

Appendix C: Proofs of Lemmas

Proof of Lemma B.1. Inspecting the definition of �(h) shows

H∑
h=1

vec(Δ(h))�∇2� vec(Δ(h)) =
p∑

i=1

∑
k �=j

H∑
h=1

{Δ(h)jj + Δ(h)kk − 2Δ(h)jk}2.

Expanding the squares gives

H∑
h=1

vec(Δ(h))�∇2� vec(Δ(h)) =
H∑

h=1

p∑
j=1

∑
k �=j

(Δ(h)jj + Δ(h)kk)2

− 4
H∑

h=1

p∑
j=1

∑
k �=j

(Δ(h)jj + Δ(h)kk)Δ(h)jk + 4
H∑

h=1

p∑
j=1

∑
k �=j

Δ2
(h)jk = I + II + III.
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Note III = 4‖|Δ−‖|2F . Next, using that
p∑

j=1

∑
k �=j

Δ2
(h)kk =

p∑
j=1

p∑
k=1

Δ2
(h)kk −

p∑
j=1

Δ2
(h)jj = (p− 1)‖Δ+

(h)‖
2
F

and
p∑

j=1

∑
k �=j

Δ(h)jjΔ(h)kk =
p∑

j=1

{
Δ(h)jj

(
p∑

k=1

Δ(h)kk − Δ(h)jj

)}

=

⎛⎝ p∑
j=1

Δ(h)jj

⎞⎠2

− ‖Δ+
(h)‖

2
F ,

we get

I =
H∑

h=1

p∑
j=1

∑
k �=j

Δ2
(h)jj +

H∑
h=1

p∑
j=1

∑
k �=j

Δ2
(h)kk + 2

H∑
h=1

p∑
j=1

∑
k �=j

Δ(h)jjΔ(h)kk

= 2(p− 2)‖|Δ+‖|2F + 2
H∑

h=1

⎛⎝ p∑
j=1

Δ(h)jj

⎞⎠2

≥ 2(p− 2)‖|Δ+‖|2F .

Using this inequality for I, along with the Cauchy–Schwarz inequality, we have

I + II + III ≥ 4‖|Δ−‖|2F + 2(p− 2)‖|Δ+‖|2F − 4
H∑

h=1

p∑
j=1

∑
k �=j

Δ(h)jkΔ(h)jj

− 4
H∑

h=1

p∑
j=1

∑
k �=j

Δ(h)jkΔ(h)kk

= 4‖|Δ−‖|2F + 2(p− 2)‖|Δ+‖|2F − 8
p∑

j=1

∑
k �=j

H∑
h=1

Δ(h)jkΔ(h)jj (C.1)

≥ 4‖|Δ−‖|2F + 2(p− 2)‖|Δ+‖|2F − 8
p∑

j=1

∑
k �=j

‖Δ·jk‖2‖Δ·jj‖2

= 4‖|Δ−‖|2F + p‖|Δ+‖|2F (C.2)

+
p∑

j=1

⎧⎨⎩(p− 4)‖Δ·jj‖2
2 − 8‖Δ·jj‖2

∑
k �=j

‖Δ·jk‖2

⎫⎬⎭ .

Here, the equality (C.1) follows from
p∑

j=1

∑
k �=j

Δ(h)jkΔ(h)jj =
p∑

j=1

p∑
k=1

1(j �= k)Δ(h)jjΔ(h)jk =
p∑

k=1

∑
j �=k

Δ(h)jjΔ(h)jk.
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To simplify notation, let Dj =
∑

k �=j ‖Δ·jk‖2 be the sum of the Euclidean
norms of the off-diagonal fibers in the jth row. Completing the square in the
jth summand of the last lower bound of I + II + III gives(√

(p− 4)‖Δ·jj‖ −
√

16
p− 4Dj

)2

− 16
p− 4D

2
j ,

and hence, we have shown

H∑
h=1

vec(Δ(h))�∇2� vec(Δ(h)) = I + II + III

≥ 4‖|Δ−‖|2F + p‖|Δ+‖|2F − 16
p− 4

p∑
j=1

D2
j .

To bound
∑p

j=1 D
2
j , fix an arbitrary a3 > 0 and consider the optimization

problem

max
Δ∈RH×p×p

p∑
j=1

D2
j s.t. ‖|Δ−

Sc‖|1,2 ≤ a1‖|Δ−
S ‖|1,2+a2, Δ(h) = Δ�

(h), ‖|Δ‖|2F ≤ a3.

The maximum becomes no smaller if we drop the symmetry constraint and
add a constraint that all elements be positive. Moreover, we may assume H =
1 since only the Euclidean norms of fibers affect the objective function and
constraints. Thus, Δ = Δ and Dj = ‖Δj‖1, where Δj is Δ with all elements
but the off-diagonal ones in the jth row set to zero.

We get the concave optimization problem

max
Δ∈Rp×p

p∑
j=1

‖Δj‖2
1 s.t.

p∑
j=1

p∑
k=1

(Δ−
Sc)jk ≤ a1

p∑
j=1

p∑
k=1

(Δ−
S )jk + a2, (C.3)

‖Δ‖2
F ≤ a3, Δjk ≥ 0.

Note that, except for the definition of S, the order of elements within rows does
not matter in (C.3). Thus, we may, without affecting the maximum, assume
S = {(j, k) ∈ [p] × [p] : k ≤ sj} if we also redefine Δj to be Δ with all elements
but the first p−1 in the jth row set to zero, Δ− to be Δ with the last column set
to zero, and Δ+ = Δ−Δ−. Effectively, this interchanges the diagonal element in
each row with the last element in that row and puts the support indicated by S
on the first sj elements in the jth row. Now, the feasible set becomes no smaller
if sj = š for each j, so we can assume this without decreasing the maximum.

With these definitions, pick a feasible Δ and note any Δ′ obtained by permut-
ing the rows of Δ is feasible and attains the same value. Thus, by concavity, the
convex combination which puts equal weight 1/p! on all p! row-permutations of
Δ, say Δ̃, is feasible and attains at least the same value as Δ. By construction,
every row of Δ̃ is the same. Thus, we have shown that for any feasible Δ there
is a feasible Δ̃ that attains at least the same value and has all rows equal.
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Pick an arbitrary feasible Δ and a corresponding Δ̃. Since all rows of Δ̃ are the
same, the constraint ‖Δ̃−

Sc‖1 ≤ a1‖Δ̃−
S ‖1 +a2 implies ‖Δ̃j

Sc‖1 ≤ a1‖Δ̃j
S‖1 +a2/p

for every j ∈ [p]. Thus,
p∑

j=1
‖Δ̃j‖2

1 ≤
p∑

j=1
{(1 + a1)‖Δ̃j

S‖1 + a2/p}2 ≤
p∑

j=1
{(1 + a1)

√
š‖Δ̃j

S‖F + a2/p}2.

Moreover,

{(1 + a1)
√
š‖Δ̃j

S‖F + a2/p}2 ≤ 2(1 + a1)2š‖Δ̃j‖2
F + 2a2

2/p
2

and hence
p∑

j=1
‖Δj‖2

1 ≤
p∑

j=1
‖Δ̃j‖2

1 ≤
p∑

j=1
{2(1 + a1)2š‖Δ̃j‖2

F + 2a2
2/p

2}

= 2(1 + a1)2š‖Δ−‖2
F + 2a2

2/p.

Thus,

I + II + III ≥ 4‖Δ−‖2
F + p‖Δ+‖2

F − 16
p− 4{2(1 + a1)2š‖Δ−‖2

F + 2a2
2/p}

=
(

4 − 32š(1 + a1)2

p− 4

)
‖Δ−‖2

F + p‖Δ+‖2
F − 32a2

2
p(p− 4) ,

which completes the proof.

We will use the following to prove Lemma B.3.

Lemma C.1. Supposing H = 1, if the log(Wij) are independent over i ∈ [n]
and have sub-Gaussian norms bounded by K < ∞, then for j �= k and any
ε > 0,

P
(
|Θ̂jk − τ∗jk| ≥ ε

)
≤ 6 exp{−νnmin(ε/K2, ε2/K4)}

where ν > 0 is a universal constant.

Proof of Lemma C.1. Suppose first Θ̂jk = n−1∑n
i=1 log(Xij/Xik)2 and note

this makes sense since E{log(Xij/Xik)} = E{log(Wij) − log(Wik)} = 0. Now

n−1
n∑

i=1
log(Xij/Xik)2 = n−1

n∑
i=1

{log(Wij)2 + log(Wik)2 − 2 log(Wij) log(Wik)}.

We thus have, since E{log(Wij)} = 0,

P
(
|Θ̂jk − ω∗

j − ω∗
k + 2Ω∗

jk| ≥ ε
)
≤ P

(
|

n∑
i=1

{log(Wij)2 − ω∗
j }| ≥ nε/3

)

+ P

(
|

n∑
i=1

{log(Wik)2 − ω∗
k}| ≥ nε/3

)
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+ P

(
|

n∑
i=1

{log(Wij) log(Wik) − Ω∗
jk}| ≥ nε/6

)
.

Each of these terms enjoys sub-exponential concentration, meaning they are up-
per bounded by 2 exp{−cmin(ε/K2, ε2/K4)n}, where K2 is the sub-Exponential
norm bound of the log(Wij)2 and ν > 0 a universal constant [36, Lemma 2.7.5
and Corollary 2.8.4].

Now, with Θ̂jk = n−1∑n
i=1
{
log(Xij/Xik) − n−1∑n

l=1 log(Xlj/Xlk)
}2, which

is equal to n−1∑
i=1 log(Xij/Xik)2 −

{
n−1∑

i=1 log(Xij/Xik)
}2, routine argu-

ments for the concentration of the sample mean of sub-Gaussian random vari-
ables show

{
n−1∑

i=1 log(Xij/Xik)
}2 is of smaller order than

n−1
∑
i=1

log(Xij/Xik)2 − τ∗jk

and so essentially the same proof applies. We omit the details for brevity.

Proof of Lemma B.3. Let ε =
√
c1 log(p)/n → 0 for fixed constant c1 > 0. By

Lemma C.1 and the union bound, for n sufficiently large

P

(
max
j,k

|Θ̂jk − τ∗jk| ≥ ε

)
≤ 6p2 exp(−νnε2/K4) = 6 exp{(2 − νc1/K

4) log(p)},

which completes the proof.

Proof of Lemma B.2. By definition, �(Ω̂) + γ‖|Ω̂−‖|1,2 ≤ �(Ω∗) + γ‖|[Ω∗]−‖|1,2,
and hence

�(Ω̂) − �(Ω∗) ≤ γ
(
‖|[Ω∗]−‖|1,2 − ‖|Ω̂−‖|1,2

)
≤ γ

(
‖|Δ̂−

S ‖|1,2 − ‖|Δ̂−
Sc‖|1,2

)
,

where the last inequality follows from Ω∗
S = Ω∗, Ω∗

Sc = 0, and the triangle
inequality. On the other hand, for any Ω and Δ = Ω − Ω∗,

�(Ω) − �(Ω∗) =
H∑

h=1

{
1
2 vec(Δ(h))�∇2� vec(Δ(h))

+ 4
p∑

j=1

∑
k �=j

(Θ̂(h)jk − τ∗(h)jk)(Δ(h)jk − Δ(h)jj)
}

= 1
2

H∑
h=1

vec(Δ(h))�∇2� vec(Δ(h)) + 4
H∑

h=1

p∑
j=1

∑
k �=j

(Θ̂(h)jk − τ∗(h)jk)Δ(h)jk

− 4
H∑

h=1

p∑
j=1

Δ(h)jj
∑
k �=j

(Θ̂(h)jk − τ∗(h)jk)

= 1
2

H∑
h=1

vec(Δ(h))�∇2� vec(Δ(h)) + 4
p∑

j=1

∑
k �=j

(Θ̂·jk − τ∗·jk)�Δ·jk
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− 4
p∑

j=1
Δ�

·jj

⎧⎨⎩∑
k �=j

(Θ̂·jk − τ∗·jk)

⎫⎬⎭
≥ 1

2

H∑
h=1

vec(Δ(h))�∇2� vec(Δ(h)) − 4ξ‖|Δ−‖|1,2 − 4η‖Δ+‖F ,

which completes the proof.

Proof of Lemma B.4. First, recall that we assume log(W(h)ij) is supported on
[−L,L]. Thus, defining v(h)ilm = log(W(h)il/W(h)im), it can be easily verified
that v2

(h)ilm is supported on [0, 4L2].
To establish the desired concentration inequality, we will use McDiarmid’s

inequality [36, Theorem 2.9.1] to get a high-probability bound for ‖Θ̂·lm−τ ∗
·lm‖2

for an arbitrary pair (l,m) with l �= m, and then apply the union bound to
control maxl �=m ‖Θ̂·lm − τ ∗

·lm‖2.
Let Θ̂ be the tensor of sample variation matrices based on

{W(h)1, . . . ,W(h)n(h)}Hh=1 and let Θ̃ be the tensor of sample variation matri-
ces based on {W̃(h)1, . . . , W̃(h)n(h)}Hh=1 where W̃(h)i = W(h)i for all but a single
pair (h�, i�), i.e., W̃(h�)i� �= W(h�)i� . To apply McDiarmid’s inequality, we need
to find a ch�,i� such that

|‖Θ̂·lm − τ ∗
·lm‖2 − ‖Θ̃·lm − τ ∗

·lm‖2| ≤ ‖Θ̂·lm − Θ̃·lm‖2 ≤ ch�,i�

for each pair (h�, i�). Notice that bounding ‖Θ̂·lm − Θ̃·lm‖2
2 is a matter of

bounding

‖Θ̂·lm − Θ̃·lm‖2
2 =

H∑
h=1

⎛⎜⎝ 1
n(h)

n(h)∑
i=1

⎡⎢⎣
⎧⎨⎩log

(
W(h)il

W(h)im

)
− n−1

(h)

n(h)∑
j=1

log
(

W(h)jl

W(h)jm

)⎫⎬⎭
2

−

⎧⎨⎩log
(

W̃(h)il

W̃(h)im

)
− n−1

(h)

n(h)∑
j=1

log
(

W̃(h)jl

W̃(h)jm

)⎫⎬⎭
2
⎤⎥⎦
⎞⎟⎠

2

.

Now, using that by definition v(h)ilm = log
(

W(h)il
W(h)im

)
, and since v(h)ilm = ṽ(h)ilm

for all i ∈ [n(h)] when h �= h�, we have that

‖Θ̂·lm − Θ̃·lm‖2
2

=

⎛⎜⎝ 1
n(h�)

n(h�)∑
i=1

⎡⎢⎣
⎧⎨⎩v(h�)ilm − n−1

(h�)

n(h�)∑
j=1

v(h�)jlm

⎫⎬⎭
2

−

⎧⎨⎩ṽ(h�)ilm − n−1
(h�)

n(h�)∑
j=1

v(h�)jlm − n−1
(h�)ṽ(h�)i�lm + n−1

(h�)v(h�)i�lm

⎫⎬⎭
2
⎤⎥⎦
⎞⎟⎠

2
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=
[

1
n(h�)

n(h�)∑
i=1

{
a2
i − (ãi + b)2

}]2

=
{

1
n(h�)

n(h�)∑
i=1

(
a2
i − ã2

i − 2ãib− b2
)}2

where ai = v(h�)ilm−n−1
(h�)

∑n(h�)
j=1 v(h�)jlm, ãi = ṽ(h�)ilm−n−1

(h�)
∑n(h�)

j=1 v(h�)jlm,
and b = n−1

(h�)v(h�)i�lm − n−1
(h�)ṽ(h�)i�lm. Because ai = ãi for all i �= i�, there

exists a constant d1 ∈ (0,∞) such that

=
{

(a2
i� − ã2

i�)
n(h�)

− 1
n(h�)

n(h�)∑
i=1

(
2ãib + b2

)}2

=

⎧⎪⎪⎨⎪⎪⎩
(a2

i� − ã2
i�)

n(h�)
+ 2b

n(h�)
(v(h�)i�lm − ṽ(h�)i�lm)︸ ︷︷ ︸

=−
∑n(h�)

i=1 ãi=bn(h�)

−b2

⎫⎪⎪⎬⎪⎪⎭
2

=
{

(a2
i� − ã2

i�)
n(h�)

+ b2
}2

≤ 4a4
i� + 4ã4

i�

n2
(h�)

+ 2b4 ≤ d2
1L

4

n2
(h�)

≤ d2
1L

4

n2
min

.

The second to last inequality above follows from the fact that

a2
i =

⎛⎝v(h�)ilm − n−1
(h�)

n(h�)∑
j=1

v(h�)jlm)

⎞⎠2

≤ 2v2
(h�)ilm + 2

⎛⎝ 1
n(h�)

n(h�)∑
j=1

v(h�)jlm

⎞⎠2

≤ 16L2,

and similarly for ã2
i , and also that

b2 = 1
n2

(h�)
(v(h�)i�lm − ṽ(h�)i�lm)2 ≤ 2

n2
(h�)

(v2
(h�)i�lm + ṽ2

(h�)i�lm) ≤ 16L2

n2
(h�)

.

Hence, we have shown that there exists a constant d1 ∈ (0,∞) such that

‖Θ̂·lm − Θ̃·lm‖2 ≤ d1L
2

nmin

for all pairs (h�, i�). Thus applying McDiarmid’s inequality, for any ε > 0

P
(
‖Θ̂·lm − τ ∗

·lm‖2 ≥ E‖Θ̂·lm − τ ∗
·lm‖2 + ε

)
≤ exp

⎛⎝− 2ε2

d2
1
∑H

h=1
∑n(h)

i=1
L4

n2
min

⎞⎠
= exp

(
−2n2

minε
2

d2
1L

4N

)
.
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All that remains is to bound E‖Θ̂·lm−τ ∗
·lm‖2. First applying Jensen’s inequality,

E‖Θ̂·lm − τ ∗
·lm‖2

≤

√√√√√√ H∑
h=1

E

⎡⎢⎣n−1
(h)

n(h)∑
i=1

⎧⎪⎨⎪⎩
⎛⎝v(h)ilm − n−1

(h)

n(h)∑
j=1

v(h)jlm

⎞⎠2

− τ ∗
·lm

⎫⎪⎬⎪⎭
⎤⎥⎦

2

and letting v̂(h)ilm = v(h)ilm − E(v(h)ilm),

=

√√√√√√ H∑
h=1

E

⎡⎢⎣n−1
(h)

n(h)∑
i=1

⎧⎪⎨⎪⎩
⎛⎝v̂(h)ilm − n−1

(h)

n(h)∑
j=1

v̂(h)jlm

⎞⎠2

− τ ∗
·lm

⎫⎪⎬⎪⎭
⎤⎥⎦

2

=

√√√√√√ H∑
h=1

E

⎡⎢⎣n−1
(h)

n(h)∑
i=1

(v̂2
(h)ilm − τ ∗

·lm) −

⎛⎝n−1
(h)

n(h)∑
j=1

v̂(h)jlm

⎞⎠2
⎤⎥⎦

2

≤

√√√√√√√2
H∑

h=1
E

{
n−1

(h)

n(h)∑
i=1

(v̂2
(h)ilm − τ ∗

·lm)
}2

︸ ︷︷ ︸
=:IV

+2
H∑

h=1
E

(
n−1

(h)

n(h)∑
i=1

v̂(h)ilm

)4

︸ ︷︷ ︸
=:V

.

Next, we bound IV and V separately. Notice that because v(h)ilm ∈ [−2L, 2L],
with v̂(h)ilm = v(h)ilm −E(v(h)ilm) it follows that v̂(h)ilm ∈ [−4L, 4L]. Therefore

IV = E

{
n−1

(h)

n(h)∑
i=1

(v̂2
(h)ilm − τ ∗

·lm)
}2

= Var
{
n−1

(h)

n(h)∑
i=1

(v̂2
(h)ilm − τ ∗

·lm)
}

=
n(h)∑
i=1

Var
(
v̂2
(h)ilm

)
n2

(h)
≤ 162L4

4n(h)

because for bounded random variable Y ∈ [a, b], Var(Y ) ≤ 1
4 (b − a)2. For V,

notice that

V = E

(
n−1

(h)

n(h)∑
i=1

v̂(h)ilm

)4

= 162L4
E

⎛⎜⎝n−1
(h)

n(h)∑
i=1

(
v̂(h)ilm/4L

)︸ ︷︷ ︸
=:u(h)ilm

⎞⎟⎠
4

≤ 162L4
E

(
n−1

(h)

n(h)∑
i=1

u(h)ilm

)2

= 162L4

n2
(h)

n(h)∑
i=1

Var(u(h)ilm) ≤ 162L4

n(h)
, (C.4)

where the first inequality in (C.4) follows from the fact that u(h)il ∈ [−1, 1] and
the equality follows from E(u(h)ilm) = 0 and independence. Putting the pieces
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together, we have shown that there exists a constant d2 ∈ (0,∞) such that

E‖Θ̂·lm − τ ∗
·lm‖2 ≤

√
d2HL4

nmin
.

Thus, we conclude that

P

⎛⎝‖Θ̂·lm − τ ∗
·lm‖2 ≥

√
d2HL4

nmin
+ ε

⎞⎠ ≤ exp
(
−2n2

minε
2

d2
1L

4N

)
.

Finally, applying the union bound with ε =
√

c2 log(p)/nmin and c2 ≥ d2,

P

⎛⎝max
l �=m

‖Θ̂·lm − τ ∗
·lm‖2 ≥

√
c2HL4

nmin
+

√
c2 log(p)
nmin

⎞⎠
≤ P

⎛⎝max
l �=m

‖Θ̂·lm − τ ∗
·lm‖2 ≥

√
d2HL4

nmin
+

√
c2 log(p)
nmin

⎞⎠
≤ p2 P

⎛⎝‖Θ̂·lm − τ ∗
·lm‖2 ≥

√
d2HL4

nmin
+

√
c2 log(p)
nmin

⎞⎠
≤ p2 exp

(
− 2n2

min
d2
1L

4N

c2 log(p)
nmin

)
= p

2− 2c2nmin
d2
1L4N .

Appendix D: Additional details for microbiome data analysis

First, we consider how our estimate of the log-abundance covariance matrix is
affected by the amount added to zero counts, i.e., the pseudocount. Namely, we
tried adding 0.01, instead of 0.5, to each of the counts before conversion to com-
positions. We used the same training/testing splits, though the set of candidate
tuning parameters is slightly different since these are determined from the data
in our software. The set of covariance matrix estimates are presented in Fig-
ure 11. Differences between these and those from Section 7 are relatively minor:
the largest correlations in magnitude are consistent across both estimates, and
the sparsity patterns are largely identical. Of the 76 off diagonals which were
nonzero using the 0.5 pseudocount, 64 of those also appeared with the 0.01
pseudocount version of the data. Compared to the 0.05 pseudocount data, the
covariance matrix estimates based on the 0.01 pseudocount do have more edges,
though the correlations for many of these edges are estimated to be closer to
zero. Note that we do not intend these results to imply that the pseudocount
will not affect estimates–it will, and does. We only provide these to verify that
estimates are reasonably similar across two distinct versions of the dataset.

In Table 4, we provide the phyla, family, genus, and species for each of the
39 OTUs from our data analyis. Finally, In Table 3, we include a version of
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Fig 11. Covariance matrix estimates with 0.01, instead of 0.5, added to all counts before
conversion to compositions.

Table 3

Stability for all correlations, shared correlations, and distinct correlations over 100
bootstrap samples. For the distinct correlation columns, D1 refers to a correlation which was
nonzero in controls, but zero in ME/CFS, whereas D2 refers to a correlation which was zero

in controls but nonzero in ME/CFS.
All correlations Shared correlations Distinct correlations

SCC COAT SCC-H
Control ME/CFS Control ME/CFS Control ME/CFS SCC COAT SCC-H SCC COAT SCC-H

Positive corr. 22 21 53 30 28 11 Same sign 29 19 6 D1 0 111 55
Negiatve corr. 16 17 82 68 33 8 Diff sign 9 5 0 D2 0 74 13

Stability 89.5% 86.8% 83.0% 84.7% 26.2% 73.7% Stability 86.8% 58.3% 33.3% Stability — 00.0% 01.5%

Table 2 which includes SCC-H. Here, like COAT, SCC-H has lower stability than
SCC. However, in general, SCC-H provides far sparser estimates than COAT, which
may partially explain its lower stability. Either way, these results further suggest
that the joint estimation procedure SCC provides more reliable estimates than
separate estimators of the covariance matrices.
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Table 4

Detailed information about the 39 OTUs from the data analyzed in Section 7.

Node Phyla Family Genus Species

1 Bacteroidetes Porphyromonadaceae Parabacteroides
2 Bacteroidetes Bacteroidaceae Bacteroides caccae
3 Bacteroidetes Bacteroidaceae Bacteroides ovatus
4 Firmicutes Lachnospiraceae Blautia
5 Firmicutes Ruminococcaceae Ruminococcus
6 Firmicutes Lachnospiraceae Roseburia faecis
7 Firmicutes Lachnospiraceae Ruminococcus
8 Proteobacteria Enterobacteriaceae Escherichia coli
9 Proteobacteria Alcaligenaceae Sutterella

10 Firmicutes Lachnospiraceae Coprococcus
11 Firmicutes Lachnospiraceae Blautia producta
12 Firmicutes Veillonellaceae Phascolarctobacterium
13 Firmicutes Lachnospiraceae
14 Firmicutes Ruminococcaceae Ruminococcus
15 Firmicutes Lachnospiraceae
16 Firmicutes Lachnospiraceae Coprococcus
17 Firmicutes Ruminococcaceae Ruminococcus bromii
18 Bacteroidetes Porphyromonadaceae Parabacteroides distasonis
19 Actinobacteria Bifidobacteriaceae Bifidobacterium adolescentis
20 Firmicutes Lachnospiraceae Coprococcus
21 Proteobacteria Pseudomonadaceae Pseudomonas fragi
22 Bacteroidetes Barnesiellaceae
23 Firmicutes Ruminococcaceae Ruminococcus bromii
24 Firmicutes
25 Firmicutes Ruminococcaceae Oscillospira
26 Firmicutes Erysipelotrichaceae Clostridium saccharogumia
27 Firmicutes Ruminococcaceae Oscillospira
28 Euryarchaeota Methanobacteriaceae Methanobrevibacter
29 Firmicutes Streptococcaceae Streptococcus
30 Firmicutes Ruminococcaceae Ruminococcus
31 Proteobacteria Enterobacteriaceae Klebsiella
32 Tenericutes
33 Firmicutes Lachnospiraceae Lachnobacterium
34 Verrucomicrobia Verrucomicrobiaceae Akkermansia muciniphila
35 Firmicutes Lachnospiraceae Blautia
36 Bacteroidetes Barnesiellaceae
37 Firmicutes Lachnospiraceae Blautia producta
38 Bacteroidetes S24-7
39 Bacteroidetes Bacteroidaceae Bacteroides uniformis
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