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Abstract: A smooth test to simultaneously compare K copulas, where
K ≥ 2, is proposed. The K observed populations can be paired. The test
statistic is based on the differences between moment sequences, called cop-
ula coefficients. These coefficients characterize the copulas, even in cases
where the copula densities may not exist. The procedure involves a two-step
data-driven procedure. In the initial step, the most significantly different
coefficients are selected for all pairs of populations. The subsequent step
utilizes these coefficients to identify populations that exhibit significant
differences. To illustrate the efficacy of our method, we present numeri-
cal studies that demonstrate its performance. Furthermore, we apply our
methodology, implemented in the “Kcop” R package, to two real datasets.
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1. Introduction and motivations

Copulas have been extensively studied in the statistical literature and their
field of application covers a very wide variety of areas (see for instance the book
of [14] and references therein). The problem of goodness-of-fit for copulas is,
therefore, an important topic and can be relevant to a wide range of situations,
as in insurance to compare the dependence between portfolios (see for instance
[31]), in finance to compare the dependence between indices (see for instance
the book of [7]), in biology to compare the dependence between genes (see [16]),
in medicine to compare diagnosis (see for instance [12]), or more recently in
ecology to compare dependence between species (see [10]).

In the one-sample case, numerous testing methods have been proposed within
parametric copula families (see for instance the review paper of [9], or more
recently [23], [6], and [5]).

In the two-sample case, a notable reference is the nonparametric test pro-
posed by [27], based on integrated square differences between empirical copulas.
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Their test is convergent and requires the continuity of partial derivatives of
copulas which allows to obtain an approximation of the distribution under the
null. Their approach, adaptable to both independent and paired populations, is
implemented in the “TwoCop” R package [26].

For K > 2, [24] introduced an innovative method to compare K copulas.
[25] developed a second test statistic based on a generalized Szekely–Rizzo in-
equality. While these tests are consistent and can assess radial symmetry and
exchangeability, they are limited to samples of the same size. More precisely
both procedures consist of dividing the sample into sub-samples and testing the
equality of the associated sub-copulas. Therefore, testing the equality of copulas
from independent samples cannot be achieved by these works. Furthermore, in
both cases the null distribution is intractable and the author needs a multiplier
bootstrap method to implement these tests. Such bootstrap approach for copu-
las was initiated in [28]. Another extension of [27] is proposed in [4] when the K
populations are observed independently, but the proposed test statistic seems
to work only for testing the simultaneous independence of the K populations.

Recently, [22] conducted a study on a nonparametric copula estimator, demon-
strating excellent numerical results. In this paper, we propose a novel approach
to addressing the comparison of K-copulas based on such estimators. Instead
of directly comparing empirical copulas, we focus on their projections onto the
basis of Legendre polynomials. We restrict our study to continuous variables
whose populations can be paired. This approach allows us to simultaneously
compare the dependence structures of diverse populations, such as various in-
surance portfolios, and to compare the same population observed over multiple
periods, as seen in medical cohorts. Importantly, our method is applicable not
only to the paired case but also to scenarios involving several independent sam-
ples with varying sizes. This versatility is crucial for practical applications and
represents a novel contribution compared to the previously mentioned works,
even though the approaches of [24, 25] could potentially be extended in this
direction.

Our approach is a data-driven procedure derived from Neyman’s smooth tests
theory (see [21]). These smooth tests serve as omnibus tests capable of detecting
any departure from the null hypothesis. In our study, we consider the orthog-
onal projections of copula densities onto the basis of Legendre polynomials,
and subsequently, we compare their coefficients. For each pair of populations,
a penalized rule is introduced to select automatically the coefficients that are
the most significantly different. A second penalized rule determines the number
of populations to be compared. Thus, the procedure operates as a data-driven
method with two selection steps. Under the null hypothesis, the penalties lead
the rules to select only one pair of populations and one coefficient, resulting
in a chi-square asymptotic null distribution. This simplicity distinguishes our
test from the works of [24, 25], where the null distribution lacks an explicit
form, requiring a multiplier bootstrap for p-value calculation. Furthermore, we
demonstrate that our test procedure can detect any fixed alternative and pro-
vides insights into the rejection decision. Specifically, the second penalized rule
is calibrated to identify the populations that differ most significantly. In case of
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rejection, we can pinpoint the pairs of populations that contributed the most
to the test statistic value. Additionally, a two-by-two test can be conducted
to identify similar populations. In practice, we have developed an R package
“Kcop”, which is accessible on the Comprehensive R Archive Network (CRAN)
for implementing the K-sample procedure.

A numerical study validates the robust performance of the test. We apply
this methodology to two datasets in the fields of biology and insurance. The first
dataset, the well-known Iris dataset, lacks simultaneous comparison of the four-
dimensional dependence structures of the three species involved. Consequently,
we propose applying the smooth test to assess the dependence between sepals
and petals, offering a new analysis. The second dataset is a substantial medical
insurance database with possibly paired data, covering claims from three years:
1997, 1998, and 1999. We apply the smooth test to several variables from this
dataset, illustrating the concepts of risk pooling and price segmentation.

All these results can be reproduced using the “Kcop” package.
The paper is organized as follows: in Section 2 we specify the null hypothe-

sis considered in this paper and we set up the notation. Section 3 presents the
method in the two-sample case. In Section 4 we extend the result to the K
(K > 2) sample case and in Section 5 we proceed with the study of the conver-
gence of the test under alternatives. Section 6 is devoted to the numerical study
and Section 7 contains real-life illustrations. Section 8 discusses extensions and
connections.

All proofs are located in Appendix A. The adaptation to the dependent case is
straightforward and is summarized in Appendix B, where all results are rewrit-
ten in this context. A method for automating test parameters is available in
Appendix C. Additionally, Appendices D to I contain supplementary materials,
including various complements, additional simulations, and comparisons.

2. Notation and null hypotheses

Let X = (X1, . . . , Xp) be a p-dimensional continuous random vector with joint
cumulative distribution function (cdf) FX, and with unique copula defined by

C(F1(x1), . . . , Fp(xp)) = FX(x1, . . . , xp),

where Fj denotes the marginal cdf of Xj . Writing

Uj := Fj(Xj), for j = 1, . . . , p,

we have for all uj ∈ [0, 1]

C(u1, . . . , up) = FU(u1, . . . , up),

with U = (U1, . . . , Up). The copula density (if it exists) defined by

c(u1, . . . , up) := ∂pC(u1, . . . , up)
∂u1, . . . , ∂up

,
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coincides with the probability density function (pdf) fU of the vector U. Write
L = {Ln;n ∈ N} the set of orthogonal Legendre polynomials with first terms
L0 = 1 and L1(x) =

√
3(2x − 1), such that Ln is of degree n and satisfies (see

Appendix D for more details):∫ 1

0
Lj(u)Lk(u)du = δjk,

where δjk = 1 if j = k and 0 otherwise. The random variables Ui are uniformly
distributed and we have the following decomposition

c(u1, . . . , up) =
∑

j1,...,jp∈N

ρj1,...,jpLj1(u1) . . . Ljp(up), (1)

where

ρj1,...,jp = E(Lj1(U1) . . . Ljp(Up)),

as soon as fU exists and belongs to the space of all square-integrable functions
with respect to the Lebesgue measure on [0, 1]p, that is, if∫ 1

0
. . .

∫ 1

0
c(u1, . . . , up)2du1 . . . dup < ∞. (2)

Write j = (j1, . . . , jp) and 0 = (0, . . . , 0). We can observe that ρ0 = 1. Moreover,
since by orthogonality we have E(Lji(Ui)) = 0, for all i = 1, . . . , p, we see that
ρj = 0 if only one element of j is non null. When the copula density exists and
is square integrable, we deduce from (1) that, for all u1, . . . , up ∈ [0, 1],

c(u1, . . . , up) = 1 +
∑
j∈N

p
∗

ρjLj1(u1) . . . Ljp(up),

C(u1, . . . , up) = u1 u2 . . . up +
∑
j∈N

p
∗

ρjIj1(u1) . . . Ijp(up), (3)

where Ij(u) =
∫ u

0
Lj(x)dx, and N

p
∗ stands for the set {j = (j1, . . . , jp) ∈ N

p; j �=
0}. The sequence (ρj)j∈N

p
∗ will be referred to as the copula coefficients (as in

[22]). Since U is bounded, all copula coefficients exist. The following result, due
to [29] or [17], shows that such a sequence characterizes the copula. Moreover,
it shows that assumption (2) is unnecessary.

Proposition 1. Let (ρj)j∈Np and (ρ′j)j∈Np be two sequence of copula coefficients
associated to copulas C and C ′, respectively. Then

ρj = ρ′j, ∀j ∈ N
p ⇐⇒ C = C ′.

Thereby, the copula is determined by its sequence of copula coefficients, a
property that holds even when condition (2) is not satisfied, and the copula
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density may not exist. Consequently, for any continuous random vectors, the
comparison of their copulas coincides with the comparison of their copula coef-
ficients. This equivalence holds true even when the random vectors lack a density
or possess densities that are not square-integrable. We will use this characteri-
zation to construct the test statistic.

We consider K continuous random vectors, namely

X(1) = (X(1)
1 , . . . , X(1)

p ), . . . ,X(K) = (X(K)
1 , . . . , X(K)

p ),

with joint cdf F(1), . . . ,F(K), and with associated copulas C1, . . . , CK , respec-
tively. Assume that we observe K iid samples from X(1), . . . ,X(K), possibly
paired, denoted by

(X(1)
i,1 , . . . , X

(1)
i,p )i=1,...,n1 , . . . , (X

(K)
i,1 , . . . , X

(K)
i,p )i=1,...,nK

.

The following assumption will be needed throughout the paper: we assume that
for all 1 ≤ � < m ≤ K, min(n�, nm) → ∞, and

n�/(n� + nm) → a�,m, with 0 < a�,m < ∞. (4)

Write n = (n1, . . . , nK). Hence, it will cause no confusion if we write n → +∞
when all ni → +∞, and for a series of univariate random variable (Qn)n∈N the
notation Qn = oP(n) means that Qn = oP(ni), for all i = 1, . . . ,K.

We consider the problem of testing the equality

H0 : C1 = · · · = CK , (5)

against H1: there exist 1 ≤ k �= k′ ≤ K such that Ck �= Ck′ . From Proposition 1,
testing the equality (5) is equivalent to test the equality of all copula coefficients,
that is

H0 : ρ(1)
j = · · · = ρ

(K)
j , ∀j ∈ N

p
∗, (6)

against H1: there exist 1 ≤ k �= k′ ≤ K and j �= j′ such that ρ
(k)
j �= ρ

(k′)
j′ , where

ρ(k) stands for the copula coefficients associated to Ck.
We will denote by F

(�)
j the marginal cdf of the jth component of X(�) and

we write

U
(�)
i,j = F

(�)
j (X(�)

i,j ).

For testing (6), we estimate the copula coefficients by

ρ̂
(�)
j1...jp

= 1
n�

n�∑
i=1

Lj1(Û
(�)
i,1 ) . . . Ljp(Û

(�)
i,p ),

where Û
(�)
i,j = F̂

(�)
j (X(�)

i,j ), and F̂ denotes the empirical distribution function
associated to F . Such estimators ρ̂

(�)
j1...jp

have been extensively studied in [22]
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where it is shown their excellent behavior. Considering the null hypothesis H0
as expressed in (6), our test procedure is based on the sequences of differences

r
(�,m)
j := ρ̂

(�)
j − ρ̂

(m)
j , for 1 ≤ � ≤ m ≤ K, and j ∈ N

p
∗,

with the convention that r
(�,m)
j = 0 when only one component of j is different

from zero. This is due to the orthogonality of the Legendre polynomials, leading
ρ
(�)
j = ρ

(m)
j = 0 in such cases.

In order to select automatically the number of copula coefficients, for any
vector j = (j1, . . . , jp), we will denote by

‖j‖1 = |j1| + · · · + |jp|,

the L1 norm and for any integer d > 1, we write

S(d) = {j ∈ N
p; ‖j‖1 = d and ∃ k �= k′ such that jk > 0 and jk′ > 0}.

The set S(d) contains all non null positive integers j = (j1, . . . , jp) with L1

norm equal to d and such that jk < d, for all k = 1, . . . , p. We will denote by
c(d) :=

(
d+p−1

d

)
− p the cardinality of S(d) and we introduce a lexicographic

order on j ∈ S(d) as follows:

j = (d− 1, 1, 0, . . . , 0) ⇒ ord(j, d) = 1
j = (d− 1, 0, 1, . . . , 0) ⇒ ord(j, d) = 2

. . .

j = (0, . . . , 0, 2, d− 2) ⇒ ord(j, d) = c(d) − 1
j = (0, . . . , 0, 1, d− 1) ⇒ ord(j, d) = c(d).

This order will be used to compare successively the copula coefficients.

3. Two-sample case

We first consider the two-sample case when K = 2 to detail the construction of
the test statistics. We want to test

H0 : ρ(1)
j = ρ

(2)
j , ∀j ∈ N

p
∗.

We restrict our attention to the iid case, the paired case with n1 = n2 being
briefly described in Appendix B. To compare the copulas associated with X(1)

and X(2), we introduce a series of statistics derived from the differences between
their copula coefficients. Specifically, for 1 ≤ k ≤ c(2), we define

T
(1,2)
2,k := n1n2

n1 + n2

∑
j∈S(2);ord(j,2)≤k

(r(1,2)
j )2, (7)

and, for d > 2 and 1 ≤ k ≤ c(d),

T
(1,2)
d,k := T

(1,2)
d−1,c(d−1) + n1n2

n1 + n2

∑
j∈S(d);ord(j,d)≤k

(r(1,2)
j )2. (8)
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These statistics are embedded and we have for 2 ≤ k < c(d),

T
(1,2)
d,k = n1n2

n1 + n2

⎛⎝d−1∑
u=2

∑
j∈S(u)

(r(1,2)
j )2 +

∑
j∈S(d);ord(j,d)≤k

(r(1,2)
j )2

⎞⎠ .

It follows that

T
(1,2)
2,1 ≤ T

(1,2)
2,2 ≤ · · · ≤ T

(1,2)
2,c(2) ≤ T

(1,2)
3,1 ≤ · · · ≤ T

(1,2)
d,c(d) ≤ T

(1,2)
d+1,1 ≤ · · · .

Each statistic T
(1,2)
d,k contains information enabling the comparison of the copula

coefficients ρ
(1)
j and ρ

(2)
j up to the norm ‖j‖1 = d and ord(j, d) = k. Conse-

quently, for a large value of d, it will be feasible to compare coefficients of high
orders using r

(1,2)
j , and the parameter k enables the exploration of all j values

for the given order. To simplify notation, we write such a sequence of statistics
as

V
(1,2)
1 = T

(1,2)
2,1 ; V

(1,2)
2 = T

(1,2)
2,2 ; . . . V

(1,2)
c(2) = T

(1,2)
2,c(2); V

(1,2)
c(2)+1 = T

(1,2)
3,1 . . .

By construction, for all integer k > 0, each statistic V (1,2)
k is a sum of k elements.

More precisely there exists a set H(k) ⊂ N
p
∗, with card(H(k)) = k, such that

V
(1,2)
k = n1n2

n1 + n2

∑
j∈H(k)

(r(1,2)
j )2. (9)

It can be observed that if j belongs to H(k) then ‖j‖1 ≤ k. Moreover, we have
the following relation: for all k ≥ 1 and j = 1, . . . , c(k + 1)

V
(1,2)
c(1)+c(2)+···+c(k)+j = T

(1,2)
k+1,j , with the convention c(1) = 0.

Notice that we need to compare all copula coefficients and then let k tend to
infinity to detect all potential alternatives. However, choosing a too large value
for k can lead to a dilution of the test’s power. Following [15], we suggest a
data-driven procedure to automatically select the number of coefficients to test
the hypothesis H0. For this purpose, we set

D(n) := min
{

argmax
1≤k≤d(n)

(V (1,2)
k − kpn)

}
, (10)

where pn and d(n) tend to +∞, as n1, n2 → +∞, kpn being a penalty term
which penalizes the embedded statistics proportionally to the number of copula
coefficients used. Roughly speaking, D(n) automatically selects the coefficients
that exhibit the most significant differences.

Therefore, the data-driven test statistic that we use to compare C1 and C2
is V

(1,2)
D(n) . We consider the following rate for penalty term:

(A) d(ni)(p+5) = o(pn), for i = 1, 2.
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Our first result shows that under the null the least penalized statistic will be
selected, specifically, the first one.
Theorem 1. Let assumptions (A) and (4) hold. Then under H0, D(n) con-
verges in probability towards 1 as n1, n2 → +∞.

It is worth noting that under the null, the asymptotic distribution of the
statistic V

(1,2)
D(n) coincides with the asymptotic distribution of V (1,2)

1 = T
(1,2)
2,1 =

n1n2

n1 + n2
(r(1,2)

j )2, with j = (1, 1, 0, . . . , 0). In that case, we simply have

r
(1,2)
j = 1

n1

n1∑
i=1

L1(Û (1)
i,1 )L1(Û (1)

i,2 ) − 1
n2

n2∑
i=1

L1(Û (2)
i,1 )L1(Û (2)

i,2 ).

It follows that T
(1,2)
2,1 measures the discrepancy between E(L1(U (1)

1 )L1(U (1)
2 ))

and E(L1(U (2)
1 )L1(U (2)

2 )). This simply means that all other copula coefficients
are not significant under the null and are therefore not selected. Asymptotically,
the null distribution reduces to that of V (1,2)

1 and is given below.
Theorem 2. Let j = (1, 1, 0 . . . , 0). If (4) holds, then under H0,

V
(1,2)
1 /σ2(1, 2) D−→ χ2

1,

with σ2(1, 2) = (1 − a1,2)σ2(1) + a1,2σ
2(2), where a1,2 is defined in (4), and

where, for s = 1, 2,

σ2(s) = V

(
L1(U (s)

1 )L1(U (s)
2 )

+2
√

3
∫ ∫ (

1(X(s)
1 ≤ x) − F

(s)
1 (x)

)
L1(F (s)

2 (y))dF (s)(x, y)

+2
√

3
∫ ∫ (

1(X(s)
2 ≤ y) − F

(s)
2 (y)

)
L1(F (s)

1 (x))dF (s)(x, y)
)
.

To normalize the test, we consider the following estimator

σ̂2(1, 2) = (1 − a1,2)
n1

n1∑
i=1

(M (1)
i −M

(1))2 + a1,2

n2

n2∑
i=1

(M (2)
i −M

(2))2,

with

M
(s) = 1

ns

ns∑
i=1

M
(s)
i , for s = 1, 2,

where

M
(s)
i = L1(Û (s)

i,1 )L1(Û (s)
i,2 ) + 2

√
3

ns

ns∑
k=1

(
1
(
X

(s)
i,1 ≤ X

(s)
k,1

)
− Û

(s)
k,1

)
L1(Û (s)

k,2)

+ 2
√

3
ns

ns∑
k=1

(
1
(
X

(s)
i,2 ≤ X

(s)
k,2

)
− Û

(s)
k,2

)
L1(Û (s)

k,1).
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Proposition 2. If (4) holds, then under H0,

σ̂2(1, 2) P−→ σ2(1, 2).

We then deduce the limit distribution under the null.

Corollary 1. Let assumptions (A) and (4) hold. Then under H0, V (1,2)
D(n)/σ̂

2(1, 2)
converges in law towards a chi-squared distribution χ2

1 as n1, n2 → +∞.

4. K-sample case

In this section, we focus on the iid case, with treatment of the paired case
provided in Appendix B.

Our objective is to extend the two-sample case by introducing a series of
embedded statistics. Each new statistic will include a new pair of populations
to be compared. We will use the first rule (10) to select a potentially different
copula coefficient between each pair. A second rule will then be considered to
select a possibly different pair between all populations. To select the pairs of
populations we introduce the following set of indices:

V(K) = {(�,m) ∈ N
2; 1 ≤ � < m ≤ K}.

Clearly, V(K) contains v(K) = K(K − 1)/2 elements which represent all the
pairs of populations that we want to compare and that can be ordered as follows:
we write (�,m) <V (�′,m′) if � < �′, or � = �′ and m < m′, and we denote by
rV(�,m) the associated rank of (�,m) in V(K). This can be seen as a natural
order (left to right and top to bottom) of the elements of the upper triangle of
a K ×K matrix as represented below:

(1, 2) (1, 3) . . . . . . (1,K)
(2, 3) . . . . . . (2,K)

. . .
(K − 1,K)

We see at once that rV(1, 2) = 1, rV(1, 3) = 2 and more generally, for �,m ∈
V(K) we have

rV(�,m) = K(�− 1) − �(� + 1)
2 + m.

We construct an embedded series of statistics as follows:

V1 = V
(1,2)
D(n) , V2 = V

(1,2)
D(n) + V

(1,3)
D(n) , . . . , Vv(K) = V

(1,2)
D(n) + · · · + V

(K−1,K)
D(n) ,

or equivalently,

Vk =
∑

(�,m)∈V(K);rV(�,m)≤k

V
(�,m)
D(n) ,
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where D(n) is given by (10) and V
(�,m)
D(n) is defined as in (9), replacing the pair

index (1, 2) by (�,m). We have V1 < V2 < . . . < Vv(K). The first statistic V1
compares the first two populations 1 and 2. The second statistic V2 compares the
populations 1 and 2, and, in addition, the populations 1 and 3. And more gen-
erally, the statistic Vk compares k pairs of populations. For each 1 < k < v(K),
there exists a unique pair (�,m) such that rV(�,m) = k. To choose automati-
cally the appropriate number of pairs k we introduce the following penalization
procedure, mimicking the Schwarz criterion procedure [30]:

s(n) = min
{

argmax
1≤k≤v(K)

(
Vk − kqn

)}
, (11)

where qn is a penalty term. The choice of qn is discussed in Remark 1. We will
need the following assumption:

(A’) d(ni)(p+5) = o(qn), for i = 1, . . . ,K.

The following result shows that, under the null, the penalty will choose the
first element of V(K) asymptotically. This means that all other pairs are not
significantly different under the null and do not contribute to the statistic.

Theorem 3. Let assumptions (A), (A’) and (4) hold. Then under H0, s(n)
converges in probability towards 1 as n1, . . . , nK → +∞.

Corollary 2. Let assumptions (A), (A’) and (4) hold. Then under H0,
Vs(n)/σ̂

2(1, 2) converges in law towards a χ2
1 distribution as n1, . . . , nK → +∞.

Then the final data-driven test statistic is given by

V = Vs(n)/σ̂
2(1, 2).

Remark 1. In the classical smooth test approach (see [18]), the standard
penalty in the univariate case is qn = pn = log(n), a choice closely linked
to the Schwarz criteria [30] as detailed in [15]. Here, we extend this approach to
the multivariate case with the following generalization:

qn = pn = α log
(

K(K−1)n1 · · ·nK

(n1 + · · · + nK)K−1

)
. (12)

Proposition 5 demonstrates that this choice is sufficient for detecting alterna-
tives. In practical applications, the introduction of the factor α serves to stabilize
the empirical level, bringing it closer to the asymptotic one. Details on the au-
tomatic selection of α can be found in Appendix C, offering a straightforward
calibration of the test.

It’s worth noting that in [13], a comparison between this Schwarz penalty
and the Akaike penalty was conducted. The latter proposes a constant value for
pn or qn, providing an alternative approach to calibrating the test.

Finally, in the paired case where n := n1 = . . . = nK , we opt for qn = pn =
α log(n).
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5. Alternative hypotheses

We consider the following series of alternative hypotheses: for k ∈ {1, . . . , v(K)}

H1(k) :
{

if rV(�,m) < k,C� and Cm have the same copula coefficients
if rV(�,m) = k,C� and Cm have at least a different copula coefficient.

The hypothesis H1(k) asserts that for a given k, the populations indexed by �
and m with rV(�,m) = k are the first to exhibit a difference, as per the order
defined on V(K)). If k = 1, it means that the two first copulas C1 and C2 have
at least one different copula coefficient. We will need the following assumption:

(B) pn = o(n).

Proposition 3. Let assumptions (A), (A’), (B) and (4) hold. Then under
H1(k), s(n) converges in probability towards k, as n1, . . . , nK → +∞, and V
converges to +∞, that is, P(V < ε) → 0, for all ε > 0.

Thus a value of s(n) equal to k indicates that the first pairs of populations are
equal and that a difference appears from the kth pair (following the order on
V(K)).

6. Numerical study of the test

We choose the penalty qn = pn = α log(K(K−1)n1 . . . nK/(n1 + . . . + nK)K−1),
as indicated in Remark 1. In our proofs, we set α = 1 for simplicity. However,
in practice, we enhance this tuning factor empirically using the data-driven
procedure outlined in Appendix C.

Concerning the value of d(n), conditions (A) and (A’) are asymptotic con-
ditions and from our experience setting d(n) = 3 or 4 is enough to have a very
fast procedure which detects alternatives where copulas differ by a coefficient
with a norm less than or equal to d(n). This parameter can be modified in the
package ‘Kcop’. In our simulation, we fixed d(n) = 3. The nominal level is equal
to α = 5%.

6.1. Simulation design

We consider the following copula families: Gaussian, Student, Gumbel, Frank,
Clayton, and Joe Copulas (briefly denoted by Gaus, Stud, Gumb, Fran, Clay and
Joe). For the explicit forms and properties of these copulas, we refer the reader
to [20]. For each copula C, the sample is generated with a given Kendall’s τ
parameter, and we denote it briefly by C(τ). When τ is close to zero the variables
are close to the independence. Conversely, if τ is close to 1 the dependence
becomes linear.

In our simulation, we compute empirical levels and empirical powers as the
percentage of rejections under the null and alternative hypotheses based on 1000
replicates. We consider the following scenarios:
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• We first consider the two-sample case where we compare our test procedure
to that proposed in [27] which is the competitor we found for dependent as
well as independent bivariate observations. Both methods give very similar
results.

• Then, we consider two cases: a 5-sample case and a 10-sample case. In
both situations, alternatives are constructed by modifying τ .

• We also compare the performance of the smooth test to the approach
developed in [24] in the K-sample case, with K = 2, 3, 4, restricting our
study to sub-samples from the observations as done in [24, 25].

• A 6-population case is studied where we change copulas, keeping the
same τ .

• Finally an additional simulation study is proposed in Appendix H. We
compared three Student copulas with df = 5 and with τ = 0.4 or 0.6.

6.2. Simulation results in the two-sample case

In this case (K = 2) we consider the procedure of [27] as a competitor. Let us
recall that this approach is based on the Cramer-von-Mises statistic between
the two empirical copulas and an approximate p-value is obtained through the
multiplier technique with 1000 replications. They also proposed a R package
denoted by Twocop. By extension, we call our R package Kcop.

Here we fix the dimension p = 2. The following groups of scenarios are con-
sidered:

1. A2 : 50-50: it includes six alternatives of size n1 = n2 = 50 which are:
• A2norm: C1 = Gaus(τ1 = 0.2) and C2 = Gaus(τ2 ∈ {0.1, 0.2, . . . ,

0.9})
• A2stu: C1 = Stud(df = 17, τ1 = 0.2) and C2 = Stud(df = 17, τ2 ∈

{0.1, 0.2, . . . , 0.9}) where df is a degree of freedom
• A2gum: C1 = Gumb(τ1 = 0.2) and C2 = Gumb(τ2 ∈ {0.1, 0.2, . . . ,

0.9})
• A2fran: C1 = Fran(τ1 = 0.2) and C2 = Fran(τ2 ∈ {0.1, 0.2, . . . ,

0.9})
• A2clay: C1 = Clay(τ1 = 0.2) and C2 = Clay(τ2 ∈ {0.1, 0.2, . . . , 0.9})
• A2joe: C1 = Joe(τ1 = 0.2) and C2 = Joe(τ2 ∈ {0.1, 0.2, . . . , 0.9})

2. A2 : 50-100 = A2 : 50-50 with n1 = 50 and n2 = 100
3. A2 : 100-50 = A2 : 50-50 with n1 = 100 and n2 = 50
4. A2 : 100-100 = A2 : 50-50 with n1 = 100 and n2 = 100

Recall that this methodology to evaluate the finite sample performance was
proposed in [27]. We follow their designs with the same sample sizes (n1, n2) ∈{
(50, 50), (50, 100), (100, 50), (100, 100)

}
. Such scenarios coincide with the null

hypothesis when τ2 = 0.2.



Smooth test for equality of copulas 907

The results are very similar for all scenarios and we present the A2norm
alternatives in this section, reserving the remaining results for Appendix F. Fig-
ures 1–2 illustrate that both methods (Twocop and Kcop) exhibit highly compa-
rable performance. As expected, the more different the Kendall tau, the greater
the power. In our simulation, the tau associated with C1 is fixed and equal
to 0.2. The tau associated with C2 varies and the power is maximal (100%)
when it is greater than or equal to 0.7. Conversely, the power is minimal (ap-
proaching 5%) when the tau is set at 0.2, corresponding to the null hypothe-
sis.

Fig 1. Two-sample case: % of rejections under A2 : 50-50 (left) and 50-100 (right).

Fig 2. Two-sample case: % of rejections under A2 : 100-50 (left) and 100-100 (right).
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6.3. Five-sample case

In this case (K = 5) we fix p = 3 and we consider the same size for all samples,
that is n = n1 = n2 = n3 = n4 = n5 ∈ {50, 100, 200, . . . , 900, 1000}. We fixed a
theoretical level α = 5%.

Null hypotheses: under the null hypothesis we consider the same copulas
(Gaussian, Student with degree of freedom = 17, Gumbel, Frank, Clayton, Joe)
with three levels of dependence: τ = 0.1 (low dependence), τ = 0.5 (middle
dependence) and τ = 0.8 (high dependence).

Alternatives with different tau: we consider the following alternatives hy-
potheses with C1, . . . , C5 in the same copula family but with different τ as
follows

• Alt1: C1(0.3) = C2(0.3) = C3(0.3) = C4(0.3) and C5(0.1)
• Alt2: C1(0.1) and C2(0.55) = C3(0.55) = C5(0.55), and C4(0.3)
• Alt3: C1(0.1) and C2(0.8) = C3(0.8) = C5(0.8), and C4(0.3)

Alt1 contains only one different population. Concerning Alt2 and Alt3,
they differ solely in their Kendall’s tau, allowing us to highlight its effect.

Table 1 presents empirical levels (in %) with respect to sample sizes when
τ = 0.1, 0.5 and 0.8, respectively. In each case, one can observe that the empirical
level is close to the theoretical 5% as soon as n is greater than 200. For n = 50
or 100, two phenomena emerge: the empirical level appears larger than the
theoretical level when τ is small and smaller than the theoretical level when τ
is large. Hence, with fewer observations, the procedure more readily identifies
identical copulas when their dependence structure is stronger. This leads to the
following recommendations: for a small size (n < 200) if the estimation of τ is
close to 0.1, it is advisable to adopt a more conservative approach (choosing a
larger theoretical level, e.g., around 0.09). Conversely, if the estimation of τ is
close to 0.9, it is preferable to be anticonservative (choosing a lower theoretical
level around 0.02). This implies a slight reduction in power in the first case, while
power increases in the second case. A tuning procedure could be considered,
incorporating a data-driven criterion based on the estimation of τ .

Concerning the empirical power, Tables 2–4 contain all results under the
alternatives. We omit some large sample size results where empirical powers are
equal to 100%. It is important to note that, even for a sample size equal to 1000,
the program runs very fast. It can be seen for alternatives Alt2 and Alt3 that
the empirical powers are extremely high even for small sample sizes. The first
series of alternatives yields lower empirical powers since only one copula differs
with a slight change in τ .

6.4. Ten-sample case

Analogously to the previous 5-sample case, we consider null hypotheses with
Gaussian, Student, Gumbel, Frank, Clayton, and Joe copulas. We fixed p = 2.
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Table 1

Empirical levels (in %) for the five-sample test.

Models
n Gaussian Student Gumbel Frank Clayton Joe

Kendall tau τ = 0.1
50 11.4 10.5 10.0 11.1 10.3 11.4
100 10.0 8.4 8.1 7.6 8.1 9.1
200 7.6 8.0 6.2 6.3 5.8 7.4
300 6.9 7.3 6.6 7.5 6.5 6.3
400 6.4 5.7 7.1 4.7 5.7 7.4
500 5.1 4.8 4.9 7.0 5.9 5.5
600 5.6 6.5 4.4 5.1 5.1 6.0
700 5.0 5.3 6.1 5.5 4.4 6.5
800 5.1 6.8 4.8 5.5 5.4 6.0
900 5.6 6.2 6.3 5.7 6.5 6.8
1000 5.9 5.5 6.0 5.3 5.2 5.0

Kendall tau τ = 0.5
50 5.4 4.0 4.0 4.1 5.0 3.2
100 6.0 3.7 5.0 5.4 5.1 2.8
200 4.9 5.0 5.6 5.5 6.0 4.8
300 5.7 3.9 4.6 4.9 5.6 4.0
400 4.7 3.9 4.9 5.1 4.6 4.6
500 4.4 3.6 3.6 5.5 4.4 4.5
600 4.8 5.0 3.2 4.2 4.7 5.5
700 5.4 5.5 5.0 6.0 5.0 4.6
800 4.9 4.6 4.6 3.7 4.5 4.4
900 4.6 5.0 4.2 6.1 4.2 4.0
1000 4.2 4.6 4.1 4.9 5.8 3.5

Kendall tau τ = 0.8
50 1.0 0.6 0.6 0.7 3.0 0.4
100 2.6 1.9 2.2 2.9 4.5 1.4
200 4.1 3.1 3.5 3.9 5.3 3.0
300 4.0 3.3 4.5 3.4 5.4 2.1
400 3.5 3.4 4.3 4.2 5.5 3.9
500 4.9 3.9 3.4 3.8 4.0 3.6
600 4.6 3.9 4.1 4.5 5.1 4.8
700 4.0 5.4 4.0 4.4 5.8 3.7
800 4.5 4.6 5.0 5.0 4.8 4.1
900 4.4 4.1 3.8 5.1 4.8 4.2
1000 3.7 5.4 3.8 5.6 5.4 4.1

Table 2

Empirical powers (in %) under alternative Alt1 (five-sample case).

Alternatives
Gaussian Student Gumbel Frank Clayton Joe

n = 50 39.9 35.7 35.6 36.6 35.9 35.5
n = 100 64.1 61.8 60.3 64.0 61.1 60.7
n = 200 91.5 88.4 87.5 91.1 89.9 87.7
n = 300 97.9 98.0 97.7 98.2 97.3 97.2
n = 400 99.8 99.7 99.6 99.8 99.7 99.8
n = 500 100 100 100 100 100 99.9
n = 600 100 100 100 100 100 100
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Table 3

Empirical powers (in %) under alternative Alt2 (five-sample case).

Alternatives
Gaussian Student Gumbel Frank Clayton Joe

n = 50 97.8 97.6 96.3 98.6 97.4 95.6
n = 100 100 100 99.9 100 100 100
n = 200 100 100 100 100 100 100

Table 4

Empirical powers (in %) under alternative Alt3 (five-sample case).

Alternatives
Gaussian Student Gumbel Frank Clayton Joe

n = 50 100 100 100 100 100 100

We consider the following alternatives where only one copula differs from the
others.

• Alt4: C1(0.1) = C2(0.1) = · · · = C9(0.1) and C10(0.55)

Empirical levels seem to tend fast to 0.5 and are relegated in Appendix I. Table 5
shows empirical powers under alternatives Alt4. We only treat the cases where
n = 50 and 100, as beyond these values, all empirical powers are equal to 100%.
Remarkably, even for such small sample sizes, we observe very good behavior of
the test even with small sample sizes.

Table 5

Percentage of rejection under alternative Alt4 (ten-sample case).

Alternatives
Gaussian Student Gumbel Frank Clayton Joe

n = 50 98.0 96.7 96.2 97.9 97.1 97.3
n = 100 100 100 100 100 100 100

6.5. Alternatives with the same Kendall’s tau

We consider a last alternative hypothesis with C1, . . . , C6 which are the six
copulas defined in the null hypothesis models above all with the same τ = 0.55
and with a dimension p up to 5 as follows

• Alt5: τ = 0.55; C1 = Gauss, C2 = Student, C3 = Gumbel, C4 = Frank,
C5 = Clayton, C6 = Joe, and the dimension p ∈ {2, 3, 4, 5}.

Empirical powers are presented in Table 6. It can be seen that the power
increases with the dimension p when the sample size is less than n = 300: it
is then easier to detect differences between the dependence structures of the
vectors. When n ≥ 300, the empirical power is stable and equal to 100% in all
scenarios.
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Table 6

Empirical powers (in %) under alternative Alt5 (6-sample case).

Dimension p = 2 p = 3 p = 4 p = 5
n = 50 1.2 3.1 14.8 20.0
n = 100 2.0 27.3 73.6 79.1
n = 200 19.8 89.9 99.8 100
n = 300 60.3 100.0 100.0 100
n = 400 90.9 100.0 100.0 100
n = 500 98.3 100.0 100.0 100

6.6. Testing the equality of all the bivariate sub-copulas of copulas

The purpose of this section is to compare the performance of our test with that
obtained by [24]. We follow the same design (see Tables 3 in [24]) and we adopt
the same notation. More precisely, we simulated data U = (U1, . . . , U2K) ∼ C,
where C is a 2K-dimensional copula and we examine the equality of all the
bivariate sub-copulas of U , that is

C(U1,U2) = C(U3,U4) = · · · = C(U2K−1,U2K).

We denote by N(θ) the model where U is generated by the 2K-variate normal
copula and by T (θ) the model where U is generated by the Student copula
with ν = 3 degrees of freedom, where the correlation matrix Σ is such that
θ = Σ1,2 = Σ2,1 and Σi,j = 0.2 for all (i, j) �= {(1, 2); (2, 1)}

We compare our procedure (Kcop) to the following quadratic functional pro-
cedures proposed in [24]:

• Cramér-von Mises (CvM) statistic,
• Two characteristic function statistics, denoted as (Cf1, Cf2), correspond

to the weights functions of normal and double-exponential distributions,
respectively

• Diagonal statistics (Dia).

We refer the reader to [24] for more detail and to code for the program.
The results are provided in Tables 7 and 8. There is no overarching conclusion

that allows determining a superior method. The various statistics seem to yield
fairly similar results, except in the case of K = 4, where the emprical powers
associated with our test statistic appear to be generally superior.

7. Real datasets applications

7.1. Biology data

We analyze Fisher’s well-known Iris dataset. The data consists of fifty observa-
tions of four measures: Sepal Length (SL), Sepal Width (SW ), Petal Length
(PL), and Petal Width (PW ), for each of three Species: Setosa, Virginica, and
Versicolor. We then have K = 3 populations, and the dimension is p = 4. The
lengths and widths for the three species are represented in Appendix E. In [8] the
authors show that multivariate normal distributions seem to fit the data well for
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Table 7

Empirical levels for different models studied in [24] with sample size n = 50 and n = 100.
n = 50 n = 100

K Approaches CvM Dia Cf1 Cf2 Kcop CvM Dia Cf1 Cf2 Kcop

2 N(.2) 4.7 5.2 6.2 6.1 6.0 4.7 3.9 4.7 4.7 4.0
T (.2) 4.1 3.9 4.8 4.6 6.0 4.4 4.6 5.2 5.3 5.0

3 N(.2) 3.3 4.8 5.7 4.8 4.0 2.9 4.1 3.3 3.8 4.0
T (.2) 3.0 4.4 3.9 3.7 6.0 4.0 5.1 4.3 4.5 6.0

4 N(.2) 3.4 4.1 5.7 4.9 5.0 2.3 3.0 3.5 3.3 6.0
T (.2) 1.7 4.9 3.5 3.0 6.0 4.4 4.5 6.2 6.1 6.0

Table 8

Empirical powers for different alternatives studied in [24] with n = 50 and n = 100.
n = 50 n = 100

K Approaches CvM Dia Cf1 Cf2 Kcop CvM Dia Cf1 Cf2 Kcop

2

N(.4) 16.8 15.5 21.3 19.8 32.0 22.5 21.8 28.5 26.4 43.0
T (.4) 44.2 48.1 48.9 48.1 35.0 78.0 75.4 82.2 81.2 40.0
N(.6) 51.3 48.9 62.2 58.1 68.0 84.1 81.7 90.1 87.7 94.0
T (.6) 88.6 92.2 90.8 90.7 60.0 99.9 99.9 99.9 99.9 84.0

3

N(.4) 12.0 12.7 17.8 16.1 64.0 20.3 21.1 25.2 23.6 74.0
T (.4) 40.7 47.7 47.3 45.7 70.0 76.7 76.6 81.2 79.4 73.0
N(.6) 47.3 48.2 63.0 56.8 92.0 85.8 84.7 91.5 88.6 99.0
T (.6) 90.1 93.5 93.2 92.4 89.0 100.0 99.8 99.9 100.0 97.0

4

N(.4) 9.8 12.0 16.1 14.1 78.0 19.6 20.6 27.1 25.0 84.0
T (.4) 34.6 41.7 43.9 42.3 84.0 74.4 75.5 78.8 77.6 86.0
N(.6) 43.4 45.8 57.2 53.5 95.0 81.5 80.3 88.9 86.4 100.0
T (.6) 86.3 91.7 91.0 90.5 96.0 99.8 99.8 100.0 100.0 99.0

all three Iris species. Looking at their mean parameters the 4-dimensional joint
distributions seem different but that does not tell us about their dependence
structures.

We propose to test the equality of the dependence structure between the four
variables (SL, SW,PL, PW ) in the three-sample case, that is:

H0 : CSetosa = CV irginica = CV ersicolor.

Since the observations between different species are not connected, we then
apply the test for independent populations. We obtain a p-value close to zero
(9.93−07) and a very large test statistic V = 23.94. We reject the equality of
the dependence structure here. The selected rank s(n) is equal to 3. It means
that the most significant difference is obtained when considering the statistics
associated with population 1 versus 2 (Setosa and Virginica) and population 1
versus 3 (Setosa and Versicolor).

In case of rejection, we can proceed to an “ANOVA” type procedure, applying
a series of two-sample tests. Table 9 contains the associated p-values and we
conclude with the equality of the dependence structure between Versicolor and
Virginica.
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Table 9

P-values for the two-sample test (Iris dataset).

Setosa Virginica Versicolor
Setosa 1 8.28 × 10−6 9.87 × 10−5

Virginica 8.28 × 10−6 1 0.58
Versicolor 9.87 × 10−5 0.58 1

7.2. Insurance data

Insurance is an area in which understanding the dependence structure among
multiple portfolios is crucial for pricing, especially for risk pooling or price
segmentation. To illustrate, we examine the Society of Actuaries Group Med-
ical Insurance Large Claims Database, which contains claims information for
each claimant from seven insurers over the period 1997 to 1999. Each row in
the database presents a summary of claims for an individual claimant in 27
fields (columns). The first five columns provide general information about the
claimant, the next twelve quantify various types of medical charges and ex-
penses, and the last ten columns summarize details related to the diagnosis. For
a detailed and thorough description of the data available online, refer to [11],
accessible on the web page of the Society of Actuaries. In this context, we focus
on p = 3 dimensional variables X = (X1, X2, X3), where X1 = paid hospital
charges, X2 = paid physician charges, X3 = paid other charges, for all claimants
insured by a Preferred Provider Organization plan providing exposure for mem-
bers. This consideration becomes pertinent for risk pooling if the objective is
to group together similar charge scenarios or for price segmentation to provide
similar guarantees for the charges. We employ a procedure with three scenarios
to study the dependence structure of X as follows:

Three-sample test, paired case. In this case, we consider the same claimants
(paired situation) present over the three periods 1997− 1999. At the end of the
data processing, we obtained three samples of size n = 6874 observations. We
analyse the dependence structure of the charges X between the three years,
that is, we test H0 : C1997

X = C1998
X = C1999

X . The test concluded with the non-
rejection of the equality of the three dependence structures, as evidenced by a p-
value = 0.788, a test statistic of V = 0.072 and a selected rank equal to s(n) = 1.
Hence, the dependence structure of paid for insured over the three years seems
to be similar. It can be an argument for keeping the same distribution of risks
on the different charges X1, X2 and X3.

Three-sample test, independent case. Here, we narrow our focus to fe-
male claimants. The three populations consist of individuals classified by their
relationship with the subscriber, which can be “Employee” (nE = 18144 obser-
vations), “Spouse” (nS = 10969 observations), or “Dependent” (nD = 10969
observations), all for the year 1999.

Our objective is to test the equality of the dependence structure among the
charges X. In this context, we assume independence among the K = 3 pop-

https://www.soa.org/resources/experience-studies/2000-2004/research-medical-large-claims-experience-study
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ulations. Through our testing procedure, we obtain a p-value close to zero.
Consequently, we reject the null hypothesis of equal dependence structure for
these charges.

Subsequently, applying an ANOVA procedure reveals that the two-by-two
equalities are rejected for “Dependent” vs “Employee” and “Employee” vs
“Spouse”, with a p-value close to zero in each case. The p-value for “Depen-
dent” vs “Spouse” is close to one.

Therefore, the status of being a “Dependent” or “Spouse” implies a similar
dependence structure for the charges, distinct from the status of being an “Em-
ployee”. In the context of risk pooling, differentiating charges between these two
groups becomes relevant.

Ten-sample test, independent case. Here, we analyze data from the year
1999 where the relationship to the subscriber is “Employee”. We categorize the
charges X based on age ranges of three years, creating 10 groups as follows:
G1 = [1936, 1938], . . . , G10 = [1963, 1965].

The null hypothesis is H0: the dependence structures of these 10-sample
groups are identical. Applying our test procedure, we obtain a p-value close to
0 and a test statistic of V = 16.20. Thus, we reject the null hypothesis of equal
dependence structure by age at a significant level of α = 5%.

There is evidence to suggest that the dependence structure of X changes over
age. We further apply an ANOVA procedure, and the results are presented in
Appendix G, Table 10, where a two-by-two comparison is proposed. Notably,
there are no significant differences between two successive years. Additionally,
Group 6 exhibits a similar dependence structure to the other groups, except
for Group 3. The disparity increases with the gap between the years, especially
between the first age categories and the last ones.

Observing the age range, we identify two clusters: {Group 1, . . . ,Group 5}
and {Group 6, . . . ,Group 10}. In terms of price segmentation, this allows the
formation of two groups with similar dependencies.

8. Other similar tests

Some extensions of the K-sample test to various null hypotheses have been
studied in [24, 2, 25]. Following this approach we indicate how to adapt the
previous test procedure to answer the following hypotheses:

HRS
0 : C(U(1),...,U(K)) = C(1−U(1),...,1−U(K))

HExc
0 : C(U(�),U(m)) = CU(m),U(�)) ,∀� �= m

HES
0 : C(U(1),...,U(K)) = CU(j1),...U(jK )), for all permutations j of {1, . . . ,K}

Clearly, HRS
0 coincides with the radial symmetry, indicating that (U(1), . . . ,

U(K)) and (1−U(1), . . . , 1−U(K)) have the same joint distribution. HExc
0 im-

plies pairwise exchangeable copulas, and HES
0 represents exchangeable symme-

try. These three hypotheses have been elegantly grouped together and tested in
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[24, 25]. We can also adapt our procedure to such hypotheses naturally by con-
sidering the density representation given by (3). For instance, in the two-sample
case, testing HRS

0 involves comparing the coefficients E
(
Lj1(U(1))Lj2(U(2))

)
to

the coefficients E
(
Lj1(1 − U(1))Lj2(1 − U(2))

)
for all j1, j2 in N

p. Asymptoti-
cally, under HRS

0 the test statistic coincides with the comparison of
E

(
L1(U (1)

1 )L1(U (2)
1 )

)
to E

(
L1(1 − U

(1)
1 )L1(1 − U

(2)
1 )

)
and the selected test

statistic is

1
n

n∑
i=1

(
L1(Û (1)

i,1 )L1(Û (2)
i,1 ) − L1(1 − Û

(1)
i,2 )L1(1 − Û

(2)
i,2 )

)
,

which has an asymptotic centred normal distribution under HRS
0 with variance

similar to that studied in Proposition 2 of the paper.
Similarly, HExc

0 consists in comparing E
(
Lj1(U(�))Lj2(U(m))

)
to

E
(
Lj1(U(m))Lj2(U(�))

)
for all � �= m. Under the null hypothesis, the test statis-

tic coincides simply with the comparison of the first coefficients (the least penal-
ized) E

(
L1(U (�)

1 )L1(U (�)
2 )

)
and E

(
L1(U (m)

1 )L1(U (m)
2 )

)
, asymptotically. Then

the selected statistic under the null is

1
n

n∑
i=1

(
L1(Û (�)

i,1 )L1(Û (�)
i,2 ) − L1(Û (m)

i,1 )L1(Û (m)
i,2 )

)
,

which has asymptotically a centered normal null distribution.
Finally, the same reasoning applies to HES

0 where the test statistic is asymp-
totically the same as the previous one.

9. Conclusion

In this paper, we introduced characteristic sequences, referred to as copula co-
efficients, for testing the equality of copulas. We developed a data-driven pro-
cedure in the two-sample case, accommodating both independent and paired
populations. The extension to the K-sample case involves a second data-driven
method, resulting in a two-step automatic comparison method. Our approach
is applicable to all continuous random vectors, even in cases where the copula
density does not exist.

Our method differs from the two-sample test proposed by [27] and comple-
ments the K-sample test developed by [24, 25], enabling the comparison of
separate samples. The simulation study demonstrates the effectiveness of our
approach, even for more than two populations. The test is user-friendly and
performs efficiently. We have limited our simulations to the case of ten samples,
but larger dimensions are conceivable with this method. For future exploration,
studying high dimensions within limited computation time may require dimen-
sion reduction by selecting a limited number of copula coefficients and vector
components, which extends beyond the scope of this paper.
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Comparing our method to existing approaches in the two-sample case, it
appears as efficient as the competitor proposed by [27]. In the K-sample case
with K > 2, numerical results suggest performance at least as good as those
obtained by [24, 25]. In both cases of comparison, we used the previous models
proposed by the authors. An R package of our procedure, named “Kcop,” is
available on CRAN.

Following the seminal work of [24] we can adapt our procedure to test radial
symmetry or exchangeability with a very similar statistic. This idea is already
nicely developed in [24, 2, 25] with a general approach.

Eventually, our approach can be extended in various directions. Two potential
directions include:

• Copula coefficients can be used to obtain a simplified and unified expres-
sion for some measures of association. Let us recall that for any continuous
d-dimensional random variable X = (X1, . . . , Xd) with copula C, one of
the well-known popular multivariate versions of Spearman’s rho ρX(C)
can be expressed as (see [20]):

ρX(C) = hρ(d).
{

2d
∫

[0,1]d
π(u)dC(u) − 1

}
with π(u) =

d∏
j=1

uj

and where hρ(d) = d + 1
2d − (d + 1) . Then Spearman’s rho coincides with the

first copula coefficients, that is

ρX(C) = hρ(d)
∑

j∈{0,1}d/{0}d

ρj

d∏
k=1

(
δ0,jk +

√
3

3 δ1,jk

)
.

For instance, for d = 3, we have

ρX(C) = 3
4ρ110 + 3

4ρ101 + 3
4ρ011 + 3

√
3

8 ρ111,

and we deduce a novel estimator of the multivariate Spearman’s rho as
follows:

ρ̂X(C) = hρ(d)
∑

j∈{0,1}d/{0}d

ρ̂j

d∏
k=1

(
δ0,jk +

√
3

3 δ1,jk

)
.

This estimator opens up possibilities for constructing tests comparing
Spearman’s rho. However, this requires the calculation of the asymptotic
distributions of copula coefficients as proposed in [32].

• Secondly, since the copula coefficients characterize the dependence struc-
ture, we could use such coefficients for testing independence between ran-
dom vectors in the same spirit as the penalized smooth tests proposed
here.
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Appendix A: Proofs

We detail the proof in the independent case. The dependent case with n1 = · · · =
nK := n is similar and will be indicated briefly in Appendix B. Throughout the
proofs, we used the equality L1(x) =

√
3(2x− 1) and the following inequalities

are satisfied by Legendre polynomials (see [1]):

Lj(x) ≤ cj1/2, ∀x ∈ [0, 1] (13)
L′
j(x) ≤ c′j5/2, ∀x ∈ [0, 1], (14)

where c > 0 and c′ > 0 are constant.

Proof of Proposition 1

From Corollary 6.7 of [29], if μ is a Radon measure on R
p for which all moments

are finite and if there exists ε > 0 such that∫
Rp

eε‖x‖μ(dx) < +∞, (15)

then μ is said determinate, that is: if ν is a Radon measure with the same
moments then ν = μ. Since U is bounded on [0, 1]p, all its moments are finite and
(15) is satisfied for all ε > 0. It follows that its distribution is determinate. �

Proof of Theorem 1

We want to show that P0(D(n) > 1) → 0 as n tends to infinity. We have

P0

(
D(n) > 1

)
= P0

(
∃k ∈ {2, . . . , d(n)} : V (1,2)

k − k pn ≥ V
(1,2)
1 − pn

)
= P0

(
∃k ∈ {2, . . . , d(n)} : V (1,2)

k − V
(1,2)
1 ≥ (k − 1)pn

)
= P0

(
∃k ∈ {2, . . . , d(n)} : n1n2

n1 + n2

∑
j∈H∗(k)

(r(1,2)
j )2 ≥ (k − 1)pn

)
≤ P0

( n1n2

n1 + n2

∑
j∈H∗(d(n))

(r(1,2)
j )2 ≥ pn

)
, (16)

with H(k) satisfying (9) and where H∗(k) = H(k)\H(1). The last inequality
comes from the fact that if a sum of (k − 1) positive terms, say

∑k
j=2 rj is

greater than a constant c, then necessarily there exists a term rj such that
rj > c/(k − 1). The important point here is that card(H∗(k)) = k − 1, which
corresponds to the number of elements of the form (r(1,2)

j )2 in the difference
V

(1,2)
k − V

(1,2)
1 . For simplification of notation, we write H∗ instead of H∗(d(n)).

Under the null ρ(1)
j = ρ

(2)
j and we decompose (r(1,2)

j )2 as follows(
r
(1,2)
j

)2 =
(
(ρ̂(1)

j − ρ
(1)
j ) − (ρ̂(2)

j − ρ
(2)
j )

)2 (17)
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≤ 2(ρ̂(1)
j − ρ

(1)
j )2 + 2(ρ̂(2)

j − ρ
(2)
j )2, (18)

that we combine with the standard inequality for positive random variables:
P(X + Y > z) ≤ P(X > z/2) + P(Y > z/2), to get

P0
(
D(n) > 1

)
≤ P0

( n1n2

n1 + n2

∑
j∈H∗

(ρ̂(1)
j − ρ

(1)
j )2 ≥ pn/4

)
+ P0

( n1n2

n1 + n2

∑
j∈H∗

(ρ̂(2)
j − ρ

(2)
j )2 ≥ pn/4

)
(19)

:= A + B. (20)

We now study the first quantity A, the quantity B being similar. Writing

ρ̃
(1)
j = 1

n1

n1∑
s=1

Lj1(U
(1)
s,1 ) · · ·Ljp(U (1)

s,p ),

we obtain

ρ̂
(1)
j − ρ

(1)
j = (ρ̂(1)

j − ρ̃
(1)
j ) + (ρ̃(1)

j − ρ
(1)
j ) := Ej + Gj, (21)

where

Ej = 1
n1

n1∑
s=1

(
Lj1(Û

(1)
s,1 ) · · ·Ljp(Û (1)

s,p ) − Lj1(U
(1)
s,1 ) · · ·Ljp(U (1)

s,p )
)

Gj = 1
n1

n1∑
s=1

(
Lj1(U

(1)
s,1 ) · · ·Ljp(U (1)

s,p ) − E
(
Lj1(U

(1)
1 ) · · ·Ljp(U (1)

p )
))

.

Then we have

A ≤ P0
( n1n2

n1 + n2

∑
j∈H∗

(Ej)2 ≥ pn/16
)

+ P0
( n1n2

n1 + n2

∑
j∈H∗

(Gj)2 ≥ pn/16
)
. (22)

We first study the quantity involving Ej in (22). Write

S
(1)
� = sup

x
|F̂ (1)

� (x) − F
(1)
� (x)|, � = 1, . . . , p. (23)

Applying the mean value theorem to Ej we obtain

|Ej| ≤ 1
n1

n1∑
s=1

p∑
i=1

S
(1)
i sup

x
|L′

ji(x)
∏
u �=i

Lju(x)|.

From (13) and (14) there exists a constant c̃ > 0 such that

|Ej| ≤ c̃

p∑
i=1

S
(1)
i (ji5/2

∏
u �=i

ju
1/2). (24)
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When j belongs to H∗ = H∗(d(n)) we necessarily have ‖j‖1 ≤ d(n). Moreover
card(H∗) = d(n) − 1. It follows that

P0
( n1n2

n1 + n2

∑
j∈H∗

(Ej)2 ≥ pn/16
)

≤ P0
( n1n2

n1 + n2

∑
j∈H∗

c̃2
p∑

i=1

p∑
i′=1

S
(1)
i S

(1)
i′ j

5/2
i j

5/2
i′

∏
s �=i

js
1/2

∏
s′ �=i′

js′
1/2 ≥ pn/16

)
≤ P0

(
c̃2

p∑
i=1

p∑
i′=1

n1n2

n1 + n2
S

(1)
i S

(1)
i′

∑
j∈H∗

d(n)p+4 ≥ pn/16
)

≤ P0
(
c̃2

p∑
i=1

p∑
i′=1

n1n2

n1 + n2
S

(1)
i S

(1)
i′ d(n)p+5 ≥ pn/16

)
→ 0 as n → ∞, (25)

since for all i = 1, . . . , p,
√

n1n2

n1 + n2
S

(1)
i converges in law to a Kolmogorov

distribution and d(n)p+5 = o(pn) by (A).
Coming back to (21), we now study the quantity involving Gj. First note

that E(Gj) = 0. Moreover, V(Gj) = E((Gj)2) = V(
p∏

i=1
Lji(U

(1)
i ))/n1. Then, by

Markov inequality we have

P0
( n1n2

n1 + n2

∑
j∈H∗

(Gj)2 ≥ pn/16
)

≤ n2

n1 + n2

∑
j∈H∗

V(
p∏

i=1
Lji(U

(1)
i ))

pn/16

and from (13) there exists a constant c > 0 such that

V
( p∏
i=1

Lji(U
(1)
i )

)
≤ c2

p∏
i=1

ji.

It follows that

P0
( n1n2

n1 + n2

∑
j∈H∗

(Gj)2 ≥ pn/16
)

≤ n2

n1 + n2

c2d(n)p

pn/16 → 0, as n → ∞. (26)

We now combine (25) and (26) with (22) to conclude that A → 0, as n → ∞.
In the same manner we can show that B → 0, as n → ∞, which completes

the proof. �
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Proof of Theorem 2

Let j = (1, 1, . . . , 0, 0). We have V
(1,2)
1 = T

(1,2)
2,1 =

(√
n1n2

n1 + n2
r
(1,2)
j

)2

and we

can decompose
√

n1n2

n1 + n2
r
(1,2)
j under the null as follows:√

n1n2

n1 + n2
r
(1,2)
j =

√
n1n2

n1 + n2

(
ρ̂
(1)
j − ρ̂

(2)
j

)
=

√
n1n2

n1 + n2

(
1
n1

n1∑
i=1

L1(Û (1)
i,1 )L1(Û (1)

i,2 )

− 1
n2

n2∑
i=1

L1(Û (2)
i,1 )L1(Û (2)

i,2 )
)

=
√

n1n2

n1 + n2

(
1
n1

(
n1∑
i=1

L1(Û (1)
i,1 )L1(Û (1)

i,2 ) −m

)

−
√

n1n2

n1 + n2

(
1
n2

(
n2∑
i=1

L1(Û (2)
i,1 )L1(Û (2)

i,2 ) −m

)
(27)

:= R(1)
n −R(2)

n , (28)

where, under the null

m = E(L1(U (1)
i,1 )L1(U (1)

i,2 )) = E(L1(U (2)
i,1 )L1(U (2)

i,2 )).

By Taylor expansion, using the fact that the Legendre polynomials satisfy L′
1 =

2
√

3 and L′′
1 = 0, we obtain

R(1)
n =

√
n1n2

n1 + n2

{
n1∑
i=1

(
L1(F (1)

1 (x(1)
i,1 ))L1(F (1)

2 (X(1)
i,2 ))dF̂(1)(x, y) −m

)
+
∫ ∫

(F̂ (1)
1 (x) − F

(1)
1 (x))2

√
3L1(F (1)

2 (y))dF(1)(x, y)

+
∫ ∫

(F̂ (1)
2 (y) − F

(1)
2 (y))2

√
3L1(F (1)

1 (x))dF(1)(x, y)

+
∫ ∫

(F̂ (1)
1 (x) − F

(1)
1 (x))2

√
3L1(F (1)

2 (y))d
(
F̂(1) − F(1))(x, y)

+
∫ ∫

(F̂ (1)
2 (y) − F

(1)
2 (y))2

√
3L1(F (1)

1 (x))d
(
F̂(1) − F(1)(x, y)}

:=
√

n1n2

n1 + n2

(
A

(1)
1,n1

+ A
(1)
2,n1

+ A
(1)
3,n1

+ B(1)
n1

+ C(1)
n1

)
.

By symmetry, the second term R
(2)
n can be expressed as:

R(2)
n =

√
n1n2

n1 + n2

(
A

(2)
1,n2

+ A
(2)
2,n2

+ A
(2)
3,n2

+ B(2)
n2

+ C(2)
n2

)
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and finally√
n1n2

n1 + n2
r
(1,2)
j =

√
n1n2

n1 + n2

(
A

(1)
1,n1

+ A
(1)
2,n1

+ A
(1)
3,n1

−A
(2)
1,n2

−A
(2)
2,n2

−A
(2)
3,n2

+ B(1)
n1

+ C(1)
n1

−B(2)
n2

− C(2)
n2

)
.

This expression is very similar to the expansion used in [32] (see his proof of
Theorem 1) and [3] (see his equation (3.4)). We imitate their approach here.

Therefore, we will show that
√
n1

3∑
i=1

A
(1)
i,n1

and
√
n2

3∑
i=1

A
(2)
i,n2

have a limiting

normal distribution and the rest of the terms are all oP(1). Using the expression
of the empirical cdf we can rewrite

A
(1)
1,n + A

(1)
2,n + A

(1)
3,n = 1

n1

n1∑
i=1

{
L1(F (1)

1 (X(1)
1,i )L1(F (1)

2 (X(1)
2,i )) −m

+2
√

3
∫ ∫

(1(X(1)
1,i ≤ x) − F

(1)
1 (x))L1(F (1)

2 (y))dF(1)(x, y)

+2
√

3
∫ ∫

(1(X(1)
2,i ≤ y) − F

(1)
2 (y))L1(F (1)

1 (x))dF(1)(x, y)
}

:= 1
n1

n1∑
i=1

(Z(1)
1,i + Z

(1)
2,i + Z

(1)
3,i ) := 1

n1

n1∑
i=1

Z
(1)
i ,

where Z
(1)
i are iid random variables. By symmetry we get

A
(2)
1,n + A

(2)
2,n + A

(2)
3,n = 1

n2

n2∑
i=1

(Z(2)
1,i + Z

(2)
2,i + Z

(2)
3,i ) := 1

n2

n2∑
i=1

Z
(2)
i .

Clearly E(Z(1)
1,i − Z

(2)
1,i ) = 0. Since E(1(X(1)

1,i ≤ x)) = F
(1)
1 (x) and E(1(X(2)

1,i ≤
x)) = F

(2)
1 (x), we also have E(Z(1)

2,i − Z
(2)
2,i ) = 0 and similarly E(Z(1)

3,i − Z
(2)
3,i ) =

0. Moreover, Z(1)
i and Z

(2)
i have finite variances. Applying the Central Limit

Theorem to the independent iid series Z
(1)
i and Z

(2)
i we obtain√

n1n2

n1 + n2

(
1
n1

n1∑
i=1

Z
(1)
i + 1

n2

n2∑
i=1

Z
(2)
i

)
→ N(0, σ2(1, 2)),

with

σ2(1, 2) = (1 − a1,2)V(Z(1)
i ) + a1,2V(Z(2)

i )

where a1,2 is given by (4), and where, for j = 1, 2,

V(Z(j)
i ) = V

(
L1(U (j)

1 )L1(U (j)
2 )

+2
√

3
∫ ∫ (

1(X(j)
1 ≤ x) − F

(j)
1 (x)

)
L1(F (j)

2 (y))dF(j)(x, y)
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+2
√

3
∫ ∫ (

1(X(j)
2 ≤ y) − F

(j)
2 (y)

)
L1(F (j)

1 (x))dF(j)(x, y)
)
.

We now proceed to check that B(s)
ns , C(s)

ns are oP(n−1/2
s ) for s = 1, 2. The asymp-

totic negligibility of B(s)
ns , s = 1, 2 and C

(s)
ns , s = 1, 2 follows directly from those

of B1N and B2N in [3]. The arguments are exactly similar to those of [3] (see
his proof of Theorem 1) and we therefore omit the details. �

Proof of Proposition 2

Let us define

W
(s) = 1

ns

ns∑
i=1

W
(s)
i , for s = 1, 2,

where

W
(s)
i = L1(U (s)

i,1 )L1(U (s)
i,2 )

+2
√

3
∫ ∫ (

1(X(s)
i,1 ≤ x) − F

(s)
1 (x)

)
L1(F (s)

2 (y))dF (1)(x, y)

+2
√

3
∫ ∫ (

1(X(s)
i,2 ≤ y) − F

(s)
2 (y)

)
L1(F (s)

1 (x))dF (1)(x, y).

We focus on s = 1, the case s = 2 being similar. We have

1
n1

n1∑
i=1

(
W

(1)
i −W

(1))2
P−→ σ2(1). (29)

According to Slusky’s Lemma and (29), the proof is completed by showing that

1
n1

n1∑
i=1

(
W

(1)
i −W

(1))2
− σ̂2(1) P−→ 0.

We have

1
n1

n1∑
i=1

(
W

(1)
i −W

(1))2
− σ̂2(1)

= 1
n1

n∑
i=1

(
W

(1)
i

)2
−
(
W

(1))2
− 1

n1

n1∑
i=1

(
M

(1)
i

)2
+

(
M

(1))2

= 1
n1

n1∑
i=1

(
W

(1)
i −M

(1)
i

)(
W

(1)
i + M

(1)
i −M

(1) −W
(1))

.

From (13), there exists a constant κ > 0 such that, for all n1 > 0 and for all
i = 1, . . . , n1,

max(|W (1)
i |, |M (1)

i |) ≤ κ,
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which implies that∣∣∣∣∣ 1
n1

n1∑
i=1

(
W

(1)
i −W (1)

)2
− σ̂2(1)

∣∣∣∣∣ ≤ 8κ
n1

n1∑
i=1

∣∣∣W (1)
i −M

(1)
i

∣∣∣ .
It remains to prove that W

(1)
i − M

(1)
i

P−→ 0. We have W
(1)
i − M

(1)
i = Ii,1 +

2
√

3Ii,2 + 2
√

3Ii,3, where

Ii,1 = L1(U (1)
i,1 )L1(U (1)

i,2 ) − L1(Û (1)
i,1 )L1(Û (1)

i,2 )

Ii,2 =
∫ (

1(X(1)
i,1 ≤ x) − F

(1)
1 (x)

)
L1

(
F

(1)
2 (y)

)
dF (1)(x, y)

− 1
n1

n1∑
k=1

(
1(X(1)

i,1 ≤ X
(1)
k,1) − Û

(1)
k,1

)
L1(Û (1)

k,2)

Ii,3 =
∫ (

1(X(1)
i,2 ≤ x) − F

(1)
1 (x)

)
L1

(
F

(1)
2 (y)

)
dF (1)(x, y)

− 1
n1

n1∑
k=1

(
1(X(1)

i,2 ≤ X
(1)
k,2) − Û

(1)
k,2

)
L1(Û (1)

k,1).

Since L1(t) =
√

3(2t− 1), we get

|Ii,1| =
∣∣2√3L1(U (1)

i,1 )
(
U

(1)
i,2 − Û

(1)
2

)
+ 2

√
3L1(Û (1)

2 )
(
U

(1)
i,1 − Û

(1)
1

)∣∣
≤ 6(S(1)

2 + S
(1)
1 ) = oP(1),

where S
(1)
2 and S

(1)
1 are given by (23). We next show that Ii,2 = oP(1). We have

Ii,2 = 1
n1

n1∑
i=1

U
(1)
i,1 L1(U (1)

i,2 ) −
∫∫

F
(1)
1 (x)L1

(
F

(1)
2 (y)

)
dF

(1)
1,2 (x, y)

+
∫∫

1
X

(1)
k,1≤x

(1)
1
L1

(
F

(1)
2 (y)

)
dF

(1)
1,2 (x, y) − 1

n1

n1∑
i=1

1
X

(1)
k,1≤X

(1)
i,1

L1(U (1)
i,2 )

:= I1
2,k + I2

2,k.

To deal with I1
2,k, we note that

I1
2,k = 1

n1

n1∑
s=1

U
(1)
s,1L1(U (1)

s,2 ) − E

(
U

(1)
1 L1(U (1)

2 )
)
.

Since the random vectors (U(1)
i := (U (1)

i,1 , U
(1)
i,2 ))i=1,...,n1 are iid, the weak law of

large numbers and the continuous mapping theorem show that

I1
2,k = oP(1).
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For I2
2,k, we can write

I2
2,k =

∫∫
1
F

(1)
1 (X(1)

k,1)≤F
(1)
1 (x)L1

(
F

(1)
2 (y)

)
dF

(1)
1,2 (x, y)

− 1
n1

n1∑
i=1

1
F

(1)
1 (X(1)

k,1)≤F
(1)
1 (X(1)

i,1 )L1(U (1)
i,2 )

=
∫ 1

0

∫ 1

0
1
U

(1)
k,1≤u

L1(v)dC(1)(u, v) − 1
n1

n1∑
i=1

1
U

(1)
k,1≤U

(1)
i,1

L1(U (1)
i,2 )

and since U
(1)
i,1 has continuous uniform distribution it follows that

|I2
2,k| ≤ sup

t∈[0,1]

∣∣∣∣∣ 1
n1

n1∑
i=1

1
t≤U

(1)
i,1

L1(U (1)
i,2 )

−
∫ 1

0

∫ 1

0
1
t≤u

(1)
1
L1(u(1)

2 )dC(1)(u(1)
1 , u

(1)
2 )

∣∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣∣ 1
n1

n1∑
i=1

1
t≤U

(1)
i,1

L1(U (1)
i,2 ) − E

(
1
t≤U

(1)
1

L1(U (1)
2 )

)∣∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣g (t,U(1)
1 , . . . ,U(1)

n1

)
− E

(
g
(
t,U(1)))∣∣∣ ,

where

g (t, z1, . . . , zn1) = 1
n1

n1∑
k=1

1t≤uk
L1(vk), and zk = (uk, vk) for k = 1, . . . , n1.

Observe that for all t ∈ [0, 1],

sup
z1,...,zn1 ,

z′
i

|g(t, z1, . . . , zn1) − g(t, z1, . . . , zi−1, z
′
i, zi+1, . . . , zn1)| ≤

2‖L1‖∞
n1

,

with 2‖L1‖∞
n1

= 4
√

3
n1

, that is, if we change the ith variable zi of g while keeping
all the others fixed, then the value of the function does not change by more than
4
√

3/n1. Then, by McDiarmid’s inequality, we get ∀ε > 0

P

(
∀t,

∣∣∣g (t,U(1)
1 , . . . ,U(1)

n1

)
− E

(
g
(
t,U(1)))∣∣∣ ≥ ε

)
≤ 2e−n1ε

2/24 −→
n1→∞

0.

It implies that I2
2,k = oP(1), and we conclude that Ii,2 = oP(1) and similarly

that Ii,3 = oP(1). It follows that W
(1)
i − M

(1)
i

P−→ 0 which completes the
proof. �
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Proof of Theorem 3

Let us prove that P(s(n) ≥ 2) vanishes as n → +∞. By definition of s(n) we
have:

P
(
s(n) ≥ 2

)
= P

(
there exists 2 ≤ k ≤ v(K) : Vk − kpn ≥ V1 − pn

)
= P

(
there exists 2 ≤ k ≤ v(K) : Vk − V1 ≥ (k − 1)pn

)
= P

(
∃ 2 ≤ k ≤ v(K) :

∑
2≤ordV(�,m)≤k

V
(�,m)
D(n) ≥ (k − 1)pn

)
.

Since the previous sum contains (k − 1) positive elements, there is at least one
element greater than pn. It follows that

P
(
s(n) ≥ 2

)
≤ P

(
∃(�,m) with 2 ≤ ordV(�,m) ≤ v(K) : V

(�,m)
D(n) ≥ pn

)
≤ P

⎛⎝ ∑
2≤ordV(�,m)≤v(K)

V
(�,m)
D(n) ≥ pn

⎞⎠ .

First, we can remark that V(K) is finite and then there is a finite number of
terms in

∑
2≤ordV(�,m)≤v(K)

V
(�,m)
D(n) . It follows that we simply have to show that

the probability P(V (�,m)
D(n) ≥ pn) vanishes as n → +∞ for any values of (�,m).

Since D(n) ≤ d(n) have:

P(V (�,m)
D(n) ≥ pn) ≤ P(V (�,m)

d(n) ≥ pn)

= P0

( n�nm

n� + nm

∑
j∈H(d(n))

(r(�,m)
j )2 ≥ pn

)
. (30)

Comparing (30) and (16) we can see that the study is now similar in spirit to the
two-sample case and we can simply mimic the proof of Theorem 1 to conclude.

�

Proof of Proposition 3

We give the proof for the case k > 1, the particular case k = 1 being similar. For
simplification of notation, we now write H instead of H(d(n)). We first show
that P(s(n) ≥ k) tends to 1. Under H1(k), we have for all k′ < k:

P(s(n) < k) ≤ P (Vk − kpn ≤ Vk′ − k′pn)
= 1 − P ((Vk − Vk′) ≥ (k − k′)pn)

= 1 − P

⎛⎝ ∑
k′<rV(�,m)≤k

V
(�,m)
D(n) ≥ (k − k′)pn

⎞⎠
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= 1 − P

⎛⎝ ∑
k′<rV(�,m)≤k

n�nm

n� + nm

∑
j∈H

(r(�,m)
j )2 ≥ (k − k′)pn

⎞⎠
≤ 1 − P

⎛⎝1{rV(�,m)=k}
n�nm

n� + nm

∑
j∈H

(r(�,m)
j )2 ≥ (k − k′)pn

⎞⎠ . (31)

When rV(�,m) = k, under H1(k), since C(�) �= C(m), there exists j0 such that
ρ
(�)
j0 �= ρ

(m)
j0 . We have

P

⎛⎝1{rV(�,m)=k}
n�nm

n� + nm

∑
j∈H

(r(�,m)
j )2 ≥ (k − k′)pn

⎞⎠
≥ P

(
1{rV(�,m)=k}

n�nm

n� + nm
1j0∈H(r(�,m)

j0 )2 ≥ (k − k′)pn
)
, (32)

and we can decompose r
(�,m)
j0 as follows

r
(�,m)
j0 =

(
(ρ̂(�)

j0 − ρ
(�)
j0 ) − (ρ̂(m)

j0 − ρ
(m)
j0 )

)
+

(
ρ
(�)
j0 − ρ

(m)
j0 )

)
:= (A−B) + D.

(33)

We first decompose the quantities A and B. We only detail the calculus for A,
since the case of B is similar. We have

A = (ρ̂(�)
j0 − ρ̃

(�)
j0 ) + (ρ̃(�)

j0 − ρ
(�)
j0 ) := Ej0 + Gj0 .

We can reuse (24) to get:

|Ej0 | ≤ c̃

p∑
i=1

S
(�)
i (ji5/2

∏
u �=i

ju
1/2) ≤ c̃′‖j0‖(p+4)/2

1

p∑
i=1

S
(�)
i ,

for some constants c̃ and c̃′. Since √
n�S

(�)
i = OP(1) (see for instance [19]) we

have n�E
2
j0 = OP(1). As Gj0 is an empirical estimator we also have n�G

2
j0 =

OP(1), which yields

n�A
2 = OP(1). (34)

We now consider the quantity D in (33). The inequality ρ
(�)
j0 �= ρ

(m)
j0 implies

that
n�nm

n� + nm
D2 = O(n). (35)

Finally, under H1(k), we combine (34) and (35) with (33) to get
n�nm

n� + nm
(r(�,m)

j0 )2 = OP(n). If we prove that 1j0∈H(D(n)) → 1 as n tends to
infinity then (32) tends to 1, from assumption (B). Mimicking the proof of
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Theorem 1 we can prove that P(D(n) < ord(j0, ‖j0‖1)) → 0 which gives the
result.

Our next goal is to establish the limit of P(V < ε) for ε > 0. It is sufficient
to prove that P(Vs(n) < ε) → 0 as n tends to infinity. We have

P(Vs(n) < ε) =
v(K)∑
s=1

P(Vs < ε ∩ s(n) = s)

=
k−1∑
s=1

P(Vs < ε ∩ s(n) = s) +
v(K)∑
s=k

P(Vs < ε ∩ s(n) = s)

≤
k−1∑
s=1

P(Vs < ε ∩ s(n) = s) +
v(K)∑
s=k

P(Vs < ε) := E + F.

From what has already been proved, under H1(k)

lim
n→∞

E =
k−1∑
s=1

lim
n→∞

P(Vs < ε)P(s(n) = s) = 0.

For the second quantity F , we obtain

lim
n→∞

F ≤
v(K)∑
s=k

lim
n→∞

P(Vs < ε) ≤ (v(K) − k) lim
n→∞

P(Vk < ε),

which is due to the fact that the statistics are embedded. Let (�,m) be such
that rV(�,m) = k. Since Vk > V

(�,m)
D(n) , we have

lim
n→∞

P(Vk < ε) ≤ lim
n→∞

P(V (�,m)
D(n) < ε).

Under H1(k), as in the proof of Theorem 1, we can see that the probability
P(D(n) < k) tends to zero as n tends to infinity. It follows that

lim
n→∞

P(V (�,m)
D(n) < ε) = lim

n→∞
P(V (�,m)

D(n) < ε ∩D(n) ≥ k)

and since the statistics are embedded we have V
(�,m)
k′ ≥ n�nm

n� + nm

(
r
(�,m)
j0

)2
for

all k′ ≥ k which implies that

lim
n→∞

P(V (�,m)
D(n) < ε) ≤ lim

n→∞
P

(
n�nm

n� + nm

(
r
(�,m)
j0

)2
< ε

)
= 0, (36)

since by (33) n�nm

n� + nm
(r(�,m)

j0 )2 = OP(n), and finally

lim
n→∞

P(Vs(n) < ε) ≤ lim
n→∞

(E + F ) = 0. �
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Appendix B: Paired case

We briefly describe the adaptation in the case of dependent samples, rewriting
the previous definitions and the main results. In the following, we express n :=
n1 = · · · = nK .

B.1. Two-sample paired case

The constructions (7) and (8) become

T
(1,2)
2,k = n

∑
j∈S(2);ord(j,2)≤k

(r(1,2)
j )2, for 1 ≤ k ≤ c(2),

and, for d > 2 and 1 ≤ k ≤ c(d),

T
(1,2)
d,k = T

(1,2)
d−1,c(d−1) + n

∑
j∈S(d);ord(j,d)≤k

(r(1,2)
j )2.

Then (9) and (10) become

V
(1,2)
k = n

∑
j∈H(k)

(r(1,2)
j )2

D(n) := min
{

argmax
1≤k≤d(n)

(V (1,2)
k − kqn)

}
,

where qn and d(n) tend to +∞ as n → +∞. A classical choice for qn is α log(n),
where α can be simply equal to 1, or obtained by the tuning procedure described
in Appendix C.

Finally, the associated data-driven test statistic to compare C1 and C2 is

V (1,2) = V
(1,2)
D(n) .

We consider the following rate for the penalty:

(A”) d(n)(p+5) = o(pn).

Theorem 4. Let assumption (A”) holds. Then under H0, D(n) converges in
Probability towards 1 as n → +∞.

Asymptotically, the null distribution will reduce to that of V
(1,2)
1 = T

(1,2)
2,1 =

n(r(1,2)
j )2, with j = (1, 1, 0, . . . , 0) and

r
(1,2)
j = 1

n

n∑
i=1

(
L1(Û (1)

i,1 )L1(Û (1)
i,2 ) − L1(Û (2)

i,1 )L1(Û (2)
i,2 )

)
.

Theorem 5. Let j = (1, 1, 0 . . . , 0). Under H0,

(V (1,2))1/2 D−→ N
(
0, σ2(1, 2)

)
,
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where

σ2(1, 2) = V

(
L1(U (1)

1 )L1(U (1)
2 ) − L1(U (2)

1 )L1(U (2)
2 )

+2
√

3
∫ ∫ (

I(X(1)
1 ≤ x) − F

(1)
1 (x)

)
L1(F (1)

2 (y))dF (1)(x, y)

−2
√

3
∫ ∫ (

I(X(2)
1 ≤ x) − F

(2)
1 (x)

)
L1(F (2)

2 (y))dF (2)(x, y)

+2
√

3
∫ ∫ (

I(X(1)
2 ≤ y) − F

(1)
2 (y)

)
L1(F (1)

1 (x))dF (1)(x, y)

−2
√

3
∫ ∫ (

I(X(2)
2 ≤ y) − F

(2)
2 (y)

)
L1(F (2)

1 (x))dF (2)(x, y)
)
.

To normalize the test, we consider the following estimator

σ̂2(1, 2) = 1
n

n∑
i=1

(
Mi,1 −Mi,2 −M1 + M2

)2
,

Ms = 1
n

n∑
i=1

Mi,s, for s = 1, 2,

where

Mi,s = L1(Û (s)
i,1 )L1(Û (s)

i,2 ) + 2
√

3
n

n∑
k=1

(
I
(
X

(s)
i,1 ≤ X

(s)
k,1

)
− Û

(s)
k,1

)
L1(Û (s)

k,2)

+ 2
√

3
n

n∑
k=1

(
I
(
X

(s)
i,2 ≤ X

(s)
k,2

)
− Û

(s)
k,2

)
L1(Û (s)

k,1).

Proposition 4. Under H0,

σ̂2(1, 2) P−→ σ2(1, 2).

We then obtain the following result.

Corollary 3. Let assumption (A”) holds. Under H0, V (1,2)/σ̂2(1, 2) converges
in law towards a chi-squared distribution χ2

1 as n → +∞.

B.2. K-sample paired case

The rule (11) becomes

s(n) = min
{

argmax
1≤k≤v(K)

(
Vk − kpn

)}
,

where pn satisfies
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(A”’) d(n)p+5 = o(pn).

In practice we choose pn = α log(n). We have

Theorem 6. Let assumptions (A”) and (A”’) hold. Then under H0, s(n)
converges in probability towards 1 as n → +∞.

Corollary 4. Let assumptions (A”) and (A”’) hold. Then under H0,
Vs(n)/σ̂

2(1, 2)) converges in law towards a χ2
1 distribution.

Then, the final data-driven test statistic is given by

V = Vs(n)/σ̂
2(1, 2).

B.3. Alternative hypotheses in the paired case

We need the following assumption:

(B’) pn = o(n).

Proposition 5. Let assumptions (A”), (A”’) and (B’) hold. Then under
H1(k), s(n) converges in probability towards k as n → +∞, and V converges to
+∞, that is, P(V < ε) → 0 for all ε > 0.

Appendix C: Tuning the test statistic

As evoked in Remark 1, we can choose the penalty
qn = pn = α log(K(K−1)n1 · · ·nK/(n1 + · · · + nK)K−1) by using the following
data-driven procedure.

Data-driven tuning procedure:

• Assume we observe K populations, namely P1, . . . , PK

• Split randomly each population into K ′ > 2 sub-populations, say Pi,j, for
i = 1, . . . ,K, j = 1, . . . ,K ′.

• Clearly, for i = 1, . . . ,K, the K ′ sub-populations Pi,1, . . . , Pi,K′ have the
same copula, that is, the null hypothesis H0 is satisfied.

• We can repeat N times such a procedure to get K ∗N K ′ samples under
the null.

• We then approximate numerically the value of the factor α > 0 such that
the selection rule retains the first component, that is s(n) = 1, for all the
K ′-sample tests. From Theorem 3, this is the asymptotic expected value
under the null.
More precisely, we fix

α̂ = min{α > 0; such that s(n) = 1 for the K ∗Nselection rules}

In our simulation, we fixed arbitrarily K ′ = 3, which seems to give a very
correct empirical level. Note that the use of this factor α only slightly modified
the empirical results.
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Appendix D: Legendre polynomials

The Legendre polynomials used in this paper are defined on [0, 1] by

L0 = 1, L1(x) =
√

3(2x− 1), and for n > 1 :

(n + 1)Ln+1(x) =
√

(2n + 1)(2n + 3)(2x− 1)Ln(x) − n
√

2n + 3√
2n− 1

Ln−1(x).

They satisfy ∫ 1

0
Lj(x)Lk(x)dx = δjk,

where δjk = 1 if j = k and 0 otherwise.

Appendix E: Representations of sepals and petals distributions
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Fig 3. Lengths and widths for Setosa, Versicolor and Virginica.
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Appendix F: Simulation results in the two-sample case
(complements)

Fig 4. Two-sample case: empirical powers under alternatives A2 : 50-50.
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Fig 5. Two-sample case: empirical powers under alternatives A2 : 50-100.
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Fig 6. Two-sample case: empirical powers under alternatives A2 : 100-50.
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Fig 7. Two-sample case: empirical powers under alternatives A2 : 100-100.
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Appendix G: Insurance data: the two-by-two comparison

Table 10

ANOVA test p-values (in bold the cases where the equality is not rejected). Values given in
brackets indicate the size of groups (G).

Groups G1 G2 G3 G4 G5 G6 G7 G8 G9

G1(966)
G2(971) 0.794
G3(996) 0.265 0.193
G4(954) 0.827 0.952 0.175
G5(955) 0.397 0.588 0.051 0.519
G6(915) 0.066 0.138 0.003 0.10 0.325
G7(828) 0.002 0.009 0.000 0.005 0.028 0.209
G8(624) 0.001 0.005 0.000 0.002 0.017 0.152 0.883
G9(524) 0.030 0.069 0.001 0.046 0.179 0.700 0.389 0.304
G10(396) 0.008 0.020 0.000 0.013 0.056 0.289 0.925 0.816 0.483

Appendix H: 3-sample with Student copulas

We consider three Student copulas C1, C2, C3, with df=5 and Kendall’s tau
τ1, τ2, τ3, respectively. The first alternative is a very smooth deviation (τ1, τ2, τ3)
= (0.4, 0.5, 0.6) coinciding with three closely related populations. The second
alternative is formed of only two populations but with a slightly larger differ-
ence (τ1, τ2, τ3) = (0.4, 0.4, 0.6). Table 11 contains empirical powers for n ∈
{50, 100, 200}. It appears to be easier to detect the second alternative, which
involves two more distinct groups, rather than three groups with a smooth vari-
ation. This finding may suggest the possibility of a forward test-based clustering
procedure, wherein each population is successively tested before being joined to
a cluster. This perspective could be explored further.

Table 11

Empirical powers.

n = 50 n = 100 n = 200
(τ1, τ2, τ3) = (0.4, 0.4, 0.6) 56.4 73.2 96.6
(τ1, τ2, τ3) = (0.4, 0.5, 0.6) 17.6 29.8 39.5
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Appendix I: Empirical levels for the ten-sample case

Table 12

Empirical levels for the ten-sample test.

Models
n Gaussian Student Gumbel Frank Clayton Joe

Kendall tau τ = 0.1
50 11.5 12.1 10.6 10.9 11.0 10.8
100 9.9 9.3 9.3 9.6 8.3 8.3
200 7.8 6.2 7.9 6.2 7.5 7.8
300 6.9 7.5 7.0 7.0 5.7 6.8
400 6.4 5.1 6.7 5.7 5.3 6.0
500 5.2 6.0 5.9 6.2 7.1 5.7
600 5.6 7.4 5.2 6.4 5.7 5.6
700 5.1 6.3 5.4 6.0 5.2 7.2
800 5.1 5.6 6.2 5.8 6.3 5.8
900 5.8 3.4 5.6 6.2 5.3 6.6
1000 6.0 5.9 5.1 4.2 6.4 5.1

Kendall tau τ = 0.5
50 5.4 4.0 3.6 3.2 4.4 3.7
100 6.0 4.2 4.0 5.4 5.6 3.6
200 4.9 4.5 5.2 5.1 5.3 4.3
300 5.7 5.5 5.5 4.7 5.4 4.0
400 4.7 5.0 5.4 4.6 5.3 3.2
500 4.4 4.9 4.1 5.5 5.5 4.8
600 4.8 6.5 5.1 6.1 4.8 6.2
700 5.4 5.2 6.1 4.6 4.8 3.9
800 4.9 6.3 4.5 6.1 4.9 4.8
900 4.6 4.0 4.8 5.2 4.9 4.2
1000 4.2 5.5 4.5 4.1 4.8 3.6

Kendall tau τ = 0.8
50 1.0 0.6 0.6 0.8 3.1 0.0
100 2.6 2.5 1.8 2.0 4.8 0.7
200 4.1 4.0 4.3 4.0 5.1 2.3
300 4.0 4.5 3.6 4.0 5.7 4.3
400 3.5 4.1 4.9 3.7 5.0 3.3
500 4.9 3.9 3.6 4.8 3.9 4.4
600 4.6 5.2 5.7 4.9 4.9 4.8
700 4.0 5.0 5.5 4.9 4.6 4.0
800 4.5 6.5 3.2 3.7 4.3 3.5
900 4.4 4.6 4.0 5.9 5.8 4.5
1000 3.7 5.5 4.7 4.3 5.2 4.7
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