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Abstract

We introduce a biologically natural, mathematically tractable model of random phy-
logenetic network to describe evolution in the presence of hybridization. One of
the features of this model is that the hybridization rate of the lineages correlates
negatively with their phylogenetic distance. We give formulas / characterizations for
quantities of biological interest that make them straightforward to compute in practice.
We show that the appropriately rescaled network, seen as a metric space, converges
to the Brownian continuum random tree, and that the uniformly rooted network has a
local weak limit, which we describe explicitly.
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1 Introduction

1.1 Biological context

Random trees play a central role in evolutionary biology: ultimately, much of what
we know about evolution relies on a random tree being used as a null model. Meanwhile,
the genomic revolution of the past decades has shown that phenomena once thought to
play a minor role in large-scale evolution, such as hybrid speciation [36, 37] or horizontal
gene transfers [8, 26, 40], are in fact widespread and crucial to our understanding
of evolutionary processes. As a result, there have been growing calls by biologists to
replace trees by networks when studying phylogenies [6, 17, 18], which lead to the
emergence of the flourishing field of phylogenetic networks (see e.g. [32] for a recent
review).

Despite this, there is still a notable lack of biologically relevant, mathematically
tractable models of random phylogenetic networks. To the best of our knowledge, so far
only two models of random phylogenetic networks have been studied extensively from
a probabilistic standpoint: uniform ranked tree-child networks [9] and uniform level-k
networks [48]. Uniform ranked tree-child networks are generated by a biologically
natural process where species split at constant rate and pairs of species hybridize
at a constant rate. They turn out to be highly tractable [9, 12, 25]. However, they
fail to take into account the fact that phylogenetically distant species are less likely
to hybridize than closely related ones, which results in a very non-tree-like structure
whose biological relevance is questionable. By contrast, uniform level-k networks have a
tree-like large-scale structure [48]; but they do not have a biological interpretation that
would justify their relevance as a model of random phylogenetic network, and they are
not as mathematically tractable (at least for generic values of k).

In this work, we introduce a model of random phylogenetic network that has a natural
biological interpretation while remaining mathematically tractable. The idea of this
model is to consider species that (1) speciate and go extinct at constant rates and (2)
hybridize, subject to some constraints: each species has a type, which can be thought of
as a proxy for the genetic distance, and species of the same type hybridize at a constant
rate. Types are created at a constant rate in an infinite-allele fashion, and inherited by
descendants. The formal description of the model is given in the next section, along with
an overview of our main results.
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Figure 1: Graphical depiction of a realization of the process generating the network G .
The vertical axis is the time, flowing from top to bottom, and the vertical lines represent
the lineages. Dots correspond to mutations (i.e. to a lineage changing color) and crosses
correspond to deaths (i.e. to a lineage stopping). Horizontal lines correspond to either
branching or coalescence, and serve to indicate the genealogical relationship between
lineages; they should be treated as having length 0.

1.2 Setting and main results

Starting from one colored lineage at time t = 0, consider the continuous-time inter-
acting particle system where:

• each lineage splits into two lineages at rate 1 (branching);

• each lineage dies at rate α > 0 (death );

• each pair of lineages of the same color merge at rate 2β > 0 (coalescence);

• each lineage takes a new, never-seen-before color at rate µ > 0 (mutation).

As illustrated in Figure 1, this process defines a time-embedded random network
which can be seen as a random metric measure space (G , dG , λG ). Formally, a point
x ∈ G corresponds to a lineage ` and a time t at which that lineage is alive. Since the
lineages can be seen as segments, G can be seen as a collection of segments glued
together at their endpoints, and λG as the usual Lebesgue measure on this union of
segments.

There is a natural metric dG on G , obtained by defining dG (x, y) to be the length of a
shortest path between two points x, y ∈ G . Since genetic material cannot be transmitted
back in time, a more biologically relevant notion of distance between two points x, y ∈ G
would consist in considering only the paths that lie in the past of the focal points. Letting
h(x) = t denote the height of a point x = (`, t) ∈ G and x ∧ y the most recent common
ancestor of x and y, this notion of distance can be expressed as

h(x) + h(y)− 2h(x ∧ y).

However, this does not define a distance in the mathematical sense, as the triangle
inequality is not satisfied when the network contains coalescence points.

In this document, we are mostly interested in the structure of G conditioned on being
large. More specifically, we consider (Gn, dGn , λGn), the metric measure space having the
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law of (G , dG , λG ) conditioned on having n colors, and we study various limits of Gn as n
goes to infinity.

For this, it will be convenient to see G as a decorated Galton–Watson tree. For
each color k, let Xk denote the subnetwork of G formed by the lineages of color k,
endowed with the information of which endpoint corresponds to the creation of the
color k (henceforth referred to as the root of Xk) and of which of the other endpoints
correspond to mutations as opposed to deaths. Let T denote the genealogical tree of
the colors – that is, the ordered tree whose vertices are the colors of the lineages and
where k′ is a child of k if and only if k′ was created by the mutation of a lineage of
color k, the children of a color being ordered according to the order of apparition of
the corresponding mutations. Finally, let T ? denote the tree T where each vertex k
is decorated by the corresponding network Xk. Note that G and T ? contain the same
information, since to reobtain G from T ? it suffices to glue, for each color k and each
child of that color, the root of the decoration the i-th child of k to the endpoint of Xk

corresponding to its i-th mutation.
In Section 2, we list miscellaneous results that are used throughout the document,

starting with properties of the process describing the dynamics of the number of lineages
of a given color (the so-called logistic branching process). We then study the random
variable M giving the number of new colors that a color produces over its lifetime, i.e.
the offspring distribution of the Galton–Watson tree T . We show that its expected value
is given by

E(M) = µ
∑
j>1

j∏
k=1

1

ρk
,

where ρk = α+ µ+ (k − 1)β. Since every color has an almost surely finite lifetime, the
process generating G goes extinct with probability 1 if and only if E(M) 6 1. We also
show that the probability generating function of M can be expressed as the continued
fraction

g(z) =
α+ µz

1 + ρ1 −
α+ β + µz

1 + ρ2 −
α+ 2β + µz

1 + ρ3 −
. . .

.

This expression makes it straightforward to numerically compute the probability of
extinction of the process – that is, the smallest fixed-point of g in [0, 1]. Similarly, we give
a characterization of the asymptotic growth rate of the total number of lineages that
makes it possible to compute it in practical applications.

In Sections 3 and 4, we study the geometry of the network Gn. Section 3 deals with
the global, large-scale structure of Gn as n goes to infinity. This structure is tree-like: in
Theorem 3.12 we show that, letting |Gn| = λGn(Gn), for some well-characterized constant
C the rescaled space (

Gn,
C√
n
dGn ,

1
|Gn|λGn

)
converges to Aldous’ Brownian continuum random tree in distribution for the Gromov–
Hausdorff–Prokhorov topology. Finally, Section 4 focuses on the local structure of Gn:
we show that Gn rooted at a uniform point has a local weak limit, which we describe
explicitly.

1.3 Comments and perspectives

Our proof of the convergence to the CRT is based on [48], where most of the ideas
that we use in Section 3 can already be found. Nevertheless, some specificities of
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our model – in particular the fact that the number of new colors produced by a color
during its lifetime and the total length of the corresponding subnetwork are not bounded
random variables – require a different treatment and have necessitated a fine-grained
study of the logistic branching process with mutation. The existence of various local
weak limits was also obtained in [48]. The ideas are similar, insofar as we are also
dealing with local weak limits of blow-ups of Galton–Watson trees. However, there are
some notable differences – such as the fact that our focal point is chosen uniformly with
respect to the length measure of our time-embedded network (as opposed to uniformly
on the vertices of the underlying graph) and that we are able to give a more explicit
description of the local geometry of the limit.

In an effort to make this paper accessible to mathematical biologists who do not
have specific knowledge about Galton–Watson trees or Gromov–Hausdorff–Prokhorov
convergence, we have strived to make it as self-contained as possible by (1) providing
detailed reminders about most of the notions and results that are used and (2) when-
ever possible, expressing our results as general statements that are not tied to our
particular setting. In particular, Proposition 3.4 provides a general recipe for proving
Gromov–Hausdorff–Prokhorov convergence to a random R-tree, and Lemma 3.10 makes
it straightforward to apply this proposition to decorated Galton–Watson trees.

We close this introduction by mentioning an interesting line of research: our study
hinges on the fact that our model can be seen as a decorated Galton–Watson tree. This
crucial connection stems from the fact that the hybridization rate is a 0-1 function of the
phylogenetic distance, which has the simple form d(`, `′) = 1 if ` and `′ are the same color,
and 0 otherwise. However, from a modelling point of view it would be more natural to
use a more nuanced notion of phylogenetic distance, and to let the phylogenetic distance
be a gradually decreasing function of that distance.

For instance – as a first step and in keeping with the idea of colors representing
incompatibility alleles – one could let lineages carry several colors, and make the
hybridization rate between two lineages a decreasing function of the number of colors
that differ between these lineages. Based on the biological interpretation, one might
expect such a model to have properties that are very similar to our model. However,
because the link with Galton–Watson trees is lost, it is not clear whether this is the case,
and how to study this. Therefore, studying such models of phylogenetic networks – whose
large-scale geometry is expected to be tree-like, even though there is no immediate,
rigorous connection with branching processes – seems like an interesting and challenging
problem that will likely require developing new tools and methods.

2 Probability of extinction and growth rate

2.1 The logistic branching process

Throughout this document, we denote by X = (Xt : t > 0) the process counting the
number of lineages of the first color. It is a birth-death process started from X0 = 1,
killed in 0, and with transition rates:

• k → k + 1 at rate k;

• k → k − 1 at rate kρk = (α+ (k − 1)β + µ)k.

This process has been called the branching process with logistic growth (or, more
succinctly, the logistic branching process) and has been studied, e.g, in [34, 43]. It is
also a special case of a branching process with interactions, see [13, 29, 42].

The qualitative behaviour ofX can be described as transient fluctuations in a potential
well. Indeed, letting K = 1 + (1−α−µ)/β, when X is smaller than K it tends to increase
whereas when it is greater than K it tends to decrease. Thus, in particular when K is
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large, typical trajectories of X quickly relax towards a quasi-stationary distribution and
then fluctuate until they eventually hit 0, which happens in finite time with probability 1.

Although this qualitative behaviour is well-understood, the quadratic term in the
death rate makes the obtention of exact quantitative results difficult – and, to some
extent, impossible. For instance, a classic approach to study birth-death processes
consists in using the Kolmogorov forward equations to obtain a characterization of the
probability generating function f(z, t) = E(zXt) as the solution of a partial differential
equation. Here, standard calculations show that f is the unique analytic solution on
[0, 1]×R+ of

∂tf = (z − α− µ)(z − 1) ∂zf + βz(1− z) ∂zzf

with f(z, 0) = z. However, this partial differential equation is known not to have a closed-
form solution – see Proposition 1.2 in [1]. Another powerful approach to study birth-death
processes is the integral representation of the transition probabilities using orthogonal
polynomials introduced by Karlin and McGregor [30, 31], but to our knowledge in the
case of the logistic branching process this does not yield useful explicit expressions.

One of the important properties of the logistic branching process is that it comes
down from infinity (meaning that there is a unique way to start it from X0 = ∞ and
yet have Xt < ∞ for any t > 0), as shown by Lambert in [34]. We denote by E∞ the
expectation under the initial condition X0 = ∞. A recurring quantity throughout this
paper is the extinction time T = inf{t > 0 : Xt = 0}. In his Theorem 2.3, Lambert gives
Laplace transform of T under E∞ as a function of the solution of a Riccati equation, and
shows that its expected value is finite. In fact, T also has finite exponential moments
under E∞. This can be deduced, e.g, from [24, Proposition 2.4] or [5, Proposition 2.2],
and will play an important role in our study – even though, for reasons that will become
clear, we actually need a variant of this result (namely Lemma 3.6 in Section 3.3).

Because in our setting the mutations associated to the logistic branching process play
a crucial role, the following change of measure will be useful. In what follows, we fix the
parameters α and β, and we denote by Eµ the expectation under a logistic branching
process with mutation rate µ.

Proposition 2.1. Let M be the number of mutations associated to the logistic branching
process X, and let L =

∫∞
0
X(t) dt. Then, for any positive number s and any nonnegative

measurable functional f of the trajectory of X,

Eµ
(
f(X) sM

)
= Esµ

(
f(X) e(s−1)µL

)
.

Proof. For this proof, it will be convenient to use the “extended” chain X̄ which, in addi-
tion to the trajectory of X, contains the information about which transitions correspond
to mutations. In other words, X̄ is a continuous-time Markov chain on N̄ ··= N× {◦, •},
where the second coordinate • means: “the last transition was a mutation”. The chain is
started from (1, ◦) and its transition rates are the following:

(i, ◦)→ (j, ◦) at rate q◦ij ··= i1{j=i+1} + (ρi − µ) i1{j=i−1},

(i, •)→ (j, ◦) at rate q◦ij ,

(i, ◦)→ (j, •) at rate q•ij ··= µ i1{j=i−1},

(i, •)→ (j, •) at rate q•ij .

For convenience, we also use the notation qi =
∑
j qij , i.e. in our case qi = (1 + ρi) i.

Note that X̄ almost surely has a finite number of jumps before hitting 0 – i.e. hitting
either (0, ◦) or (0, •), both of which are absorbing states. Let Γ be the embedded chain
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of X̄, whose distribution is given by:

P(Γ = γ) =
( ∏

i
◦→j

q◦ij
qi

)( ∏
i
•→j

q•ij
qi

)
,

where γ is a finite sequence of states, starting at (1, ◦) and ending at 0; the first product
is on the transitions from either (i, ◦) or (i, •) to (j, ◦) in γ, and the second product is
defined similarly.

Also, given {Γ = γ}, where γ is of length n + 1, with n > 1, the distribution of the
holding times Ξ = (ξ1, . . . , ξn) in each of the n first states is given by:

P
(
Ξ ∈ dx

∣∣ Γ = γ
)

=

n∏
k=1

qγke
−qγkxk dx1 . . . dxn,

where, by a slight abuse of notation, γk ∈ N denotes the first coordinate i of the k-th
state (i, ◦) or (i, •) of γ.

Noting that M = M(Γ) =
∑
i
•→j 1 and that L = L(Γ,Ξ) =

∑n
k=1 Γk ξk, and recalling

that q•ij = µ i1{j=i−1}, we get

Eµ
(
f(Γ,Ξ) sM

)
=
∑
γ

sM(γ)

∫
f(γ, x)

( ∏
i
◦→j

q◦ij

)( ∏
i
•→j

µi
)( n∏

k=1

e−qγkxk
)
dx

=
∑
γ

∫
f(γ, x)

( ∏
i
◦→j

q◦ij

)( ∏
i
•→j

sµi
)( n∏

k=1

e−(qγk+(s−1)µγk)xk
)( n∏

k=1

e(s−1)µγkxk
)
dx

= Esµ

(
f(Γ,Ξ) e(s−1)µL

)
,

where the sums run on all sequences γ that end in 0 after a finite number of steps, and
the integrals are over Rn+, with n is the number of jumps of γ. This concludes the proof
since X, seen as a random variable living in the Skorokhod space D(R+,N), is clearly a
measurable functional of the pair (Γ,Ξ).

Finally, it will also be useful to describe the trajectory of X as seen from a uniform
mutation time. For this, we first need to introduce some notation for yet another type of
changes of measures that will appear several times in the paper.

Notation 2.2. Let A and B be random variables defined on the same probability space
such that B is almost surely nonnegative and 0 < E(B) < ∞. We write L (A † B) for
the distribution of A biased by B, that is, under the probability measure defined by
P( · †B) = E(1{·}B) /E(B).

With this notation, by “the process X as seen from a uniform mutation time” we
rigorously mean

Xm ∼ L
(
(XU+t)−U6t<T−U †M

)
,

where U is chosen uniformly at random among the atoms of the point processM giving
the times of the mutations associated to the trajectory of X; note that U need not be
defined whenM is empty because P(M = 0 †M) = 0. Equivalently, the distribution of
Xm is characterized by

E(F (Xm)) =
1

E(M)
E

[ ∑
u∈M

F
(
(Xu+t)−u6t<T−u

)]

for any measurable bounded functional F .

EJP 29 (2024), paper 31.
Page 7/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1088
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A branching process with coalescence for phylogenetic networks

It turns out that it is also possible to obtain Xm by a simple construction. For this, we
need to introduce one last definition.

Definition 2.3. Let f : [0, Tf [ → R and g : [0, Tg[ → R be two càdlàg functions. The
back-to-back pasting of f to g is the càdlàg function f o g : [−Tf , Tg[→ R defined by

f o g : t 7→

{
lims↓t f(−s) if t < 0

g(t) if t > 0 .

Proposition 2.4. Let ν◦ be the probability distribution on the positive integers defined
by

ν◦(n) = C

n∏
k=1

1

ρk
, (2.1)

with C the corresponding normalizing constant. Let K ∼ ν◦ and, conditional on K, let
X ′ and X ′′be two independent realizations of the logistic branching process X started
from X ′0 = K and X ′′0 = K − 1. Then,

Xm d
= X ′ oX ′′.

The proof uses general results about the decomposition of trajectories of Markov
chains that are recalled in Appendix A.1, and therefore is deferred to the end of that
appendix.

2.2 Offspring distribution and extinction probability of T

In this section, we focus on the law of the random variable M giving the number of
mutations of a color (that is, the number of new colors that it produces; also the offspring
distribution of the Galton–Watson tree T ). Our main result is the following theorem, on
which much of our study relies.

Theorem 2.5. Let M be the offspring distribution of T , and let g be its probability
generating function. Then, letting ρk = α+ µ+ (k − 1)β,

E(M) = µ
∑
j>1

j∏
k=1

1

ρk

and

g(z) =
α+ µz

1 + ρ1 −
α+ β + µz

1 + ρ2 −
α+ 2β + µz

1 + ρ3 −
. . .

,

which, using Gauss’s notation for continued fractions, can be written

g(z) = −
∞

K
k=1

µ− ρk − µz
1 + ρk

.

Moreover, g is meromorphic on C. The radius of convergence of its power series
expansion around 0 is R > 1, and g has a pole in R.

Proof. Let X̃ be the embedded chain of X, that is, X̃i = Xτi where τ0 = 0 and τi+1 =

inf{t > τi : Xt 6= Xτi}. Note that, conditional on the trajectory of X̃, each step from
k to k − 1 corresponds to a mutation with probability pk ··= µ/ρk, independently of
everything else. Let us refer to a trajectory of X̃ started from k and killed when it
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first hits k − 1 as a k-excursion of X̃. Every k-excursion of X̃ can be decomposed into
Nk independent (k + 1)-excursions, followed by a single step from k to k − 1. By the
strong Markov property, Nk follows a geometric distribution on {0, 1, . . .} with parameter
θk ··= ρk/(1 + ρk). Therefore, letting Mk have the distribution of the number of mutations
along a k-excursion of X̃, we have

Mk
d
=

Nk∑
i=1

M
(i)
k+1 + Ber(pk) , (2.2)

where M (i)
k+1 are independent copies of Mk+1 that are also independent of Nk, and Ber(pk)

is a Bernoulli variable that is independent of everything else.
Applying Wald’s formula to Equation (2.2) gives

E(Mk) =
1

ρk
E(Mk+1) +

µ

ρk
,

and solving this first-order linear recurrence yields the formula for the expected value of

M
d
= M1.
Let us now turn to the generating function of M and let gk(z) ··= E(zMk), defined

for |z| < Rk, where Rk = sup{r > 0 : E(rMk) < ∞}. Note that since Mk stochastically
dominates Mk+1, the Rk are nondecreasing. Then, for all z such that |(1− θk) gk+1(z)| < 1

– note that this is true for all |z| < 1 – we have

gk(z) = (1− pk + pkz)
∑
i>0

gk+1(z)i θk (1− θk)i

=
(1− pk + pkz) θk

1− (1− θk) gk+1(z)

=
α+ (k − 1)β + µz

1 + ρk − gk+1(z)
.

This gives the representation of g = g1 as the continued fraction of the theorem.
We now show that g extends to a meromorphic function on all of C. Note that Mk is

stochastically dominated by Hk, the hitting time of 0 by the simple random walk started
from 1 that goes up with probability 1− θk and down with probability θk, independently
of its current position. A standard calculation (see e.g. [11, Section 6.4]) shows that the
probability generating function of Hk is

hk(z) =
1−

√
1− 4θk(1− θk)z2

2(1− θk)z
,

whose power series expansion around zero has a radius of convergence equal to
(4θk(1 − θk))−1/2. Moreover, P(Hk <∞) = hk(1−) = 1−|1−2θk|

2(1−θk) is equal to 1 for all k
large enough, and P(Hk <∞) = 1 implies that E(zHk) = hk(z) inside the disk of conver-
gence of E(zHk). Since E(zMk) 6 E(zHk) for z > 1 and since (4θk(1− θk))−1/2 → +∞ as
k goes to infinity, this shows that for any r > 0 there exists kr such that gkr is analytic on
Dr = {z : |z| < r}. It then follows by induction that gkr−1, . . . , g1 are meromorphic on Dr.

Finally, recall that the dominant singularities of a function that is analytic at 0 are
those singularities that are closest to the origin. To see that the dominant pole of g is
in R > 1, note that since the power series representation of g around the origin has
nonnegative coefficients, Pringsheim’s theorem (see e.g. [23, Theorem IV.6]) ensures that
it has a dominant singularity in ]0,+∞[. Since g(1) = 1 is finite and since all singularities
of g are poles, this means that g has no singularity in 1. Hence, g has a dominant pole in
R for some R > 1.
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Figure 2: Left, the generating function of M , in black, along with the modified conver-
gents of Proposition 2.6 giving upper (blue) and lower (red) bounds; right, supremum
on [0, 1] of the difference between the upper and the lower bound, as a function of n.
Top, subcritical regime, with (α, β, µ) = (1, 1, 1); bottom, supercritical regime, with
(α, β, µ) = (0.2, 0.2, 0.2).

One of the advantages of the expression of g as a generalized continued fraction
is that this makes its numerical evaluation straightforward and very efficient. Indeed,
modified convergents of this continued fraction provide us with upper and lower bounds
on g, as the next proposition shows. The rapid convergence of these bounds is illustrated
in Figure 2.

Proposition 2.6. For all z ∈ [0, 1] and all n > 1,

α+ µz

1 + ρ1 −
α+ β + µz

1 + ρ2 −
α+ 2β + µz

. . .
−
α+ (n− 1)β + µz

1 + ρn − ḡn(z)

6 g(z) 6
α+ µz

1 + ρ1 −
α+ β + µz

1 + ρ2 −
α+ 2β + µz

. . .
−
α+ (n− 1)β + µz

ρn

where

ḡn(z) =
1

2

(
1 + ρn −

√
(1− ρn)2 − 4µ(z − 1)

)
.

Letting Rn > 1 denote the radius of convergence of the power series expansion
around 0 of the left-hand side, for n large enough the reversed inequalities hold for
z ∈ [1, Rn[. Moreover, the difference between the right-hand side and the left-hand side
is O(ncβ−n/n!), where c = 1− α+µ

β , uniformly in z ∈ [0, 1].

Proof. We give a probabilistic proof. Although it is possible to give a shorter analytic
proof, we think that the probabilistic one is more instructive.

Let M (n) denote the number of mutations associated to a modified version X(n) of the
process X, where coalescences happen at rate n(n− 1)β instead of k(k − 1)β whenever
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X(n) = k > n. Let M (n) denote the number of mutations that correspond to transitions
from k to k− 1 with k 6 n in the original process X. For all n > 1, we have the stochastic
dominations

M (n)
d
6 M

d
6 M (n). (2.3)

Let Gn(z) and Gn(z) denote the left- and right-hand sides of the inequality of the
proposition, respectively. The same reasoning as in the proof of Theorem 2.5 shows
that Gn and Gn are, respectively, the generating functions of M (n) and of M (n). Note
however that, in the case of M (n), for small values of n there can be a positive probability
that X(n) never hits 0 – in which case it is not possible to decompose its trajectory into
finite excursions. Nevertheless, letting Ak be the event that X(n) started from k never
hits k − 1 and N (n)

k a geometric variable with parameter ρk∧n/(1 + ρk∧n), we have

P(Ak) = P

N(n)
k⋃

i=1

A
(i)
k+1

,
where A

(i)
k+1 are independent realizations of Ak+1 that are also independent of N (n)

k .

Since, up to a negligible event, Ak and {M (n)
k = ∞} are equal, this means that Equa-

tion (2.2) holds for M (n)
k , mutatis mutandis, even when P(M

(n)
k = ∞) > 0. Finally, the

expression of ḡn is obtained by solving

ḡn(z) =
α+ (k − 1)β + µz

1 + ρk − ḡn(z)
,

since, by construction, M (n)
n+1

d
= M (n)

n .

Being generating functions, Gn and Gn are analytic at 0 with radius of convergence at
least 1, and we have E(zM

(n)

) = Gn(z) and E(zM
(n)

) = Gn(z) for all z ∈ [0, 1[. Combining
this with (2.3) and taking the limit z → 1− proves the inequality of the proposition for all
z ∈ [0, 1].

For z > 1, since M (n) is stochastically dominated by M and since M is almost surely
finite, for all n we have Gn(z) = E(zM

(n)

) 6 E(zM ) = g(z) for all z ∈ [1, R[, where R is
the radius of convergence of g around 0. Similarly, for n large enough P(M (n) < +∞) = 1

and thus g(z) 6 Gn(z) for all z ∈ [1, Rn[, where Rn is the radius of convergence of Gn
around 0. Note however that for small n we can have Gn(1) = P(M (n) < +∞) < 1, and
thus Gn(z) < g(z) for z ∈ [1, Rn[.

Finally, to see that supz∈[0,1]|Gn(z)−Gn(z)| = O(ncβ−n/n!), note that

α+ (k − 1)β + µz

1 + ρk −A
− α+ (k − 1)β + µz

1 + ρk −B
=

(α+ (k − 1)β + µz)(A−B)

(1 + ρk −A)(1 + ρk −B)
,

so that for all z,A,B ∈ [0, 1],∣∣∣∣α+ (k − 1)β + µz

1 + ρk −A
− α+ (k − 1)β + µz

1 + ρk −B

∣∣∣∣ 6 1

ρk
|A−B| .

Since | ḡn(z)− 1| 6 1, an immediate induction gives

sup
z∈[0,1]

∣∣Gn(z)−Gn(z)
∣∣ 6 n∏

k=1

1

ρk
∼ Γ(α+µ

β ) n1−α+µ
β β−n / n! ,

finishing the proof.
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Besides numerical evaluation, the bounds of Proposition 2.6 can be used to obtain
rigorous bounds on the probability of extinction of the model. For instance, taking n = 2

for the left-hand side, n = 3 for the right-hand side, and finding the corresponding fixed
points, we get the simple bounds

α

2µ

(
β + µ− 1 +

√
(β + µ− 1)2 + 4µ

)
6 pext 6

α ((α+ β + µ)(α+ 2β + µ) + µ)

µ (1 + 2α+ 2β + µ)
.

In fact, it is possible to get one such upper bound up to n = 9. However, the resulting
expression, although very sharp, is too complex to be of any practical use – so we do not
reproduce it here.

Let us now point out two immediate consequences of Theorem 2.5 that will be useful
in the rest of this document.

Corollary 2.7.

(i) M has finite exponential moments:

∃ε > 0 s.t. E
(
eεM

)
< +∞.

(ii) There is an exponential tilt of M with mean 1:

∃ζ > 0 s.t.
E(MζM )

E(ζM )
= 1.

Proof. (i) is merely saying that the radius of convergence of g is greater than 1; (ii) is a
classic consequence of the fact that g(s)→ +∞ as s ↑ R, see e.g. point (iv) of Lemma 3.1
in [28]. For the sake of completeness, we recall the proof here: for any a > 0 and any
s ∈ [0, R[,

E(MsM )

E(sM )
− a >

E
(
(M − a)sM1{M<a}

)
E(sM )

.

Since |E((M − a)sM1{M<a})| < aR a and E(sM ) → +∞ as s ↑ R, the right-hand side
of this inequality goes to 0 as s ↑ R. Therefore, lims↑RE(MsM )/E(sM ) > a for all
a > 0, i.e. E(MsM )/E(sM ) → +∞ as s ↑ R. The existence of ζ ∈ ]0, R[ such that
E(MζM )/E(ζM ) = 1 follows by continuity.

The main consequence of Corollary 2.7 is that, for all α, β, µ > 0, when conditioned to
have n vertices T is distributed as a critical Galton–Watson tree conditioned to have n
vertices. We will come back to this in Section 3.

Finally, we close this section with a brief remark about M, the point process of
mutation times. We state it as a proposition for ease of reference, but it is not specific
to our setting and follows readily from the infinitesimal definition of a continuous-time
Markov chain – so we omit the proof.

Proposition 2.8. LetM be the point process onR+ giving the birth times of the children
of the first color (that is, every atom t ∈M corresponds to a mutation of a lineage of the
first color). The intensity measure ofM is µE(Xt) dt – that is, for any Borel set A ⊂ R+,

E
(
#(M∩A)

)
= µ

∫
A

E(Xt) dt .

In particular, E(M) = µE
(∫∞

0
Xt dt

)
.

EJP 29 (2024), paper 31.
Page 12/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1088
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A branching process with coalescence for phylogenetic networks

2.3 Growth rate of the number of lineages

Let us start by focusing on the number the colors. We will turn to the number of
lineages at the end of the section. Let Zt denote the number of colors alive at time t.
The process Z = (Zt : t > 0) is a Crump–Mode–Jagers process, or CMJ for short, where
individuals give birth according to a point process distributed asM, the point process of
mutations of the first color; and die after a time distributed as T , the extinction time of
the logistic branching process started from 1.

The next proposition is an application of standard results from the theory of CMJ
processes [14, 15, 27]. Essentially, CMJ processes grow / decrease exponentially with a
growth rate known as their Malthusian parameter. Proposition 2.9 recalls the precise
meaning of this “exponential growth” and gives the usual, generic characterization of
the growth rate. Another characterization – one that is specific to our setting and makes
it possible to compute the growth rate numerically – will be given in Proposition 2.10.

Proposition 2.9. Let λ be the unique solution of

E

(∑
t∈M

e−λt

)
= 1 or, equivalently, µE

(∫ ∞
0

Xt e
−λt dt

)
= 1 .

Then, λ has the same sign as E(M)− 1. Moreover,

(i) If E(M) > 1, then the process Z of the number of colors satisfies

e−λt Zt
L2, a.s.−−−−−−→
t→∞

W,

where W is a random variable with E(W ) = 1 that is almost surely positive on
non-extinction, i.e. on the event {Zt > 0 for all t}, and where the convergence holds
both almost surely and in mean square.

(ii) If E(M) 6 1, then E(Zt) ∼ Ceλt as t→∞ for some constant C > 0.

Proof. The fact that the two characterizations of λ are equivalent follows from Propo-
sition 2.8 and Campbell’s formula. The uniqueness of λ is standard, and so is the fact
that λ is guaranteed to exist whenever E(M) > 1, see [14, Section 6]. To see that λ also
exists when E(M) < 1, letting τ denote the time of the first jump of X one can consider
the random variable Yη that takes the value e−ητ if the first jump of X is a mutation,
and 0 otherwise. Thus, Yη 6

∑
t∈M e−ηt. A straightforward calculation then shows that

E(Yη) = µ
∫∞

0
e−(1+α+µ+η)tdt → +∞ as η decreases to −(1 + α + µ) and therefore can

be made greater than 1 by decreasing η. By the same reasoning as in the proof of the
meromorphy of g in Theorem 2.5, η 7→ E

(∑
t∈Me

−ηt) cannot jump to infinity. Since it is
equal to E(M) < 1 when η = 0, the existence of λ follows by continuity.

Since Theorem 2.5 entails that E
(
M2
)
<∞, the mean-square convergence in point (i)

follows immediately from [15, Theorem 3.1]. Similarly, the almost sure convergence
follows from [15, Theorem 3.2], provided that the intensity function of M, namely
m : t 7→ µE(Xt), is differentiable and such that

∫∞
0
|m′(t)|p dt <∞ for some p > 1. Now,

since
d

dt
E(Xt) = (1− α− µ)E(Xt) − βE

(
Xt(Xt − 1)

)
and that Xt is integer-valued, we have |m′(t)| < K E

(
X2
t

)
for some constant K. Thus, by

Jensen’s inequality, to complete the proof of point (i) it suffices to show that
∫∞

0
E(Xp

t ) dt <

∞ for some p > 2. Standard calculations, again using the decomposition of the trajectory
of X into excursions, as in the proof of Theorem 2.5, show that∫ ∞

0

E(Xp
t ) dt =

∑
j>1

(
j∏

k=1

1

ρk

)
jp.
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Since
∏j
k=1 ρ

−1
k = O(ncβ−n/n!) for some constant c, as already seen in the proof of

Proposition 2.6, the integral is finite for all p, finishing the proof of point (i).
Finally, letting T denote the extinction time of X, 1{T>t} 6 Xt and therefore

P(T > t) 6 E(Xt). Since, by definition of λ,
∫∞

0
E(Xt) e

−λt dt = 1/µ, we have∫∞
0
P(T > t) e−λt dt <∞ and thus point (ii) follows from [14, Theorem 6.2].

We now give another characterization of λ, which makes use of the measure ν◦
introduced in Proposition 2.4. Here, we let E◦( · ) denote the expectation for the process
X started from a random state with distribution ν◦.

Proposition 2.10. Let T denote the extinction time of X. Then, the growth rate λ is the
unique solution of

E(M)E◦
(
e−λT

)
= 1.

Furthermore,

E(M)E◦
(
e−λT

)
= µ

∑
j>1

j∏
k=1

fk(λ)

ρk
,

where fk(λ) is given by the continued fraction

fk(λ) =
ρk

1 + ρk + λ
k −

ρk+1

1 + ρk+1 + λ
k+1 −

. . .

= −
∞

K
i=k

−ρi
1 + ρi + λ

i

.

The interest of this proposition is that, since the functions fk(λ) can be evaluated effi-
ciently, so can E(M)E◦(e−λT ). This makes it straightforward to determine λ numerically,
for instance using the bisection method.

Proof. The first part of the proposition is a consequence of the standard characterization
of λ, which is recalled in Proposition 2.9, and of the construction of the process Xm

given in Proposition 2.4. Indeed, first note that E(
∑
t∈M e−λt) = E(M)E(e−λU †M),

where U is a uniform atom of M, and also corresponds to minus the infimum of the
times for which Xm is defined. Second, recall that Xm is distributed as X ′ oX ′′, where
X ′ is distributed as X started from ν◦, and that in this construction U corresponds to
the extinction time of X ′. As a result, E(e−λU †M) = E◦(e−λT ).

To express E(M)E◦(e−λT ) as a function of λ, for k > 1 let

fk(λ) = E
(
e−λTk−1

∣∣X0 = k
)
,

where Tk−1 denotes the hitting time of k − 1 by X. By the strong Markov property,

E(M)E◦
(
e−λT

)
= E(M)

∑
j>1

ν◦(j)

j∏
k=1

fk(λ).

From the expression of E(M) in Theorem 2.5, we see that the normalizing constant in
Equation (2.1) where ν◦ is defined is C = µ/E(M), from which deduce that

E(M) ν◦(j) = µ

j∏
k=1

1

ρk
.

Therefore, to finish the proof it only remains to show that

fk(λ) =
ρk

1 + ρk + λ
k − fk+1(λ)

.

The reasoning is exactly the same as for the expression of the generating function of M
in Theorem 2.5, so we do not detail it.
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So far, we have been focusing on the growth rate of Zt, the number of colors at time t.
But from a biological point of view it is arguably more natural to consider Υt, the number
of lineages at time t. We therefore close this section with a proposition showing that the
asymptotic growth rate of the number of lineages is the same as that of the number of
colors. For simplicity we do not try to state the results in full generality.

Proposition 2.11. Let λ be the growth rate of Z, as given in Proposition 2.9 and 2.10,
and let Υt be the number of lineages alive at time t. If λ > 1, then

e−λt Υt
a.s.−−−−−→
t→∞

Ξ ,

where Ξ is a random variable that is almost surely positive on non-extinction.

Proof. Again, this is a standard application of general results for CMJ processes counted
with a random characteristic, see e.g. [41]. More specifically, let the characteristic asso-
ciated to each color be the number of lineages of that color. Note that the characteristic
of a color is not independent of its lifespan and of its reproduction, but that the character-
istics of different colors are independent. Since E(M) <∞, Condition 5.1 in [41] holds
with g(t) = e−λt. Moreover, by using the same argument as for M it is straightforward
to show that the total number of jumps of X has finite exponential moments. Since X
has bounded jumps, this implies that E(suptXt) <∞, and so Condition 5.2 in [41] holds
with h(t) = e−λt. As a result, the proposition follows from [41, Theorem 5.4].

3 Convergence to the CRT

In this section, we study the large-scale geometry of G . We will show that, after
being conditioned to have n colors and appropriately rescaled, as n goes to infinity G
converges in distribution to the Brownian continuum random tree (CRT) for the rooted
Gromov–Hausdorff–Prokhorov topology.

The Brownian CRT, introduced by Aldous in [4], is the universal scaling limit of
critical Galton–Watson trees when the offspring distribution has finite variance. Since
its first description as a random subset of `1 obtained by successively glueing segments
of random lengths along orthogonal directions, it has become standard (see e.g. [35,
Section 2] and [22, Section 2.4]) to view it as the random rooted compact metric
probability space (C , r, d, λ) defined in the following way:

• Take a standard Brownian excursion (e(t))t∈[0,1].

• Define a pseudo-metric de on [0, 1] by de(x, y) = e(x) + e(y)− 2 infz∈[x,y] e(z), where
[x, y] is a slight abuse of notation for the segment [x ∧ y, x ∨ y].

• Let (C , d) be the quotient metric space obtained by identifying the points of [0, 1]

at distance zero for de, and let the root r ∈ C be the equivalence class of 0.

• Let λ be the pushforward on C of the Lebesgue measure on [0, 1].

The rest of this section is organized as follows: first, we give a brief reminder about
convergence in the rooted Gromov–Hausdorff–Prokhorov topology. Coming back to our
model, we then detail how to condition G on having n colors, and we introduce some
notation. Finally, we prove a series of technical lemmas which, when put together, readily
give us the desired convergence to the CRT.
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3.1 The rooted Gromov–Hausdorff–Prokhorov distance

Here we recall, mostly without proof, the minimal set of notions about convergence of
metric probability spaces that are needed to state and prove our results. More detailed
treatments can be found, e.g, in [39, Section 6] or in [22, Section 4]. In particular,
Proposition 3.4 below provides a general-purpose, simple way to establish convergence
to the CRT by following the approach used in [48]. See also [44] for related results.

Since our network G has a distinguished point, namely the point that corresponds
to the first lineage at time 0, it is natural to work with a rooted version of the Gromov–
Hausdorff–Prokhorov distance. We adapt the definition of [39, Section 6.2] to the rooted
setting: let M be the set1 of isometry classes of rooted compact metric probability
spaces X = (X , r, d, λ), where r ∈X is called the root of X ; d is a metric on X ; and
λ is a probability measure on X . The rooted Gromov–Hausdorff–Prokhorov distance
dGHP(X ,X ′) between two elements (X , r, d, λ) and (X ′, r′, d′, λ′) of M is defined as the
infimum of the ε > 0 such that there exists a well-defined metric δ on the disjoint union
Y ··= X tX ′ satisfying:

(i) For all x, y ∈X and x′, y′ ∈X ′, δ(x, y) = d(x, y) and δ(x′, y′) = d′(x′, y′).

(ii) δ(r, r′) 6 ε.

(iii) The Hausdorff distance δH(X ,X ′) between X and X ′ is at most ε; in other words,
X ′ ⊂X ε and X ⊂ (X ′)ε, where Aε = {y ∈ Y : ∃x ∈ A, δ(x, y) < ε}.

(iv) Extending λ and λ′ to Y via λY (A) = λ(A ∩ X ) and λ′Y (A) = λ′(A ∩ X ′), the
Prokhorov distance between λY and λ′Y is at most ε, i.e. for all Borel subset A ⊂ Y ,
we have λY (A) 6 λ′Y (Aε) + ε.

The space (M, dGHP) is a complete separable metric space (see e.g. [39, Theorem 6
and Proposition 8] for a proof in the unrooted setting; we let the interested reader check
that the proof carries over to the rooted setting, and refer them to [22, Section 4.3.3]
where this is done for the Gromov–Hausdorff distance).

Because our metric spaces are tree-like, in our setting it will be more convenient to
work with height processes than to manipulate dGHP directly. Let us start by recalling
how one can obtain a metric space from a càdlàg function, and introducing some notation.
Note that this construction is simply a generalization of the construction of the Brownian
CRT recalled at the beginning of this section, but with more general functions as contour
processes.

Definition 3.1. Let h : [0, 1] → R be a nonnegative càdlàg function such that h(0) = 0.
We denote by dh the pseudometric on [0, 1] defined by

dh(x, y) = h(x) + h(y) − 2 inf
z∈[x,y]

h(z),

where, as previously, [x, y] is shorthand for [x ∧ y, x ∨ y]. We then denote by Th the rooted
compact metric probability space obtained by: (1) identifying points x, y ∈ [0, 1] such
that dh(x, y) = 0; (2) taking the completion of the space with respect to dh; (3) taking the
equivalence class of 0 as the root; and (4) endowing the resulting rooted metric space
with the pushforward of the Lebesgue measure on [0, 1]. This metric space is a subset of
an R-tree and consists of a countable number of connected components – see Figure 3
for an illustration, and e.g. [22] for an introduction to R-trees.

1 It is not obvious thatM can be defined as a set, because the class of compact metric spaces is not a set.
However, since a compact metric space has cardinal at most c = CardR, all isometry classes are obtained by
considering subsets of R endowed with a metric and a measure – and these do indeed form a well-defined set.
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Figure 3: A nonnegative càdlàg function and the corresponding metric space, as given
by Definition 3.1. The square indicates the root. The colors are irrelevant and are merely
here to help show which part of the function corresponds to which part of the metric
space. The dotted lines are not part of the metric space but are here to indicate how
it can be embedded in an R-tree. Note that we have added the tip of the red branch
pointed at by the arrow in step (2) of the construction.

The interest of working with R-trees and their height processes comes from the
following lemma, which is a straightforward extension of [35, Lemma 2.4]. Let us denote
by D the space of càdlàg functions from [0, 1] to R that are also continuous at 1, endowed
with the usual Skorokhod topology [10].

Lemma 3.2. The map h ∈ D 7→ Th ∈M is continuous. In other words, if h1, h2, . . . and h
satisfy the hypotheses of Definition 3.1, then

hn −→ h in D =⇒ Thn −→ Th in (M, dGHP).

A self-contained proof can be found in the appendices.

From Lemma 3.2, we get the upcoming Proposition 3.4, which provides a general
recipe for proving convergence to the CRT in the rooted Gromov–Hausdorff–Prokhorov
topology, and is going to be our main tool for the rest of this section.

Definition 3.3. Let (X , r, d, λ) be a random rooted compact metric probability space. A
random càdlàg function φ : [0, 1] → X is said to be a parametrization of X if φ(0) = r

and φ([0, 1]) is almost surely dense in X .

A parametrization φ is said to be admissible if can write φ(t) = Φ(X ,Θ, t), where
Φ is a deterministic functional and Θ is a random variable with values in [0, 1] that is
independent from X , in such a way that the functions t 7→ λ(φ([0, t])) and t 7→ d(r, φ(t))

are well-defined random variables in the Skorokhod space D.

We require our parametrizations to be admissible for measurability issues – namely,
we need this assumption in order to use a variant of Skorokhod’s representation the-
orem in the proof of Proposition 3.4 below. In practice, admissibility should not be a
restrictive requirement. In our case, we will define a parametrization of our network
G through a randomized traversal algorithm where, conditional on the network, the
additional randomness that is needed amounts to a finite number of coin tosses; such a
parametrization is readily checked to be admissible.

Proposition 3.4. Let (Xn, rn, dn, λn)n>1 be a sequence of random rooted compact metric
probability spaces such that, for each n > 1, there exists an admissible parametrization
φn : [0, 1]→Xn. Assume that, setting hn(t) = dn(rn, φn(t)):

(i) sups,t∈[0,1]

∣∣dn(φn(s), φn(t))− dhn(s, t)
∣∣ d−→ 0.
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(ii) supt∈[0,1]

∣∣λn(φn([0, t]))− t
∣∣ d−→ 0.

(iii) (hn(t))t∈[0,1]
d−→ (h(t))t∈[0,1] for the Skorokhod topology, where (h(t))t∈[0,1] is a

random càdlàg function.

Then, Xn
d−→ Th for the rooted Gromov–Hausdorff–Prokhorov topology.

Again, this proposition is proved in the appendices.

3.2 Conditioning on the number of colors

We now introduce some notation for conditioning G on its number of colors. This
notation will also be used in Section 4, where we study the local weak limit of G
conditioned to have n colors. First, recall that G can be viewed as the decorated
Galton–Watson tree T ? obtained as follows:

1. Sample a Galton–Watson tree T with offspring distribution M .

2. Conditional on T , decorate each vertex k with the network Xk associated to an
independent realization of the process X conditioned on having Mk mutations
(where Mk denotes the number of children of k in T ).

Let An be the event {G has n colors}, i.e. {T has n vertices}. Since An is a deterministic
function of T and that the networks (Xk) depend on T only, Gn ∼ (G |An) can be
obtained by replacing T with Tn ∼ (T |An) in step 2 of the construction above – i.e. by
decorating a Galton–Watson tree with offspring distribution M conditioned to have n
vertices.

Note that we have not assumed that E(M) = 1. Thus, T is not necessarily critical.
However, we know from Corollary 2.7 that there exists ζ > 0 such that

E
(
MζM

)
E(ζM )

= 1.

Thus, letting M̂ be a ζ-tilt of M , i.e. a random variable whose distribution is characterized
by

E
(
f(M̂)

)
=
E
(
f(M) ζM

)
E(ζM )

for all bounded f : N→ R,

by considering a Galton–Watson tree with offspring distribution M̂ we get a critical
Galton–Watson tree T̂ . It is classic – and straightforward to check by writing down the
probability distributions explicitly – that Tn has the same distribution as T̂ conditioned
to have n vertices.

Since we will be conditioning on An and that (T |An) ∼ (T̂ | Ân), it may not be clear
at this point what the interest of working with T̂ instead of T is; this will become appar-
ent later – see e.g. Remark 3.11 – but for now let us simply note that for any nonnegative
function f we have E(f(T̂ ) | Ân) 6 E(f(T̂ ))/P(Ân) and that, as the following classic
proposition shows, it is straightforward to get an asymptotic equivalent of P(Ân) as n
goes to infinity.

Proposition 3.5. Let T̂ be a critical Galton–Watson tree whose offspring distribution
has a finite variance σ2 > 0 and is not supported on kN, for any k > 2. Let Ân denote the
event {T̂ has n vertices}. Then,

P(Ân) ∼
n→∞

1√
2πσ2

n−3/2 .

This result is well-known (see e.g. [33, Lemma 1.11] for a more general statement),
but since it is central to our study we recall a short proof in the appendices.
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3.3 Technical lemmas

To clarify the proof of the convergence to the CRT given in Section 3.4, we gather
some of the more technical details here. Lemma 3.6 is a result about the logistic
branching process with mutation. Once we have recognized that we are working with
a decorated Galton–Watson tree, this lemma is the key specificity of our model for the
convergence to the CRT. Lemma 3.10 is a streamlined, model-agnostic synthesis of the
approach developed in [48, Section 4]. It provides generic concentration inequalities
for sums of random variables associated to the vertices/edges of a size-conditioned
Galton–Watson tree.

Before stating our first lemma, recall the notation for the quantities associated to a
generic color:

• X = (Xt)t>0 denotes the trajectory of the number of individuals of that color,
starting from a single individual at time t = 0.

• T = inf{t > 0 : Xt = 0} denotes the time of extinction of the color.

• L =
∫∞

0
X(t) dt denotes the total length of the corresponding subnetwork.

• M denotes the number of offspring of the color, i.e. the number of new colors that
it produces by mutation.

Finally, recall that ζ > 0 is the unique real number – whose existence is guaranteed by
Corollary 2.7 – such that E(MζM ) = E(ζM ).

Lemma 3.6. There exists η > 0 such that

E
(
M(ζ ∨ 1)MeηL

)
< +∞ .

Remark 3.7. Since T 6 L, we also have E(M(ζ ∨ 1)MeηT ) < +∞.

Proof. Let us fix s > ζ ∨ 1 such that E(sM ) < ∞ – such an s exists by Theorem 2.5.
Note that to prove the lemma it is sufficient to show that there exists η > 0 such that
E(sMeηL) < ∞; and that since 0 ∈ As ··= {η ∈ R : E(sMeηL) < ∞}, it in fact suffices to
show that As is an open subset of R.

Recall from Proposition 2.1 that for any numbers µ and s and any nonnegative
measurable function f ,

Eµ
(
f(X) sM

)
= Esµ

(
f(X) e(s−1)µL

)
. (3.1)

Now, on the one hand by applying (3.1) to f(X) = eηL we get that for any η,

Eµ
(
sMeηL

)
= Esµ

(
e((s−1)µ+η)L

)
.

On the other hand, for η < µ, by taking f(X) = 1 and replacing (µ, s) with (µ− η, sµ
µ−η )

in (3.1) we get

Eµ−η

[( sµ

µ− η

)M]
= Esµ

(
e((s−1)µ+η)L

)
.

Combining these two equalities, we see that for η < µ,

Eµ
(
sMeηL

)
= Eµ−η

[( sµ

µ− η

)M]
.

Now, from the explicit expression of the probability generating function of M given in
Theorem 2.5, we see that if

η 7−→ Eµ−η

[( sµ

µ− η

)M]
is finite at η = 0, then it is also finite in a neighborhood of 0. This concludes the proof.
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Remark 3.8. The relation Eµ(sM ) = Esµ(e(s−1)µL) gives an explicit expression for the
distribution of M as a function of the family (Lµ(L))µ of distributions of L. In particular,
if conditional on L we let Y be a Poisson variable with parameter µL, then Eµ(sM ) =

Esµ(sY ). However, because in Esµ the distribution of Y depends on s, this does not give
a simple construction of M as a random function of L.

We now give a simple Chernoff-type subpolynomial bound on the tail probabilities of
a sum of independent random variables with finite exponential moments. The reasoning
is classic – see e.g. [48], where it is used repeatedly – but we could not find a generic
statement in the litterature; so to streamline some of our proofs we state it as a lemma
here.

Lemma 3.9. Let Z1, Z2, . . . be i.i.d. copies of a random variable Z such that E(Z) = 0

and that there exists η > 0 for which E(eη|Z|) <∞. Then there exists C > 0 such that,
for all ε > 0 and all n > 1,

P

(∣∣∣ n∑
i=1

Zi

∣∣∣ > n1/2 + ε

)
6 Ce−n

ε

.

Proof. We write un = n1/2 + ε to ease the notation. Let us start by focusing on positive
deviations. For any θ < η, by taking the exponential of the sum, applying Markov’s
inequality and using the independence of the Zi’s, we get:

P

(
n∑
i=1

Zi > un

)
= P

(
n∏
i=1

eθZi > eθun

)

6 e−θun E

(
n∏
i=1

eθZi

)
6 e−θun

(
E(eθZ)

)n
.

Now, since E(Z) = 0, taking K > E
(
Z2
)
/2 we have E(eθZ) 6 1 + Kθ2 for all θ small

enough. Thus, with θn = n−1/2 we get

P

(
n∑
i=1

Zi > un

)
6 exp

(
K θ2

n n− θnun
)

= exp
(
K − nε

)
.

The negative deviations are treated similarly (or, more directly, by applying this bound
to the variables −Z1,−Z2, . . .), yielding

P

(
n∑
i=1

Zi 6 −un

)
6 exp

(
K − nε

)
.

Therefore, P
(
|
∑n
i=1 Zi| > n1/2 + ε

)
6 2eK−n

ε

, concluding the proof.

Our next lemma is a general result about sums of decorations in critically tiltable
size-conditioned Galton–Watson trees. In what follows, by vertex decorations of a tree T
we mean a family (Fk)k>1 of real-valued random variables such that, letting k = 1, 2, . . .

be the vertices of T , in arbitrary order, and denoting by M1,M2, . . . their outdegrees,
there exists i.i.d. random variables Θ1,Θ2, . . . that are independent of T and such that
Fk = F (Mk,Θk) for some deterministic function F .

Similarly, letting E(T ) denote the edge set of T and writing e = k → ` for the edge
from vertex k to vertex `, oriented away from the root, we say that (Ge)e∈E(T ) are edge
decorations of T if, for any vertex k, we have (Gk→`, ` child of k) = G(Mk,Θk) for some
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deterministic function G such that, for all m > 1, G(m,Θk) is an exchangeable real vector
of length m. In particular, note that for each edge e, Ge is a real-valued random variable;
and that for a given k the family (Gk→`, ` child of k) is not assumed to be independent.
Note also that because of exchangeability, for any edge e = k → ` the law of Ge depends
only on Mk, and so with a slight abuse of notation we write (Mk, Gk→`) for a typical pair
– for instance the pair of variables corresponding the edge from the root to a uniformly
chosen child of the root.

Lemma 3.10. Let T be a Galton–Watson tree whose offspring distribution M is such
that there exists ζ > 0 for which E(MζM ) = E(ζM ) < ∞, and let k = 1, 2, . . . denote
its vertices, in arbitrary order. Let (Fk)k>1 be vertex decorations of T such that there
exists η > 0 for which E(eη|Fk|ζMk) < ∞. Let An denote the event {T has n vertices}.
Then, along any sequence of integers n such that P(An) > 0:

(i) There exists C > 0 such that

P
(
max{F1, . . . , Fn} > C log(n)

∣∣An) −−−−→
n→∞

0 .

(ii) Letting v1, v2, . . . denote the vertices of T , labeled in depth-first order:
conditional on An, for all ε > 0,

∆ ··= max
16k6n

∣∣∣ k∑
i=1

(Fvi − m̂)
∣∣∣ = op(n

1/2 + ε) , where m̂ =
E(Fkζ

Mk)

E(ζM )
.

More precisely, P(∆ > n1/2+ε |An) 6 Ce−cn
ε

for some constants C, c > 0 that may
depend on ε, and all n ∈ N.

Let (Ge)e∈E(T ) be edge decorations of T such that there exists η > 0 for which we
have E(eη|Gk→`|Mkζ

Mk) <∞. Then, letting Γ(v) denote the path from the root of T to
its vertex v:

(iii) Conditional on An, for all ε > 0,

∆∗ ··= max
v∈T

∣∣∣ ∑
e∈Γ(v)

(Ge −m∗)
∣∣∣ = op(n

1/4 + ε) , where m∗ =
E(Gk→`Mkζ

Mk)

E(MζM )
.

More precisely, P(∆∗ > n1/4+ε | An) 6 Ce−cn
a

for some constants C, c, a > 0 that
may depend on ε, and all n ∈ N.

Proof. First, note that the main difficulty comes from the fact that, under P( · |An), the
decorations are not independent.

Let T̂ be a Galton–Watson tree whose offspring distribution M̂ is the ζ-tilt of M ,
and recall from Section 3.2 that T̂ is critical and satisfies (T |An) ∼ (T̂ | Ân), where
Ân = {T̂ has n vertices}. Choose T̂ to be independent of Θ1,Θ2, . . ., and let M̂1, M̂2, . . .

be the number of children of its vertices. Finally, let F̂k = F (M̂k,Θk). Then,

P
(
max{F1, . . . , Fn} > C log(n)

∣∣An) = P
(
max{F̂1, . . . , F̂n} > C log(n)

∣∣ Ân)
6

n∑
k=1

P
(
F̂k > C log(n)

∣∣∣ Ân)
6

nP(F̂ > C log(n))

P(Ân)
, (3.2)
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where we write F̂ – instead of, say, F̂1 – for brevity. By assumption, there exists η > 0

such that

E
(
eη|F̂ |

)
=
E
(
eη|F |ζM

)
E(ζM )

< ∞ .

Therefore, for C > 5
2η
−1 Markov’s inequality yields P(F̂ > C log(n)) = o(n−5/2). More-

over, by Proposition 3.5 we know that P(Ân) = Θ(n−3/2). Plugging these two estimates
in (3.2) proves point (i).

Point (ii) is proved similarly: we fix ε > 0 and use a union bound to get

P
(

∆ > n1/2 + ε
∣∣∣An) = P

(
∆̂ > n1/2 + ε

∣∣∣ Ân)
6

nP
(∣∣∣∑n

i=1(F̂vi − m̂)
∣∣∣ > n1/2 + ε

)
P(Ân)

.

Under the unconditional probability P, the random variables F̂vi are i.i.d. and their
expected value is E(F̂ ) = m̂. Therefore, by applying Lemma 3.9 we get

P

(∣∣∣ n∑
i=1

(F̂vi − m̂)
∣∣∣ > n1/2 + ε

)
6 Ce−n

ε

for some C > 0. Since n/P(Ân) = Θ(n5/2), this implies P(∆ > n1/2 + ε | An) = O(e−cn
ε

)

for some c > 0.
The proof of point (iii) requires a few extra ingredients. As for (i) and (ii), we start

from P(∆∗ > un |An) = P(∆̂∗ > un | Ân). Next, we recall that the maximum of the
distance between a vertex and the root in a Galton–Watson tree Tn conditioned to have
n vertices is of order n1/2. More specifically, if we denote by H(t) the maximal distance
to the root in a tree t, then n−1/2H(Tn) converges in distribution as n→∞, see e.g. [2].
Therefore, for every ε > 0 there exists c > 0 such that P(H(T̂ ) > c

√
n | Ân) < ε for all n

large enough – which in turns entails

P( · | Ân) 6 P
(
· ∩ {H(T̂ ) 6 c

√
n}
∣∣∣ Ân) + ε .

As a result, we can pick an integer sequence (wn) such that
√
n = o(wn) and assume in

what follows that, conditional on Ân, we have H(T̂ ) 6 wn.
Let us denote by T̂|h the set of vertices at distance h from the root in T̂ and, to keep

notation light, set S(v) ··= |
∑

(k→`)∈Γ(v)(Gk→` −m∗)|. For any sequence (un),

P
(

∆̂∗ > un
∣∣∣ Ân) = P

(
max

16h6wn

{
max
v∈T̂|h

{S(v)}
}
> un

∣∣∣ Ân)
6 E

( wn∑
h=1

∑
v∈T̂|h

1{S(v)>un}

∣∣∣ Ân)
6 wn max

16h6wn
E
(∑
v∈T̂|h

1{S(v)>un}

∣∣∣ Ân)
6 wnP(Ân)

−1
max

16h6wn
E
(∑
v∈T̂|h

1{S(v)>un}

)
. (3.3)

Now, let (T̂ (h), v∗) be the random pointed tree obtained in the following way:

• Let v1 be the root, and start with a path v1, v2, . . . , vh+1 = v∗ from v1 to v∗. This
path will be referred to as the spine of the tree.
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• For k = 1 to h, add M∗k − 1 children to vk, where M∗k is an independent copy of
the size-biasing of M̂ , i.e. a random variable whose distribution is P(M∗k = i) =

i ζiP(M = i)/E(MζM ).

• Let each of the vertices added at the previous step, as well as v∗, be the root of an
independent Galton–Watson tree with offspring distribution M̂ .

It is classic (see e.g. [48, Section 4.2]) and readily checked that for any fixed tree t and
each vertex v ∈ t|h,

P
[
(T̂ (h), v∗) = (t, v)

]
= P(T̂ = t) .

As a result, for any function f on pointed trees,

E
(
f(T̂ (h), v∗)

)
=
∑
t

∑
v∈t|h

f(t, v)P
[
(T̂ (h), v∗) = (t, v)

]
= E

(∑
v∈T̂|h

f(T̂ , v)
)
.

Applying this identity to f(T̂ , v) = 1{S(v)>un} in (3.3), we get

P
(

∆̂ > un
∣∣∣ Ân) 6 wnP(Ân)

−1
max

16h6wn
E
(
f(T̂ (h), v∗)

)
. (3.4)

By construction, on the spine of T̂ (h) the number of children of the vertices is distributed
as the vector (M∗1 , . . . ,M

∗
h , M̂h+1), whose components are independent. As a result, let-

tingG∗k be the first component of the vectorG(M∗k ,Θk) andm∗ = E(Gk→`MζM )/E(MζM )

its expected value, if un →∞ as n→∞, then

E
(
f(T̂ (h), v∗)

)
= P

(∣∣∣h−1∑
k=1

(G∗k −m∗) + Ĝh −m∗
∣∣∣ > un)

6 P

(∣∣∣wn−1∑
k=1

(G∗k −m∗) + Ĝwn −m∗
∣∣∣ > un) for n large enough.

Moreover, we then also have, as n→∞,

P

(∣∣∣wn−1∑
k=1

(G∗k −m∗) + Ĝwn −m∗
∣∣∣ > un) ∼ P

(∣∣∣ wn∑
k=1

(G∗k −m∗)
∣∣∣ > un) .

Finally, taking un = n1/4 + ε for some ε > 0 and wn = bn1/2 + δc for some δ > 0 such that
(1/2 + δ)2 < 1/4 + ε, Lemma 3.9 yields

P

(∣∣∣ wn∑
k=1

(G∗k −m∗)
∣∣∣ > n1/4 + ε

)
6 Ce−n

a

for some positive constants a and C. Plugging this back in (3.4) and using that
wnP(Ân)

−1
= Θ(n2+δ) concludes the proof.

Remark 3.11. This proof illustrates the point of working with a critical Galton–Watson
tree: for instance, even though we also have

P
(
max{F1, . . . , Fn} > C log(n)

∣∣An) 6 nP(F > C log(n))

P(An)
,

because in the non-critical case P(An) decays exponentially, the mere fact that F has
finite exponential moments would not have been sufficient to get an adequate upper
bound on the expression above.
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3.4 Proof of the convergence to the CRT

We are now ready to prove the main theorem of this section. Recall that ζ > 0 is the
unique real number such that E(MζM ) = E(ζM ).

Theorem 3.12. Let (Gn, rn, dGn , λGn) denote the random rooted metric probability space
(G , r, dG , λG ) conditioned to have n colors, and let C be the Brownian CRT. Then, as
n→∞, (

Gn, rn,
C√
n
dGn ,

1
|Gn|λGn

) d−→ C

for the rooted Gromov–Hausdorff–Prokhorov topology, with

C ··=
σ̂

2E(U∗)
=

√
E(ζM )(E(M2ζM )− E(ζM ))

2E(
∑
t∈M t ζM )

,

where U∗ is sampled uniformly at random among the mutation times of the biased
process X∗ ∼ L (X †MζM ), and σ̂2 is the variance of M̂ ∼ L (M † ζM ). Moreover,

|Gn| ··= λGn(Gn) =
nE(LζM )

E(ζM )
+ op(n

1/2 + ε) , ∀ε > 0.

Remark 3.13. Using the probability measure ν◦ introduced in Proposition 2.4, the
constant C can also be expressed in terms of T , the extinction time of the logistic
branching process. Indeed, as explained after the proof of Theorem 3.12,

E(U∗) =
ζ E(M)

E(ζM )

∑
k>0

ν◦(k)Ek(T ζM )Ek−1(ζM ) .

Remark 3.14. Addario-Berry et al. [2] have shown that for critical Galton–Watson trees
with finite-variance offspring distribution, the normalized height (and width) of the tree
conditioned to have n vertices satisfy uniform sub-Gaussian tail bounds. More precisely,
letting H(Tn) denotes the height of the Galton–Watson tree Tn, there exist K, k > 0 such
that for every n ∈ N and every x ∈ R+ we have

P
(
H(Tn) > h

√
n
)
6 Ke−kh

2

. (3.5)

Now consider, as in Lemma 3.10, any family of edge decorations (Ge)e∈E(T ) such that
E(eη|Gk→`|Mkζ

Mk) <∞ for some η > 0. Let us write

∆̃n = max
v∈T

1√
n

∣∣∣ ∑
e∈Γ(v)

Ge

∣∣∣.
With the notation of Lemma 3.10 (iii), we have ∆̃n 6 (∆∗ +H(T )m∗)/

√
n. Thus, apply-

ing (3.5) and Lemma 3.10 (iii) with ε = 1/4 yields

P
(

∆̃n > x | An
)
6 P

(
∆∗ > x

√
n/2 | An

)
+ P

(
H(Tn) > x

√
n/2

)
6 K

(
e−kx

a

+ e−kx
2)

for some positive constants K, k and a that do not depend on n. This uniform tail
bound implies that for any p > 1, the sequence (∆̃p

n)n>1 is tight. In our context, if we
let Gk→` be the distance between the root of Xk and the mutation corresponding to
the vertex `, then ∆̃n is the height of (Gn, rn, dGn/

√
n). Therefore, we conclude that in

addition to the convergence in distribution of Theorem 3.12, all moments of the height
of the network, diameter and related quantities converge to the moments of the properly
rescaled Brownian CRT.
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Proof of Theorem 3.12. The proof is an application of Proposition 3.4. Set

dn = C n−1/2 dGn , λn = |Gn|−1λGn ,

and let us define an admissible parametrization φn : [0, 1] → (Gn, rn, dn, λn). Recall
that, in the forward-time process defining G , a branching point is a point where a
lineage splits and a coalescence point is a point where two lineages merge. Using some
arbitrary procedure, distinguish one of the two outgoing lineages of each branching
point of Gn and one of the two incoming lineages of each coalescence point. Note that
by (1) disconnecting the tip of each of the distinguished lineages that correspond to
coalescences points from those coalescence points and (2) drawing distinguished lineages
that correspond to branching points to the right of their undistinguished counterparts,
we get a rooted plane R-tree G #

n (not to be confused with Tn, the combinatorial tree
encoding the genealogy of the colors of Gn).

Now, pick a depth-first ordering of the vertices of Tn, and visit the points of Gn as
follows:

• Visit the subnetworks corresponding to the vertices of Tn in depth-first order.

• Within each subnetwork Xk, do a depth-first traversal of the corresponding “un-
reticulated” R-tree X #

k , that is: starting from the root, travel along the lineages at
constant speed nLk = nλGn(Xk), in depth-first order and visiting the “left” subtree
first when encountering a branching point.

This construction is illustrated in Figure 4. Note that each jump of φn corresponds to
either the tip of a lineage or the second visit of a coalescence point, and that those jumps
can be negative (typical case) or positive (which can only happen when finishing the
exploration of a color and moving to a new one). Moreover, each point of Gn is visited
exactly once, except for:

• The tips of lineages, which – with the exception of φn(1) – correspond to the
left-limits of some of the jumps of φn.

• Branching points, which are visited twice.

As a result, φn([0, 1]) is dense in Gn and φn is an admissible parametrization of Gn.
Next, let us show that φn satisfies assumptions (i–iii) of Proposition 3.4. Starting

with (i), pick s, t ∈ [0, 1] with s < t, and let (x, y) = (φn(s), φn(t)) be the corresponding
points of Gn. Let then x∧ y be the most recent common ancestor of x and y in Gn, i.e. the
(unique) oldest point in a (non necessarily unique) shortest path between x and y, and
let Xc be the subnetwork containing x ∧ y. Let zc be the root of Xc and, for i ∈ {x, y},
let zi be: zc if i ∈Xc; otherwise, the root of the subnetwork through which every path
from x ∧ y to i exits Xc. These definitions are illustrated in Figure 5.

With this notation, and recalling that hn(t) = dn(rn, φn(t)), observe that∣∣dn(x, y)− hn(s)− hn(t) + 2 inf
[s,t]

hn
∣∣

=
∣∣dn(x, zx) + dn(zx, zy) + dn(zy, y)− dn(rn, x)− dn(rn, y) + 2 inf

[s,t]
hn
∣∣

6 dn(zx, zy) +
∣∣dn(rn, zx)− inf

[s,t]
hn
∣∣ +

∣∣dn(rn, zy)− inf
[s,t]

hn
∣∣ . (3.6)

Now, dGn(zx, zy) < 2Tc, where Tc is the extinction time of the logistic process Xc

associated to the color c. Therefore,

dn(zx, zy) < 2Cn−1/2 Tc . (3.7)
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Figure 4: Illustration of the construction of the admissible parametrization φn used in
the proof. Left, a realization of Gn for n = 5, with the same drawing conventions as
in Figure 1. The distinguished lineages associated to coalescences are indicated by
asterisks and, to avoid cluttering, the distinguished lineages associated to branchings are
taken to be the lineages drawn to the right. Right, the rooted planeR-tree G #

n obtained by
“disconnecting” coalescence points of Gn. This tree is to provide us with a natural order
in which to visit the lineages of Gn. Bottom, the height function hn : t 7→ dn(rn, φn(t))

associated to φn. The speed of travel along the lineages of the subnetwork corresponding
to a given color is proportional to the total length of that subnetwork, ensuring that each
color is allotted the same amount of time by φn.

Moreover, since by construction of φn the vertices of Tn are visited in depth-first order,
for all u ∈ [s, t] the point φn(u) belongs to either Xc or one of its descendants, which
implies that hn(u) > dn(rn, zc); and since there exists u ∈ [s, t] such that φn(u) is at
distance 0 from Xc (indeed, if y ∈Xc one can take u = t, and if y /∈Xc then one can take
u such that φn(u) = zy), which in turns implies hn(u) 6 dn(rn, zc) + Cn−1/2Tc, we get

dn(rn, zc) 6 inf
[s,t]

hn 6 dn(rn, zc) + Cn−1/2Tc .

Similarly, for i ∈ {x, y} we have dn(rn, zc) 6 dn(rn, zi) 6 dn(rn, zc) + Cn−1/2 Tc, so that∣∣dn(rn, zi)− inf
[s,t]

hn
∣∣ 6 Cn−1/2 Tc, i ∈ {x, y}. (3.8)

Plugging (3.7) and (3.8) in (3.6), we get |dn(x, y)− dhn(s, t)| < 4C n−1/2 Tc. Therefore,

sup
s,t∈[0,1]

∣∣dn(φn(s), φn(t))− dhn(s, t)
∣∣ 6 4C n−1/2 max(T1, . . . , Tn) .
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Figure 5: Graphical depiction of some of the notation used in the proof. The black
lines correspond to shortest paths between various points of Gn, and the colored blobs
to the subnetworks associated to the colors. Although there can be several shortest
paths between x and y, each of these paths goes through zx and zy, hence dn(x, y) =

dn(x, zx) + dn(zx, zy) + dn(zy, y). Similarly, dn(rn, x) = dn(rn, zx) + dn(zx, x). Finally, note
that within each subnetwork Xk the distances are bounded above by 2Tk, where Tk is
the extinction time of the corresponding process Xk.

Applying point (i) of Lemma 3.10 to the extinction times T1, . . . , Tn, which is made
possible by the fact that we know from Lemma 3.6 that T has finite exponential moments
under L ( · †MζM ), we get max(T1, . . . , Tn) = op(n

ε) for any ε > 0, which in turns implies

sup
s,t∈[0,1]

∣∣dn(φn(s), φn(t))− dhn(s, t)
∣∣ d−→ 0,

thereby proving that φn satisfies assumption (i) of Proposition 3.4.
Let us now turn to assumption (ii). Let X1, . . . ,Xn be the subnetworks of Gn, in order

of their visit by φn. By construction of φn, for all t ∈ [0, 1] we have φn(t) ∈ Xct , where
ct ··= (btnc+ 1) ∧ n Moreover,

ct−1∑
k=1

Lk 6 λGn(φn([0, t])) 6
ct∑
k=1

Lk ,

where Lk = λGn(Xk). Applying point (ii) of Lemma 3.10 to L1, . . . , Ln, which again is
made possible by Lemma 3.6, we get that for any ε > 0,

λGn(φn([0, t])) = tn` + op(n
1/2 + ε) ,

uniformly in t ∈ [0, 1] and with ` = E(LζM )/E(ζM ). Taking t = 1, we see that |Gn| =

n`+ op(n
1/2 + ε), as claimed in the statement of the theorem. From there, we get

sup
t∈[0,1]

∣∣λn(φn([0, t]))− t
∣∣ = op(n

−1/2 + ε) ,

which shows that φn satisfies assumption (ii).
To show that φn satisfies assumption (iii), let hTn be the height process of Tn, that is

hTn :

{
{1, . . . , n} −→ N

k 7−→ dTn(v1, vk) ,
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where v1, . . . , vn are the vertices of Tn, in order of their visit by φn and dTn(u, v) is
the number of edges of the path joining u and v. Since Tn ∼ (T̂ | Ân) is a critical
Galton–Watson tree conditioned to have n vertices, it is well-known – see e.g. Corollary 1
in [38], from which this readily follows – that, as n→∞,(

1√
n
hTn(ct)

)
t∈[0,1]

d−→
(

2
σ̂ e(t)

)
t∈[0,1]

in the Skorokhod space D,

where (e(t))t∈[0,1] is a standard Brownian excursion and σ̂2 = Var(M̂) is the variance of
the offspring distribution of T̂ , and ct = (btnc+ 1) ∧ n. Therefore, to conclude the proof
of Theorem 3.12 it suffices to show that

sup
t∈[0,1]

∣∣hGn(t)− E(U∗)hTn(ct)
∣∣ = op(n

1/2) , (3.9)

where hGn(t) = dGn(rn, φn(t)) and U∗ is the time of a mutation sampled uniformly at
random among the mutations of the process X∗ ∼ L (X †MζM ).

For this, for all k ∈ {1, . . . , n} let us denote by zk the root of Xk. As a result, letting
Γ(k) = (i1 → . . .→ ip) be such that (vi1 = v1, . . . , vip = vk) is the path from v1 to vk in Tn,
and recalling that φn(t) ∈Xct , we see that, for all t ∈ [0, 1],

hGn(t) =
∑

(i→j)∈Γ(ct)

dGn(zi, zj) + dGn(zct , φn(t)) .

As we have already seen, for any ε > 0, dGn(zct , φn(t)) < Tct = op(n
ε), uniformly in t.

Since, by definition of hTn , the number of edges of Γ(ct) is hTn(ct), we get that for any
constant κ,

hGn(t) − κhTn(ct) =
∑

(i→j)∈Γ(ct)

(dGn(zi, zj)− κ) + op(n
ε) .

Moreover, along Γ(ct) each dGn(zi, zj) is the time elapsed between the creation of Xi and
that of Xj – which, conditional on Xi, is distributed as the random functional Ui = U(Xi)

giving the time of a mutation sampled uniformly at random among the mutations of Xi.
As a result, applying point (iii) of Lemma 3.10, we get

sup
t∈[0,1]

∣∣∣∑
(i→j)∈Γ(ct)

(
dGn(zi, zj)− E(U∗)

)∣∣∣ = op(n
1/2) ,

where E(U∗) = E(UMζM )/E(ζM ) does indeed correspond to the expected value of the
time of a mutation sampled uniformly at random among the mutations of the biased
process X∗ ∼ L (X †MζM ). Putting the pieces together, this proves (3.9), thereby
concluding the proof of Theorem 3.12.

Finally, before closing this section, let us justify the expression of E(U∗) given in
Remark 3.13. To make things simpler, we work with the “extended” process X̄, which,
in addition to the trajectory of X, contains the information of which jump corresponds to
a mutation. Thus, M = M(X̄) is a deterministic function of X̄. First, note that

E(U∗) = E(ζM )
−1
E
(∑
t∈M

t ζM
)
,

and that, considering the shift operators (Θt)t∈R defined by ΘtX̄ ··= (X̄t+s)−t6s6T−t and
the function

F : X̄ 7−→ E(ζM )
−1
ζM(X̄) sup

{
t : X̄−t > 0

}
,

we have
E(ζM )

−1
E
(∑
t∈M

t ζM
)

= E
(∑
t∈M

F (ΘtX̄)
)
.
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Recalling the definition of the process Xm introduced in Section 2.1, this is also

E
(∑
t∈M

F (ΘtX̄)
)

= E(M)E
(
F (X̄m)

)
.

Therefore, using the X̄m d
= X̄ ′ o X̄ ′′ decomposition given in Proposition 2.4, together with

the fact that
F (X̄ ′ o X̄ ′′) = E(ζM )

−1
ζM(X̄′)+M(X̄′′)+1 T (X̄ ′) ,

where T (X̄ ′) denotes the extinction time of X̄ ′, we get

E
(
F (X̄m)

)
= ζ E(ζM )

−1
∑
k>0

ν◦(k)Ek(TζM )Ek−1(ζM ) .

Putting the pieces together, this yields the expression given in Remark 3.13.

4 Local weak limit

In this section, we describe the structure of Gn around a uniformly chosen point.
More specifically, we give an algorithmic construction of the local weak limit of Gn
around a focal point distributed according to the normalized measure λGn/|Gn|. The
notion of local weak convergence after uniform rooting was introduced by Benjamini
and Schramm in [7], and is therefore also known as Benjamini–Schramm convergence;
see e.g. [47, Section 2.2] or [16, Section 1.2] for a general introduction. Throughout this
section, unless specified otherwise the term local weak limit will always refer to the to
the Benjamini–Schramm limit.

This section is organized as follows: first, we briefly lay out the topological notions
that are used in our proof of the local convergence. We then describe the local weak limit
(G †, x†) as a decorated random tree. This random tree is a biased – that is, non-uniformly
rooted – local weak limit of the size-conditioned Galton–Watson tree Tn giving the
genealogy of the colors of Gn (see Section 3.2), and the decorations are modifications of
the subnetwork X corresponding to a generic color. We close the section by describing
the geometry of these various modifications of X .

4.1 Local topology

In order to define our local topology, we first need to specify a local space of decorated
trees. A locally finite pointed rooted plane tree – henceforth simply referred to as a
pointed tree for brevity – is a pair (T , v∗) where T is a rooted plane tree in which every
vertex has a finite degree, and v∗ is a vertex of T known as the focal vertex. Note that
in the case where T is infinite, its root can be located at infinity: in that case, instead of
corresponding to a vertex, the root corresponds to a topological end of T . Another way
to see this is that T being rooted actually means for any pair of adjacent vertices (u, v)

we know who is the parent and who is the child.
A decorated pointed tree (T , v∗, (Dv)v∈T ) is a pointed tree where each vertex v ∈ T

is associated to a random variable Dv taking value in a Polish space D . In our setting,
D will be a space in which the color networks (Xv) used in the construction of G as a
decorated tree are well-defined Borel-measurable random variables; but for now let us
view it simply as an abstract Polish space. We denote by Tloc the space of decorated
pointed trees.

The local topology on Tloc is the topology generated by the following basis of open
sets:

U
(
r, t, (Vv)v∈t

)
=
{

(T , v∗, (Dv)v∈T ) ∈ Tloc : BT (v∗, r) = t and ∀v ∈ t, Dv ∈ Vv
}
,
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where r runs over the positive integers, t over the finite pointed trees, and (Vu)u∈t over
the opens sets of D . The notation BT (v∗, r) stands for the ball of radius r centered at v∗

in T .
To make our description of Tloc fully explicit, we would need to give a formal definition

of the space D of decorations. While this is relatively straightforward to do, this is not
only tedious but also uninformative. Therefore, we leave it to the reader to convince
themself that this can be done while ensuring that the following properties hold:

• The decorations are pointed networks, i.e. pairs (X , x∗) where x∗ ∈ X and, as
previously, the network X – which is meant to represent the subnetwork of G
that corresponds to a given color – can be seen as a collection of segments glued
together at their endpoints (see Section 1.2). We denote by λX the Lebesgue
measure on X .

To keep the notation light, the fact that the decorations are pointed will be consid-
ered implicit: we occasionally write X instead of (X , x∗) when the focal point x∗

is irrelevant.

• The map X 7→ LX ··=
∫
dλX is continuous.

• For all continuous bounded maps F : D → R, the map

X 7−→
∫
F (X , x)λX (dx)

is continuous.

4.2 Construction of the limit as a decorated tree

First, recall from Section 3.2 that if T̂ is Galton–Watson tree whose offspring distri-
bution M̂ is given by

P(M̂ = k) =
ζk P(M = k)

E(ζM )
, k > 0,

where ζ is as in Corollary 2.7, then T̂ conditioned to have n vertices has the same
distribution as the tree Tn used to construct Gn as a decorated tree.

Next, let us describe (T ∗, v∗), the local weak limit of Tn. The local weak limit of size-
conditioned critical Galton–Watson trees after random rooting is the invariant random
sin-tree introduced by Aldous in [3] – see [46] for a detailed presentation. With our
notation, this pointed tree (T ∗, v∗) can be constructed as follows:

• Let v∗ be the focal vertex and let (v∗, v1, v2, . . . ) be the spine of T ∗, i.e. an infinite
path going towards the root (thus, v1 is the parent of v∗, v2 is the parent of v1, etc).

• For each k > 1, add M∗k − 1 children to vk, where (M∗k )k>1 is an i.i.d. sequence with
the size-biased distribution of M̂ .

• Let v∗, as well as each of the vertices added at the previous step be the root of a
Galton–Watson tree with offspring distribution M̂ , and call T ∗ the resulting infinite
random tree.

Now, let us consider the infinite random network G ∗ obtained by decorating T ∗

using the same procedure as when decorating Tn to obtain Gn: conditional on T ∗, let us
decorate each vertex v, independently of everything else, with a random network Xv

having the distribution of the generic color network X conditioned to have a number
of mutations equal to the number of children of v. Note that the subnetwork X ∗ corre-
sponding to the focal vertex v∗ plays a special role in G ∗: we refer to that subnetwork as
the focal network.
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The pair (G ∗, X ∗) is not the local weak limit of Gn: indeed, it describes the limit of
neighborhoods of a color network picked uniformly at random in Gn, rather than the
limit of the neighborhoods of a point picked uniformly at random in Gn. To see why the
two differ, note in particular that picking the focal point x∗ according to the normalized
length measure λGn/|Gn| biases the focal network by its total length L∗ = λX ∗(X ∗).

To construct the local weak limit of Gn, conditional on (G ∗, X ∗) let x∗ ∼ λX ∗/L∗ be a
random point of X ∗. Note that – to fall back on the topological framework of Section 4.1
– the pointed network (G ∗, x∗) can be seen as an element of Tloc by identifying it with
a copy of (T ∗, v∗) where the focal vertex v∗ is decorated with the pointed network
(X ∗, x∗), and the decorations of the other vertices are arbitrarily pointed. Now recall
from Notation 2.2 that L ( · †L∗) denotes the distribution under the L∗-biased probability
measure E(1{·}L

∗)/E(L∗), and let (G †, x†) be the random pointed network rooted at
infinity characterized by (G †, x†) ∼ L

(
(G ∗, x∗) † L∗

)
.

Theorem 4.1. The pointed network (G †, x†) is the local weak limit of (Gn)n>1.

Before proving this theorem, let us point out that (G †, x†) can also be constructed
as follows; we leave it to the reader to convince themself of the equivalence of the
definitions:

• Let v† be the focal vertex, and let (v†, v1, v2, . . . ) be an infinite spine going towards
the root.

• For each k > 1, add M∗k − 1 children to vk, where (M∗k )k>1 is an i.i.d. sequence with
the size-biased distribution of M̂ .

• Let X † ∼ L (X † LζM ) where X is a generic color network and M and L are
respectively its number of mutations and total length. Write M† and L† for the
corresponding quantities in X †, and add M† children to v†.

• Let each children of v†, as well as each of the children that were added to the
nodes (vk)k>1, be the root of a Galton–Watson tree with offspring distribution M̂ .
Let T † be the resulting tree.

• Decorate each node v ∈ T †, v 6= v∗, with a network Xv having the law of a generic
color network X conditioned to have as many mutations as the number of children
of v. Let X † be the decoration of v†.

• Conditional on X †, let x† ∼ λX †/L† be the focal point of (G †, x†).

Proof of Theorem 4.1. Let xn be a uniformly chosen point of Gn, and let v∗n be the vertex
of Tn such that xn ∈ Xv∗n . Remember that, since here we view Gn as the tree Tn

decorated with pointed networks, if we let xn be the focal point of Xv∗n then (Gn, xn)

and (Tn, v
∗
n) can be seen as the same object. Thus, we will use these two notations

interchangeably.
To prove the theorem, it suffices to show that

E
(
F (Gn, xn)

)
−−−−−→
n→∞

E
(
F (G †, x†)

)
(4.1)

for any function F : Tloc → R of the form

F (G, x) = F (T , v∗) = 1{BT (v∗, r)=t}
∏
v∈t

Fv(Xv, xv) ,

where r is a positive integer; t is a finite pointed rooted plane tree; and (Fv)v∈t is a family
of nonnegative continuous bounded maps D → R such that for all v 6= v∗, Fv(Xv, xv) =
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F̃v(Xv) depends only on Xv. Note that any such map F is continuous for the local
topology and bounded, with ‖F‖∞ ··= sup(G ,x)|F (G , x)| 6

∏
v∈t sup(X ,x)|Fv(X , x)| < ∞.

Moreover, since the map X 7→ LX giving the total length of a network is continuous,
we can restrict ourselves to functions F for which there exists ` > 0 such that, for all
v ∈ t, Fv(X , x) = 0 if LX > `.

Let us show that to finish the proof it suffices to show that

E

(∣∣∣( ∑
v∈Tn

Lv

)−1

− 1

nE(L̂)

∣∣∣ ∑
v∈Tn

∫
F (Gn, x)λXv

(dx)

)
−−−−−→
n→∞

0 , (4.2)

where L̂ ∼ L (L † ζM ) is the total length of a generic decoration of the critical Galton–
Watson tree T̂ such that Tn ∼ (T̂ | T̂ has n vertices). By definition of xn,

E
(
F (Gn, xn)

)
= E

((∑
v∈Tn

Lv

)−1 ∑
v∈Tn

∫
F (Gn, x)λXv

(dx)

)
.

Thus, if (4.2) holds we have

lim
n→∞

E
(
F (Gn, xn)

)
= lim

n→∞

1

nE(L̂)
E

(∑
v∈Tn

∫
F (Gn, x)λXv (dx)

)

=
1

E(L̂)
lim
n→∞

E

(
1

n

∑
v∈Tn

G(Tn, v)

)
,

where the map

G(Tn, v) ··=
∫
F (Gn, x)λXv

(dx)

= 1{BTn (v∗, r)=t}

∏
v 6=v∗

F̃v(Xv)

∫ Fv∗(Xv∗ , x)λXv∗ (dx)

is continuous (and bounded by ‖F‖∞`) for the local topology, because the maps X 7→∫
Fv(X , x)λX (dx) are continuous on D . Since the pointed tree (T ∗, v∗) used in the

construction of (G †, x†) is the local weak limit of Tn, we get

lim
n→∞

E

(
1

n

∑
v∈Tn

G(Tn, v)

)
= E

(
G(T ∗, v∗)

)
= E

(∫
F (G ∗, x)λXv∗(dx)

)
= E(L̂)E

(
F (G †, x†)

)
,

where the last equality holds because, by definition, (G †, x†) ∼ L ((G ∗, x∗) † L∗) where
L∗ =

∫
dλXv∗ ∼ L̂. Putting the pieces together, this proves (4.1).

Let us now prove (4.2), i.e. show that E(Yn)→ 0, where

Yn =
∣∣∣( ∑

v∈Tn

Lv

)−1

− 1

nE(L̂)

∣∣∣ ∑
v∈Tn

∫
F (Gn, x)λXv

(dx) .

For this, on the one hand, note that F is bounded and∑
v∈Tn

∫
F (Gn, x)λXv (dx) 6 ‖F‖∞

∑
v∈Tn

Lv, (4.3)
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and that on the other hand, since we have assumed that if the total length of the
subnetwork containing x is greater than ` then F (G , x) = 0, we also have∑

v∈Tn

∫
F (Gn, x)λXv

(dx) 6 ‖F‖∞ n ` .

As a result, Yn 6 ‖F‖∞(1 + `/E(L̂)). Thus, by dominated convergence, to prove that
E(Yn)→ 0 it suffices to show that Yn → 0 in probability. Using again (4.3),

0 6 Yn 6
∣∣∣nE(L̂)−

∑
v∈Tn

Lv

∣∣∣ ‖F‖∞
nE(L̂)

.

Finally, by Lemma 3.6 we can apply point (ii) of Lemma 3.10 to the random variables
(Lv)v∈Tn to get that for any ε > 0,∣∣∣nE(L̂)−

∑
v∈Tn

Lv

∣∣∣ = op(n
1/2 + ε) ,

concluding the proof.

4.3 Geometry of the focal and spinal networks

In order to complete the picture of the local weak limit of (Gn)n>1, let us zoom in on
the decorations composing G † and describe their distributions more finely than in the
previous section. Specifically, we are interested in

• (X †, x†), the focal network and its distinguished point;

• (X �, x�), which we call a spinal network. This network is distributed as the color
network that is the parent of the focal network, and its distinguished point is the
mutation point that corresponds to the root of the focal network.

Recall that, by the construction of G † given in Section 4.2, these objects satisfy, for
any positive measurable functional F on pointed color networks:

E
(
F (X †, x†)

)
=

1

E(LζM )
E
(
ζM
∫
F (X , x)λX (dx)

)
(4.4)

E(F (X �, x�)) =
1

E(MζM )
E
(
ζM

∑
x∈M

F (X , x)
)

(4.5)

where, by a slight abuse of notation,M denotes the point process of mutations on the
space X (previously,M denoted the point process on R corresponding to the mutation
times).

Our next result shows that focal and spinal networks can be constructed by “glueing”
two half-networks that are independent conditional on their number of tips. Moreover,
there is an explicit procedure to built these networks from their profile, i.e. from the
process giving their number of lineages as a function of time. Let us start by introducing
some notation.

Let I = [t0, t1], with t0 < 0 6 t1, and let γ = (γt)t∈I be a càdlàg, positive except at
time t1, integer-valued trajectory consisting of a finite number of ±1 jumps, starting at 1

and ending with a jump to 0. As usual, let X denote a generic color network, and let
X be the corresponding logistic branching process. With a slight abuse of notation, we
will write {X = γ} for the event on which the trajectory of the Markov chain X, started
from 1 at time t0, is exactly γ. Note that for any t0 ∈ R, it makes sense to consider a
random network X started from a single individual at time t0, for which the logistic
branching process X started from 1 at time t0 is the “number of lineages” process. The
distribution of X does not depend on t0.
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Definition 4.2. The random pointed network X [γ] is defined as

X [γ] ∼ L ( X | X = γ ) ,

and the focal point is chosen uniformly among the points of the networks that correspond
to lineages alive at time 0. See Figure 6 for an illustration. In the case where γ has a
downward jump at time 0, we also define

X m[γ] ∼ L
(
X [γ]

∣∣X [γ] has a mutation a time 0
)
,

and the focal point is the point that corresponds to the mutation at time 0.

Note that it is straightforward to sample the networks X [γ] and X m[γ] introduced
in Definition 4.2: in the case of X [γ], start with a single lineage, at time t0. Then, going
through the jumps of γ in chronological order:

• For each jump from k to k + 1 at time t, pick one a lineage uniformly at random
among the lineages alive at time t, and let it split into two lineages.

• For each jump from k to k − 1 at time t, choose one of the following possibilities:
with probability µ/ρk, pick a lineage alive at time t uniformly at random, and let
it mutate; with probability α/ρk, pick a lineage similarly and let it die; and with
probability 1− (α+ µ)/ρk, pick a pair of lineages uniformly at random and let them
merge together.

The network X m[γ] is obtained similarly, with the additional constraint that the jump
from k to k − 1 at time 0 is a mutation.

Figure 6: Construction of X [γ o γ′]. The trajectory on top is the back-to-back pasting of
two trajectories γ and γ′ started from 4: the red part corresponds to the time-reversal
of γ and the blue one to γ′. The network X [γ o γ′] is represented in black on the bottom.
The two black dots correspond to mutations, and the cross to a death. The blue dot
represents the focal point x†, which is chosen uniformly at random among the lineages
alive at time 0.

Now, recall the following notation, introduced in Section 2.1: ν◦ is the probability
measure on the positive integers characterized by ν◦(n) ∝

∏n
k=1

1
ρk

, see Eq. (2.1);
L (A † B) denotes the distribution of A biased by B, see Notation 2.2; and γ o γ′ is the
back-to-back pasting of two càdlàg trajectories, see Definition 2.3.
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Proposition 4.3. For each k > 0, let X ′k and X ′′k be independent realizations of X that
are started from k and also independent of everything else, and let K ∼ ν◦.

(i) (X †, x†) is distributed as L
(
X [X ′K oX ′′K ] † ζM† );

(ii) (X �, x�) is distributed as L
(
X m[X ′K oX ′′K−1] † ζM�);

where M† denotes the number of mutations of X [X ′K o X ′′K ] and M� the number of
mutations of X m[X ′K oX ′′K−1].

Remark 4.4. This construction of the focal/spinal networks makes it possible to get
expressions for some characteristics of the local weak limit (G †, x†). For instance, if we
let N be the number of lineages of the same color as x† that are alive at the same time
as x†, then by (i) we have, for a normalizing constant C > 0,

P(N = k) = C ν◦(k)Ek(ζM )
2
,

where Ek denotes the expectation conditional on {X0 = k}. The limitation comes from
the fact that if ζ 6= 1, then the expressions Ek(ζM ) are not explicit. However, they can
expressed as continuous fractions, which would it possible compute them numerically
(see Theorem 2.5).

Similarly, if T denotes the time since the last mutation in the ancestry of x†, then for
any bounded measurable function F : R→ R,

E
(
F (T )1{N=k}

)
= C ν◦(k)Ek(ζM )Ek

(
F (T0) ζM

)
,

where here T0 denotes the hitting time of 0 for the process X.

Proof of Proposition 4.3. The proof is very similar to that of Proposition 2.4, and also
relies on the path decomposition Markov chains presented in Section A.1.

Let Y be the birth-death chain on N that goes from k to k + 1 at rate 1 and from k

to k − 1 at rate ρk. Note that Y is distributed as the chain X slowed-down by a factor k
when in state k, and resurrected at rate 1 when it hits 0. Thus, Y is positive recurrent
– and therefore, reversible (as any positive recurrent birth-death chain). Moreover,
it is straightforward to check that the stationary distribution of Y is the probability
distribution π defined by

π(n) = C

n∏
k=1

1

ρk
, n > 0,

where C is a normalizing constant. Note that by definition of ν◦, if K0 is a random
variable with distribution π, then its conditional distribution given {K0 > 1} is ν◦.

Let Y be started from 1, and denote T0 the hitting time of 0. Conditional on T0, let U
be uniform on [0, T0], and set K ··= YU . Now, from the trajectory of (Yt)t∈[0,T0], construct
a path with the same distribution as X by speeding up time by a factor k when in state k.
Let V be the point corresponding to U in the new timescale. Note that this shows that
T0, the hitting time of 0 by Y , has the same distribution as L =

∫∞
0
Xt dt, since in this

construction the two quantities are equal.
Now, consider the biased probability measure

P0(·) ··=
E(1{·}T0)

E(T0)
.

By Proposition A.1, under P0 we have K ∼ ν◦ and, conditional on K, letting Θt
u{Y } ··=

(Yu+s)−u6s6t−u, we have

ΘT0

U {Y }
d
= Y ′ o Y ′′
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where Y ′ and Y ′′ are independent copies of Y started from K. In other words, for any
measurable positive functional F of trajectories:

E
[
T0 F

(
ΘT0

U {Y }
)]

= E(T0)E
[
F (Y ′K o Y ′′K)

]
.

Using our coupling of X and Y , and recalling that T0 = L, this yields:

E
[
LF

(
Θτ0
V {X}

)]
= E(L)E

[
F (X ′K oX ′′K)

]
. (4.6)

where τ0 is the extinction time of X, and X ′K and X ′′K are independent copies of X
started from K, as they are defined in the statement of the proposition.

Let us now define a pointed network (X̃ , x∗) as follows: conditional on the trajectory
of X constructed above, using Definition 4.2 let (X̃ , x∗) = X [Θτ0

V {X}]. Thus, X̃ is
distributed as a standard color network whose root is located at time −V . Recall that by
definition, conditional on X̃ , the focal point x∗ is chosen uniformly at random among the
points that correspond to the K lineages alive at time 0.

By construction, x∗ is uniform on X̃ with respect to its length measure. Therefore,
for any measurable positive functional F on pointed networks:

E

(
ζM
∫
F (X , x)λX (dx)

)
= E

(
LζM

∫
F (X , x) 1

LλX (dx)

)
= E

(
LζMF (X̃ , x∗)

)
,

where M is the number of mutations of X̃ . Moreover, by applying Equation (4.6) to the
functional γ 7→ E

(
ζM(X [γ])F (X [γ])

)
, we get

E
(
LζMF (X̃ , x∗)

)
= E(L)E

(
ζM
†
F (X [X ′K oX ′′k ])

)
,

where M† is the total number of mutations of X [X ′K oX ′′k ]. Therefore,

E
(
ζM
†
F (X [X ′K oX ′′k ])

)
=

1

E(L)
E

(
ζM
∫
F (X , x)λX (dx)

)
.

Finally, taking F ≡ 1, we get E(ζM
†
) = E(LζM )/E(L), and so comparing the previous

display with Equation (4.4) characterizing the law of (X †, x†), we see that

E(ζM
†
)
−1
E
(
ζM
†
F (X [X ′K oX ′′k ])

)
= E

(
F (X †, x†)

)
,

finishing the proof of point (i).
Point (ii) is proved similarly, but using Proposition A.2 instead of Proposition A.1 to

view the network from a uniform mutation point instead of from a uniform point.

Appendices

A.1 Path decompositions of Markov chains

In this appendix, we give a description of the trajectory of a Markov chain as seen
from a random point in time. The ideas are standard, but we could not find the two
propositions below in the literature. Their proofs are elementary, but somewhat tedious;
so since they are very similar we present only the most involved of the two and leave the
other one to the reader. This appendix also contains the proof of Proposition 2.4.

Let E be a countable set and let Y be a continuous-time Markov chain on E with
transition rate matrixQ = (qij)i,j∈E , started from the initial state 0 ∈ E. Let us write τ for
the first jump time of the chain and T0 for the return time to 0, i.e. T0 = inf{t > τ : Yt = 0}.
Assume that Y is positive recurrent, with stationary distribution π, and define the

EJP 29 (2024), paper 31.
Page 36/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1088
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A branching process with coalescence for phylogenetic networks

reversed chain Y ′ as the continuous-time Markov chain with transition rate matrix
Q′ = (q′ij)i,j∈E , where

q′ij =
πj
πi
qji .

We will consider time-shifted trajectories γ of the Markov chain Y killed upon reaching 0.
For this purpose, let us formally define a convenient Skorokhod-like space of trajectories.
Let E′ denote E ∪ {∆}, where ∆ /∈ E is arbitrary, and let Γ denote the set of càdlàg
functions γ : R → E′ such that for all t with |t| large enough we have γ(t) = ∆.
With a slight abuse, for any a < b ∈ R and γ : [a, b[ → E we identify γ with t 7→
γ(t)1{t∈[a,b[} + ∆1{t/∈[a,b[}. The space Γ can be endowed with the metric d defined by:

d(γ, γ′) =

{
1 ∧

∫
R
1{γ(t)6=γ′(t)} dt if γ and γ′ have the same number of jumps,

1 otherwise.

Note that time-shifts are then continuous in Γ.
Recall from Notation 2.2 that for two random variables A and B defined on the same

probability space, we write L (A †B) for the distribution of A biased by B, that is, under
the probability P( · †B) = E(1{·}B) /E(B). Conditional on T0, let U be a uniform random
variable on [τ, T0]. We are interested in the random trajectory

Z ∼ L
(
(YU+t)τ−U6t<T0−U † T0 − τ

)
,

seen as a random variable in Γ. This trajectory can be conveniently described by
decomposing it into its left and right parts. For this, recall the “back-to-back pasting”
operation introduced in Definition 2.3, which to two càdlàg functions f : [0, Tf [→ E and
g : [0, Tg[→ E associates the function f o g : [−Tf , Tg[→ E defined by

f o g : t 7→

{
lims↓t f(−s) if t < 0

g(t) if t > 0 .

Proposition A.1. With the definitions above, we have

Z
d
= Y ′ o Y ′′,

where Y ′ is the reversed chain and Y ′′ has the same transitions as Y . Both chains are
started from Y ′0 = Y ′′0 ∼ π∗, where π∗i = πi

1−π0
for all i ∈ E \ {0}, and stopped upon

reaching 0. Conditional on their common starting point, they are independent.

As discussed above, the proof is left to the reader.
Assume now that the transitions of the process Y are associated with weights: each

transition i→ j has weight wij > 0. Define a random measureW by

W =
∑
i→j at t

wij δt,

where the sum is over all (finitely many) (i, j, t) such that Y jumps from i to j at time t
along a trajectory started from 0 and stopped upon reaching 0. Define W =

∫
dW as the

total weight accumulated along the trajectory and assume that 0 < E(W ) <∞. We are
now interested in the distribution of

Zw ∼ L
(
(YU+t)τ−U6t<T0−U †W

)
,

where the conditional distribution of U givenW is 1
WW. In other words, the distribution

of Zw is characterized by

E
(
F (Zw)

)
=

1

E(W )
E

∑
i→j at u

wij F
(
(Yu+t)τ−u6t<T0−u

),
for any measurable bounded functional F .

EJP 29 (2024), paper 31.
Page 37/48

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1088
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A branching process with coalescence for phylogenetic networks

Proposition A.2. We have

Zw
d
= Y ′ o Y ′′,

where Y ′ is the reversed chain and Y ′′ has the same transitions as Y . Conditional on
their starting points, Y ′ and Y ′′ are independent. They are started from a pair of states
(Y ′0 , Y

′′
0 ) chosen according to the probability

ν(i, j) ··=
πi wij qij
π0E(W )

, i 6= j

and stopped upon reaching 0. If one of the chains is started from 0, its trajectory is
reduced to a single point.

Proof. The proof is a series of elementary Markov chain calculations. We use the
standard notation qi =

∑
j qij .

Consider two starting states i 6= j, a trajectory f from i to 0 and and a trajectory g
from j to 0. Let γ0, . . . , γnf+1 and ξ0, . . . , ξng+1 be the successive states visited by f

and g, respectively, and let x0, . . . , xnf and y0, . . . , yng be the corresponding holding times.
Writing P(Zw ∈ dh) for the probability density of Zw evaluated in a specific trajectory h,
by definition of Zw, we have

E(W )P
(
Zw ∈ d(f o g)

)
= wij

( nf∏
k=0

qγk+1γk

)
qij

( ng∏
k=0

qξkξk+1

)
exp

(
−

nf∑
k=0

qγkxk −
ng∑
k=0

qξkyk

)
dx dy,

where dx = dx0 · · · dxnf and dy = dy0 · · · dyng . Rearranging the terms, we get

E(W )P
(
Zw ∈ d(f o g)

)
=

πi
π0

wij qij ×
( nf∏
k=0

πγk+1

πγk
qγk+1γk

)
exp

(
−

nf∑
k=0

qγkxk

)
dx

×
( ng∏
k=0

qξkξk+1

)
exp

(
−

ng∑
k=0

qξkyk

)
dy

=
πi
π0

wij qij Pi(Y
′ ∈ df) Pj(Y

′′ ∈ dg),

which concludes the proof.

We close this appendix by proving Proposition 2.4 from the main text, whose state-
ment we reproduce here for convenience. Recall that Xm denotes the process X “as
seen from a uniform mutation time”, that is,

Xm ∼ L
(
(XU+t)−U6t<T−U †M

)
,

where U is chosen uniformly at random among the atoms of the point processM giving
the times of the mutations associated to the trajectory of X.

Proposition 2.4. Let ν◦ be the probability distribution on the positive integers defined
by

ν◦(n) = C

n∏
k=1

1

ρk
,

with C the corresponding normalizing constant. Let K ∼ ν◦ and, conditional on K, let
X ′ and X ′′be two independent realizations of the logistic branching process X started
from X ′0 = K and X ′′0 = K − 1. Then,

Xm d
= X ′ oX ′′.
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Proof. Let X◦ be a Markov chain started from 0 with the same transition rates as X,
except for an additional “rebirth” transition from 0 to 1 at an arbitrary positive rate.
Thus, X◦ is positive recurrent, and it is straightforward to check that its stationary
distribution (πi)i>0 satisfies, for i > 1,

πi ∝ i−1
i∏

k=1

1

ρk
. (A.1)

Now, since the excursions of X◦ away from 0 are distributed as the restriction of X
to [0, T ], we have

Xm ∼ L
(
(X◦U+t)τ−U6t<T◦−U †M◦

)
,

where τ is the first jump time of X◦; T ◦ its time of first return to 0; M◦ its number of
mutations on [τ, T ◦]; and U the time of a mutation chosen uniformly at random among the
mutations on [τ, T ◦]. Moreover, each downward jump of X◦ from i to i− 1 corresponds
to a mutation with probability µ/ρi, independently. Therefore, if conditional on X◦ we
letW be the measure defined by

W =
∑
i↘ at t

µρ−1
i δt ,

where the sum is over all (i, t) such that X◦ goes from i to i − 1 at time t ∈ [τ, T ◦],
then, conditional on X◦, W is the intensity measure ofM◦, the Poisson point process
of mutations on [τ, T ◦]. Thus, E(W ) = E(M), where W =

∫
dW, and for any bounded

measurable functional f ,

E

( ∑
t∈M◦

f(X◦, t)

∣∣∣∣∣X◦
)

=

∫
f(X◦, t)W(dt) =

∑
i↘ at t

µρ−1
i f(X◦, t) ,

As a result, conditional on X◦, letting V ∼ 1
WW we have

L
(
(X◦U+t)τ−U6t<T◦−U †M◦

)
= L

(
(X◦V+t)τ−V6t<T◦−V †W

)
.

Therefore, by applying Proposition A.2 to (X◦, W), we get that Xm d
= X ′ o X ′′,

where:

• X ′ and X ′′ are independent, X ′′ has the same transition rates as X◦, and X ′ has
the same transition rates as the time-reversed chain of X◦.

• (X ′, X ′′) is started from (i, i− 1) with probability

πi (µρ−1
i ) (iρi)

π0E(W )
= C

i∏
k=1

1

ρk
.

where C is the normalization constant (and we have used the expression of πi given
in (A.1) to get the right-hand side).

Finally, since every positive recurrent birth-death chain is reversible – a standard fact
that follows from Kolmogorov’s criterion for time-reversibility – X ′ in fact has the same
transition rates as X◦; and since X ′ and X ′′ are both killed upon reaching 0, these two
chain also have the same transitions rates as X.
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A.2 Proofs for Section 3.1

In this appendix, we prove Lemma 3.2 and Proposition 3.4, whose statements we will
reproduce below for convenience.

Let us start by recalling how the notions of correspondence and distortion can be
used to tackle Gromov–Hausdorff–Prokhorov convergence more conveniently than by
working directly with the definition of the metric. Note that, in order to deal with the
Prokhorov component of the metric, we will use definitions that differ slightly from those
traditionally used in the Gromov–Hausdorff setting.

Let (X , r, d, λ) and (X ′, r′, d′, λ′) be two rooted compact metric probability spaces.
Since we view a subset R ⊂X ×X ′ as a binary relation, we write xRx′ to indicate that
(x, x′) ∈ R. For any A ⊂ X , we let AR = {x′ ∈X ′ : ∃x ∈ A with xRx′} and we define
RB similarly for any subset B ⊂X ′. In what follows, we use the term correspondence
from X to X ′ to refer to any nonempty subset R ⊂X ×X ′. Note that it is sometimes
required that R satisfies XR = X ′ and X = RX ′ to be called a correspondence, but in
our setting it will be more convenient to drop this restriction.

We now introduce a modified version of the notion of distortion of a correspondence.
In what follow, Aε denotes the ε-neighborhood of a set A.

Definition A.3. The Prokhorov distortion of a correspondence R from a compact metric
probability space (X , d, λ) to another (X ′, d′, λ′), which we denote by dis(R), is the
infimum of the ε > 0 such that:

(i) For all (x, x′) ∈ R and (y, y′) ∈ R, |d(x, y)− d′(x′, y′)| 6 ε.

(ii) (XR)ε/2 = X ′ and X = (RX ′)ε/2.

(iii) For any Borel set A ⊂X , λ′((AR)ε/2) + ε > λ(A).

The usual notion of distortion only takes (i) into account: (ii) is added to be able
to relax the usual definition of correspondence, as discussed above; and (iii) controls
the Prokhorov part of the Gromov–Hausdorff–Prokhorov topology. It may seem that
by replacing the ε/2 with ε would yield a more natural definition; however, this ε/2
makes several calculations neater. Finally, note that because we have only imposed one
inequality in (iii), this definition is not symmetric: if we let R−1 = {(x′, x) : (x, x′) ∈ R}
then a priori dis(R) 6= dis(R−1).

As the next lemma shows, correspondences and their distortions provide a simple
characterization of the (rooted) Gromov–Hausdorff–Prokhorov convergence.

Lemma A.4. Let (X , r, d, λ) and (X ′, r′, d′, λ′) be two rooted compact metric probability
spaces. If there exists a correspondence R ⊂ X ×X ′ satisfying rR r′ and dis(R) 6 ε,
then dGHP(X ,X ′) 6 ε.

Proof. The proof is a straightforward adaptation of the classic analogous result for the
usual notion of correspondence and the Gromov–Hausdorff metric, see for instance [22,
Theorem 4.11]

Let us define a metric δ on the disjoint union X tX ′ by:

• ∀x, y ∈X , δ(x, y) = d(x, y);

• ∀x′, y′ ∈X ′, δ(x′, y′) = d′(x, y);

• ∀(x, x′) ∈X ×X ′, δ(x, x′) = ε/2 + inf{d(x, y) + d′(x′, y′) : (y, y′) ∈ R}.

It is readily checked that δ is indeed a metric. Moreover, for any (x, x′) ∈ R, we have
δ(x, x′) = ε/2. This implies that δ(r, r′) 6 ε/2, and that for each Borel set A ⊂ X ,
(AR)ε/2 ⊂ Aε. Therefore, it follows from point (ii) of Definition A.3 that the Hausdorff
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distance between X and X ′ in (X t X ′, δ) is at most ε. Similarly, it follows from
point (iii) of Definition A.3 that the Prokhorov distance between the extensions of λ and
λ′ to X tX ′ is also at most ε.

Therefore, dGHP(X ,X ′) 6 ε and the proof is complete.

We are now ready to prove Lemma 3.2. First, recall from Definition 3.1 how to obtain
a rooted compact metric probability space Th from a nonnegative càdlàg function h such
that h(0) = 0.

Lemma 3.2. The map h ∈ D 7→ Th ∈M is continuous. In other words, if h1, h2, . . . and h
satisfy the hypotheses of Definition 3.1, then

hn −→ h in D =⇒ Thn −→ Th in (M, dGHP).

Proof. It is classic [10] that the Skorokhod topology can be metrized by the following
metric: for two càdlàg functions f and g : [0, 1]→ R, define

dSk(f, g) = inf
θ

(
(Lip(θ)− 1) ∨ ‖f − g ◦ θ‖∞

)
,

where θ runs over the set of continuous increasing bi-Lipschitz bijections from [0, 1] into
itself, and

Lip(θ) ··= sup
06x<y61

(
θ(y)− θ(x)

y − x
∨ y − x
θ(y)− θ(x)

)
.

Note that, since θ(0) = 0 and θ(1) = 1 for every such bijection θ, if Lip(θ) < 1 + ε then
‖θ − Id‖∞ < ε, where Id is the identity map.

Let f and g be two nonnegative càdlàg functions such that f(0) = g(0) = 0, and let
(Tf , rf , df , λf ) and (Tg, rg, dg, λg) be the corresponding metric spaces. We will show that
dSk(f, g) < ε =⇒ dGHP(Tf ,Tg) 6 4ε. By definition of dSk, let us choose a continuous
increasing bijection θ : [0, 1]→ [0, 1] such that Lip(θ) < 1 + ε and ‖f − g ◦ θ‖∞ < ε.

Let φ : [0, 1]→ Tf denote the quotient map from [0, 1] to Tf . Note that, because we
have completed the quotient space [0, 1]/∼df in order to obtain Tf , this function φ may
be non-surjective, but that φ([0, 1]) is dense in Tf . Define ψ : [0, 1]→ Tg similarly.

Let R ⊂ Tf ×Tg be the correspondence defined by:

xRx′ ⇐⇒ ∃t ∈ [0, 1] s.t. x = φ(t) and x′ = ψ(θ(t)).

By Lemma A.4, to show that dGHP(Tf ,Tg) 6 4ε, it is sufficient to check that dis(R) 6 4ε

and that rfRrg. The latter point is trivial since rf = φ(0) and rg = ψ(0) = ψ(θ(0)),
therefore we need to check that the following three points hold:

(i) (TfR)2ε = Tg and Tf = (RTg)
2ε; this is also immediate since TfR = ψ([0, 1]) is

dense in Tg and since RTg = φ([0, 1]) is dense in Tf .

(ii) For all (x, x′), (y, y′) ∈ R, we have |df (x, y)− dg(x′, y′)| 6 4ε.

(iii) For any Borel subset A ⊂ Tf , we have λg((AR)2ε) + 4ε > λf (A).

To prove (ii), consider s < t ∈ [0, 1]. We need to show that

|df (φ(s), φ(t))− df (ψ ◦ θ(s), ψ ◦ θ(t))| 6 4ε.

This is readily seen, since

|df (φ(s), φ(t))− df (ψ ◦ θ(s), ψ ◦ θ(t))|
=
∣∣f(s) + f(t)− 2 inf

[s,t]
f −

(
g(θ(s)) + g(θ(t))− 2 inf

[s,t]
g ◦ θ

)∣∣
6 4‖f − g ◦ θ‖∞
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To show (iii), consider a Borel subset A ⊂ Tf , and let ` denote the Lebesgue measure
on [0, 1], so that λf (A) = `(φ−1(A)) and λg(A) = `(ψ−1(A)). Notice that, by definition,
AR = ψ ◦ θ(φ−1(A)). Therefore,

λg(AR) = `
(
ψ−1

(
ψ ◦ θ(φ−1(A))

))
> `

(
θ(φ−1(A))

)
.

Now, it suffices to notice that Lip(θ) < 1 + ε implies that `(θ(B)) > (1 + ε)`(B) for all
Borel subsets B ⊂ [0, 1]. Indeed, this is easily checked for intervals, and extended to
Borel sets by a monotone class argument. From this, we obtain

λg(AR) > `
(
θ(φ−1(A))

)
> (1− ε)`(φ−1(A)) = (1− ε)λf (A) > λf (A)− ε.

Finally, λg((AR)2ε) + 4ε > λg(AR) + ε > λf (A). Therefore, dGHP(Tf ,Tg) 6 4ε and we
have proved that dSk(f, g) < ε =⇒ dGHP(Tf ,Tg) 6 4ε, finishing the proof.

Let us now turn to Proposition 3.4. Recall that an admissible parametrization of
(X , r, d, λ) is a càdlàg function φ : [0, 1]→ X such that φ([0, 1]) is dense in X and that
t 7→ λ(φ([0, t])) and t 7→ d(r, φ(t)) are well-defined random variables.

Proposition 3.4. Let (Xn, rn, dn, λn)n>1 be a sequence of random rooted compact metric
probability spaces such that, for each n > 1, there exists an admissible parametrization
φn : [0, 1]→Xn. Assume that, setting hn(t) = dn(rn, φn(t)):

(i) sups,t∈[0,1]

∣∣dn(φn(s), φn(t))− dhn(s, t)
∣∣ d−→ 0.

(ii) supt∈[0,1]

∣∣λn(φn([0, t]))− t
∣∣ d−→ 0.

(iii) (hn(t))t∈[0,1]
d−→ (h(t))t∈[0,1] for the Skorokhod topology, where (h(t))t∈[0,1] is a

random càdlàg function.

Then, Xn
d−→ Th for the rooted Gromov–Hausdorff–Prokhorov topology.

Proof. Since by Lemma 3.2 the assumption (iii) ensures that dGHP(Thn ,Th) → 0, to
prove the proposition it suffices to show that the assumptions (i) and (ii) imply that
dGHP(Xn,Thn)→ 0.

First, by a straightforward extension of Skorokhod’s representation theorem (namely
Theorem A.5 in Appendix A.3 below), we can assume that the convergences in assump-
tions (i-iii) hold almost surely, rather than in distribution. Note that the fact that φn
is assumed to be an admissible parametrization allows to view the pairs (Xn, φn) as
random variables valued on a Polish space, which is the key to applying Theorem A.5.

Now, as previously, let ψn : [0, 1] → Thn be the quotient map in the construction of
Thn . Remember that, because we have completed [0, 1]/∼dhn to obtain Thn , the map ψn
is not surjective; however, ψn([0, 1]) is dense in Thn . Let then Rn be the correspondence
from Xn to Thn defined as

Rn = {(φn(t), ψn(t)) : t ∈ [0, 1]} .

Since φn(0) = rn (because φn is an admissible parametrization of Xn) and since the root
of Thn is by construction r′n ··= ψn(0), we have rnRn r′n. Thus, by Lemma A.4 to show that
dGHP(Xn,Thn)→ 0 it suffices to show that dis(Rn)→ 0.

First, XnRn = ψn([0, 1]) is dense in Thn and RnThn = φn([0, 1]) is dense in Xn.
Therefore,

inf
{
ε > 0 : (XnRn)ε/2 ⊂ Thn and (RnThn)ε/2 ⊂Xn

}
= 0 . (A.2)
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Second, let (x, x′) and (y, y′) be any two elements of Rn, i.e. let s, t ∈ [0, 1] and set
(x, x′) = (φn(s), ψn(s)) and (y, y′) = (φn(t), ψn(t)). Then, by assumption (i),∣∣dn(x, y) − dThn(x

′, y′)
∣∣ =

∣∣dn(φn(s), φn(t)) − dhn(s, t)
∣∣ unif. in. s,t−−−−−−−→

n→∞
0 . (A.3)

Let us fix ε > 0; we now show that for all n large enough, for all Borel subset A ⊂Xn,
we have

λThn ((ARn)ε) + ε > λn(A). (A.4)

First, note that because hn converges in D, there exists k > 1 such that for all n
large enough, there exists tn0 = 0 < tn1 < · · · < tnk = 1 such that for all j ∈ {1, . . . , k},
diam(ψn(Inj )) < ε, where Inj = [tnj−1, t

n
j [ for j < k and Ink = [tk−1, 1]. Fix n0 > 1 so that for

all n > n0, for all j,∣∣λn(φn([0, tnj [
))
− tnj

∣∣ < ε

4k
, so that

∣∣λn(φn(Inj ))− (tnj − tnj−1)
∣∣ < ε

2k
.

Now consider n > n0 and choose a Borel subset A ⊂Xn. Writing B = ARn, define

J =
{
j : B ∩ ψn(Inj ) 6= O6

}
⊃
{
j : A ∩ φn(Inj ) 6= O6

}
,

and notice that because diam(ψn(Inj )) < ε, we have Bε ⊃
⋃
j∈J ψn(Inj ). Then we have

λThn ((ARn)ε) >
∑
j∈J

λThn (ψn(Inj )) >
∑
j∈J

(tj+1 − tj).

But (tj+1 − tj) > λn(φn(Inj ))− ε
2k , so∑

j∈JB

(tj+1 − tj) >
∑
j∈JB

λn(φn(Inj ))− ε

2
> λn(A ∩ φn([0, 1]))− ε

2
.

Finally, note that we fixed n large enough so that λn(φn([0, 1])) > 1− ε
2k > 1− ε

2 , hence

λn(A ∩ φn([0, 1]))− ε

2
> λn(A)− ε.

Putting the last three displays together, we have proved (A.4).
Finally, combining (A.2), (A.3) and (A.4), and recalling the Definition A.3 of the

Prokhorov distortion, we see that dis(Rn)→ 0. This concludes the proof.

A.3 An extension of Skorokhod’s representation theorem

In this appendix, we discuss the extension of Skorokhod’s representation theorem
used at the beginning of the proof of Proposition 3.4. For the sake of rigour and
completeness, we give a formal statement and a proof.

Theorem A.5. Let X and Y be two Polish spaces endowed with their Borel σ-field,
f : X → Y be a Borel function and (µn)n>1 be a sequence of probability measures on
X such that f∗µn converges weakly. Then, there exists a probability measure θ on XN

whose n-th marginal is µn and which is such that, letting (xn) ∼ θ, f(xn) converges
almost surely.

Proof. Let (εm)m>1 be a sequence of positive numbers such that
∑
m εm <∞ and let ν

be the weak limit of f∗µn. Since Y is Polish, for all m > 1 we can find a finite, measurable
partition Bm1 , . . . , B

m
km

of Y satisfying:

(i) ν(∂Bmi ) = 0 for all 1 6 i 6 km.

(ii)
∑
i ν(Bmi ) < εm, where the sum runs over the indices i s.t. diam(Bmi ) > εm.
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Furthermore, we can assume that these partitions are refining as m increases; more
specifically, that for each m > 1, there exist 1 6 j1 < j2 < · · · < jkm = km+1 such that,
for all 1 6 i 6 km,

Bmi =

ji⋃
j=ji−1+1

Bm+1
j ,

with the convention j0 = 0. Now, let us define a measurable partition Am1 , . . . , A
m
km

of
X by setting Ami = f−1(Bmi ). Since f∗µn → ν weakly, by the Portmanteau theorem
µn(Ami ) → ν(Bmi ) for all i as n → ∞. Therefore, for any sequence δm > 0 we can find
an increasing sequence (Nm)m>1 such that for all m > 1 we have: for all n > Nm and
1 6 i 6 km, ∣∣∣∣∣∣

i∑
j=1

µn(Amj )−
i∑

j=1

ν(Bmj )

∣∣∣∣∣∣ < δm. (A.5)

Let us define, for all positive integers n,m and for all 1 6 i 6 km,
Imn,i =

[∑i−1
j=1 µn(Amj ),

∑i
j=1 µn(Amj )

[
,

Jmi =
[∑i−1

j=1 ν(Bmj ) + δm,
∑i
j=1 ν(Bmj )− δm

[
,

where, by convention, Jmi = ∅ whenever
∑i−1
j=1 ν(Bmj ) + δm >

∑i
j=1 ν(Bmj ) − δm. Note

that, by construction, Jmi ⊂ Imn,i for all n > Nm.
We now build a sequence of random variables (xn) such that xn ∼ µn. For n > N1,

let mn be the integer such that Nmn 6 n < Nmn+1. It is classic that Borel subsets
of a Polish space are standard Borel (see e.g. [45, Proposition 3.3.7]), and this im-
plies – either by a direct construction if the subset is countable, or using the Borel
isomorphism theorem [45, Theorem 3.3.13] otherwise – that for each 1 6 i 6 kmn
such that µn(Amni ) > 0, there exists a measurable map φn,i : Imnn,i → Amni such that when
U is drawn according to the normalized Lebesgue measure on Imnn,i , the distribution of
φn,i(U) is µn( · | Amni ). Thus, defining φn : [0, 1[→ X by

φn(t) =

kmn∑
i=1

φn,i(t)1{t∈Imnn,i } ,

and then taking xn = φn(U), where U is a uniform variable on [0, 1[, we get a random
sequence (xn) such that xn ∼ µn for all n. Furthermore, notice that, by construction, if
n > Nm and U ∈ Imn,i, then f(xn) ∈ Bmi .

Assume without loss of generality that the sequence (δm) satisfies
∑
m δmkm < +∞.

We will now show that this implies that (f(xn)) is almost surely a Cauchy sequence.
We say that the interval Jmi is m-good if diam(Bmi ) 6 εm. By construction, for a fixed
integer m > 1, the union Gm =

⋃
i J

m
i of m-good intervals has Lebesgue measure at least

1− εm − 2(km + 1)δm. Therefore, we have∑
m>1

P(U /∈ Gm) 6
∑
m>1

(
εm + 2(km + 1)δm

)
< ∞,

and so, by the Borel–Cantelli lemma, there almost surely exists m∗ such that for all
m > m∗, there is a unique index im such that U is in the m-good interval Jmim . This
implies that, almost surely, for all n′ > n > Nm∗ and writing i = imn to avoid clutter,
U ∈ Imnn,i ∩ I

mn
n′,i and so f(xn), f(xn′) ∈ Bmni with diam(Bmni ) 6 εmn . This shows that

(f(xn)) is almost surely a Cauchy sequence, concluding the proof.
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A.4 Tail of the size of critical Galton–Watson trees

In order to make this article as self-contained as possible, we provide a short proof of
Proposition 3.5 for the asymptotic equivalent of the probability that a critical Galton–
Watson tree has size n, which is a key element in our study. As previously, we repeat the
statement of the proposition here for convenience.

Proposition 3.5. Let T̂ be a critical Galton–Watson tree whose offspring distribution
has a finite variance σ2 > 0 and is not supported on kN, for any k > 2. Let Ân denote the
event {T̂ has n vertices}. Then,

P(Ân) ∼
n→∞

1√
2πσ2

n−3/2 .

Proof. Let M̂ denote the offspring distribution of T̂ , let ξ1, ξ2, . . . be i.i.d. copies of M̂ −1

and set Sn =
∑n
i=1 ξi. As was first noted by Dwass in [21],

P(Ân) = P(Si > 0 for 1 6 i 6 n− 1 and Sn = −1)

=
1

n
P(Sn = −1) .

The first equality is easily seen by marking the root as to-visit, and then at each step
removing a vertex from the to-visit pile and adding its children to it: the procedure ends
where there are no vertices left to visit – which happens after exactly n steps, where n is
the total number of vertices in the tree; and if we let ξi denote the number of vertices
added/removed from the pile at step i, then the number of vertices on the pile after
step i is exactly Si + 1.

The fact that P(Si > 0 for 1 6 i 6 n− 1, Sn = −1) = 1
n P(Sn = −1) has become folk-

lore and is a special case of a result sometimes known as Kemperman’s formula or
as the hitting time theorem – see e.g. [49, Theorem 3.14]. We mention a simple
proof based on Dvoretzky and Motzkin’s cycle lemma [20]: let S denote the set of
vectors k = (k1, . . . , kn) of increments of (Sn)n>0 that are such that Sn = −1. For
every permutation σ of {1, . . . , n}, if k ∈ S then kσ ··= (kσ(1), . . . , kσ(n)) ∈ S and
P(ξ1 = k1, . . . , ξn = kn) = P(ξ1 = kσ(1), . . . , ξn = kσ(n)).

Now, let C(n) denote the set of cyclic shifts of {1, . . . , n}, and define an equivalence
relation 	 on S by saying that k 	 k′ when there exists σ ∈ C(n) such that k′ = kσ.
By the cycle lemma, each equivalence class of S/	 has exactly one member such that
the corresponding trajectory of (Sn) satisfies Si > 0 for 1 6 i 6 n − 1 and Sn = −1.
Let that member be the representative of its class, and denote by S? the set of those
representatives. The cycle lemma also implies that each equivalence class of S/	 has
cardinal n: indeed, if there existed k ∈ S? and σ, σ′ ∈ C(n) such that σ 6= σ′ and kσ = kσ′ ,
then by taking ρ = σ−1 ◦ σ′ we would have ρ 6= Id and yet kρ ∈ S?, contradicting the
lemma. As a result,

P(Sn = −1) =
∑

σ∈C(n)

∑
k∈S?

n∏
i=1

P
(
ξi = kσ(i)

)
= nP(Si > 0, 1 6 i 6 n− 1;Sn = −1) .

Finally, applying a local limit theorem – see e.g, [19, Theorem 3.5.2] – to (Sn)n>0 yields
P(Sn = −1) ∼ 1/

√
2πσ2n, thereby concluding the proof.

References

[1] Primitivo B Acosta-Humánez, José A Capitán, and Juan J Morales-Ruiz, Integrability of
stochastic birth-death processes via differential Galois theory, Mathematical Modelling of
Natural Phenomena 15 (2020), 70. MR4183252

EJP 29 (2024), paper 31.
Page 45/48

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=4183252
https://doi.org/10.1214/24-EJP1088
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A branching process with coalescence for phylogenetic networks

[2] Louigi Addario-Berry, Luc Devroye, and Svante Janson, Sub-gaussian tail bounds for the
width and height of conditioned Galton–Watson trees, The Annals of Probability 41 (2013),
no. 2, 1072–1087. MR3077536

[3] David Aldous, Asymptotic fringe distributions for general families of random trees, The
Annals of Applied Probability 1 (1991), no. 2, 228–266. MR1102319

[4] David Aldous, The continuum random tree I, The Annals of Probability 19 (1991), no. 1, 1–28.
MR1085326

[5] Vincent Bansaye, Sylvie Méléard, and Mathieu Richard, Speed of coming down from infinity
for birth-and-death processes, Advances in Applied Probability 48 (2016), no. 4, 1183–1210.
MR3595771

[6] Eric Bapteste, Leo van Iersel, Axel Janke, Scot Kelchner, Steven Kelk, James O. McInerney,
David A. Morrison, Luay Nakhleh, Mike Steel, Leen Stougie, and James Whitfield, Networks:
expanding evolutionary thinking, Trends in Genetics 29 (2013), no. 8, 439–441.

[7] Itai Benjamini and Oded Schramm, Recurrence of distributional limits of finite planar graphs,
Electronic Journal of Probability 6 (2001), 1 – 13. MR1873300

[8] Ulfar Bergthorsson, Keith L Adams, Brendan Thomason, and Jeffrey D Palmer, Widespread
horizontal transfer of mitochondrial genes in flowering plants, Nature 424 (2003), 197–201.

[9] François Bienvenu, Amaury Lambert, and Mike Steel, Combinatorial and stochastic prop-
erties of ranked tree-child networks, Random Structures & Algorithms 60 (2022), 653–689.
MR4429840

[10] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Proba-
bility and Statistics, John Wiley & Sons, Inc., New York, 1999. MR1700749

[11] Denis Bosq and Hung T Nguyen, A course in stochastic processes: Stochastic models and
statistical inference, Springer Science+Business Media, 1996. MR1426825

[12] Alessandra Caraceni, Michael Fuchs, and Guan-Ru Yu, Bijections for ranked tree-child
networks, Discrete Mathematics 345 (2022), no. 9, 112944. MR4418928

[13] Adrián González Casanova, Juan Carlos Pardo, and José Luis Pérez, Branching processes
with interactions: Subcritical cooperative regime, Advances in Applied Probability 53 (2021),
no. 1, 251–278. MR4232756

[14] Kenny S Crump and Charles J Mode, A general age-dependent branching process. I, Journal
of mathematical analysis and applications 24 (1968), no. 3, 494–508. MR0237005

[15] Kenny S Crump and Charles J Mode, A general age-dependent branching process. II, Journal
of mathematical analysis and applications 25 (1969), no. 1, 8–17. MR0237005

[16] Nicolas Curien, Random graphs: the local convergence point of view, Lecture notes (2018),
https://www.imo.universite-paris-saclay.fr/~curien/cours/cours-RG.pdf.

[17] Tal Dagan and William Martin, Getting a better picture of microbial evolution en route to a
network of genomes, Philosophical Transactions of the Royal Society B: Biological Sciences
364 (2009), no. 1527, 2187–2196.

[18] W. Ford Doolittle and Eric Bapteste, Pattern pluralism and the Tree of Life hypothesis,
Proceedings of the National Academy of Sciences 104 (2007), no. 7, 2043–2049.

[19] Rick Durrett, Probability: Theory and examples, Cambridge University Press, Cambridge,
2010. MR2722836

[20] Aryeh Dvoretzky and Theodore Motzkin, A problem of arrangements, Duke Mathematical
Journal 14 (1947), no. 2, 305–313. MR0021531

[21] Meyer Dwass, The total progeny in a branching process and a related random walk, Journal
of Applied Probability 6 (1969), no. 3, 682–686. MR0253433

[22] Steven Neil Evans, Probability and real trees, École d’Été de Probabilités de Saint-Flour
XXXV-2005, Springer Berlin, Heidelberg, 2008. MR2351587

[23] Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press,
2009. MR2876111

[24] Clément Foucart, Pei-Sen Li, and Xiaowen Zhou, On the entrance at infinity of Feller processes
with no negative jumps, Statistics & Probability Letters 165 (2020), 108859. MR4118938

EJP 29 (2024), paper 31.
Page 46/48

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3077536
https://mathscinet.ams.org/mathscinet-getitem?mr=1102319
https://mathscinet.ams.org/mathscinet-getitem?mr=1085326
https://mathscinet.ams.org/mathscinet-getitem?mr=3595771
https://mathscinet.ams.org/mathscinet-getitem?mr=1873300
https://mathscinet.ams.org/mathscinet-getitem?mr=4429840
https://mathscinet.ams.org/mathscinet-getitem?mr=1700749
https://mathscinet.ams.org/mathscinet-getitem?mr=1426825
https://mathscinet.ams.org/mathscinet-getitem?mr=4418928
https://mathscinet.ams.org/mathscinet-getitem?mr=4232756
https://mathscinet.ams.org/mathscinet-getitem?mr=0237005
https://mathscinet.ams.org/mathscinet-getitem?mr=0237005
https://www.imo.universite-paris-saclay.fr/~curien/cours/cours-RG.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=2722836
https://mathscinet.ams.org/mathscinet-getitem?mr=0021531
https://mathscinet.ams.org/mathscinet-getitem?mr=0253433
https://mathscinet.ams.org/mathscinet-getitem?mr=2351587
https://mathscinet.ams.org/mathscinet-getitem?mr=2876111
https://mathscinet.ams.org/mathscinet-getitem?mr=4118938
https://doi.org/10.1214/24-EJP1088
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A branching process with coalescence for phylogenetic networks

[25] Michael Fuchs, Hexuan Liu, and Tsan-Cheng Yu, Limit theorems for patterns in ranked
tree-child networks, arXiv preprint (2022), arXiv:2204.07676. MR4418928

[26] Weilong Hao and GB Golding, Patterns of bacterial gene movement, Molecular biology and
evolution 21 (2004), no. 7, 1294–1307.

[27] Peter Jagers, Branching processes with biological applications, Wiley, 1975, (note: out-of-
print, not available online). MR0488341

[28] Svante Janson, Simply generated trees, conditioned Galton–Watson trees, random allocations
and condensation, Probability Surveys 9 (2012), 103–252. MR2908619

[29] Aleksandr Vyacheslavovich Kalinkin, Markov branching processes with interaction, Russian
Mathematical Surveys 57 (2002), no. 2, 241–304. MR1918194

[30] Samuel Karlin and James McGregor, The classification of birth and death processes, Transac-
tions of the American Mathematical Society 86 (1957), no. 2, 366–400. MR0094854

[31] Samuel Karlin and James L McGregor, The differential equations of birth-and-death processes,
and the Stieltjes moment problem, Transactions of the American Mathematical Society 85
(1957), no. 2, 489–546. MR0091566

[32] Sungsik Kong, Joan Carles Pons, Laura Kubatko, and Kristina Wicke, Classes of explicit phylo-
genetic networks and their biological and mathematical significance, Journal of Mathematical
Biology 84 (2022), no. 47. MR4417412

[33] Igor Kortchemski, Invariance principles for Galton–Watson trees conditioned on the num-
ber of leaves, Stochastic Processes and Their Applications 122 (2012), no. 9, 3126–3172.
MR2946438

[34] Amaury Lambert, The branching process with logistic growth, The Annals of Applied Proba-
bility 15 (2005), no. 2, 1506–1535. MR2134113

[35] Jean-François Le Gall, Random trees and applications, Probability Surveys 2 (2005), 245–311.
MR2203728

[36] C Randal Linder and Loren H Rieseberg, Reconstructing patterns of reticulate evolution in
plants, American journal of botany 91 (2004), no. 10, 1700–1708.

[37] James Mallet, Hybrid speciation, Nature 446 (2007), 279–283.

[38] Jean-François Marckert and Abdelkader Mokkadem, The depth first processes of Galton–
Watson trees converge to the same Brownian excursion, The Annals of Probability 31 (2003),
no. 3, 1655–1678. MR1989446

[39] Grégory Miermont, Tessellations of random maps of arbitrary genus, Annales scientifiques
de l’École normale supérieure 42 (2009), no. 5, 725–781. MR2571957
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