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Abstract

This work studies the averaging principle for a fully coupled two time-scale system,
whose slow process is a diffusion process and fast process is a purely jumping process
on an infinitely countable state space. The ergodicity of the fast process has important
impact on the limit system and the averaging principle. We show that under strongly
ergodic condition, the limit system admits a unique solution, and the slow process con-
verges in the L1-norm to the limit system. However, under certain weaker ergodicity
condition, the limit system admits a solution, but not necessarily unique, and the slow
process can be proved to converge weakly to a solution of the limit system.
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1 Introduction

We study in this work a fully coupled two time-scale stochastic system (Xε,α
t , Y ε,αt ) in

Rd × S, where S = {1, 2, . . . , N} with N ≤ ∞. The slow process (Xε,α
t ) is described as a

solution to the following stochastic differential equation (SDE):

dXε,α
t = b(Xε,α

t , Y ε,αt )dt+
√
εσ(Xε,α

t , Y ε,αt )dWt,

Xε,α
0 = x0 ∈ Rd, Y ε,α0 = i0 ∈ S,

(1.1)

and the fast process (Y ε,αt ) is a jumping-process on S satisfying

P(Y ε,αt+δ = j|Y ε,αt = i,Xε,α
t = x) =

{
1
αqij(x)δ + o(δ), if i 6= j,

1 + 1
αqii(x)δ + o(δ), if i = j

(1.2)
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Averaging principle for regime-switching processes

for δ > 0, i, j ∈ S, x ∈ Rd, and ε, α are small positive parameters. In the existing
literatures, the system (Xε,α

t , Y ε,αt ) is called fully coupled if the diffusion coefficient
σ of slow process (Xε,α

t ) depends on the fast process (Y ε,αt ) and the transition rates
(qij(x))i,j∈S of the fast process (Y ε,αt ) depends on (Xε,α

t ) as well.

Multi-scale systems arise in many research fields such as in biology systems [8, 19,
20, 23, 31], in mathematical finance [9, 10], etc. Correspondingly, there are many works
devoted to the study of averaging principle, central limit theorems, and large deviations
of these stochastic models. For a two time-scale system where both slow and fast
components are continuous processes given as solutions of SDEs, these problems have
been extensively studied, such as, in [1, 22, 23, 24, 26, 27, 32, 37, 38], in [15] for SDEs
driven by fractional Brownian motions. The interaction between the fast component and
the slow one makes a fully coupled two time-scale system much complicated, which has
been revealed in the works [25, 32, 37, 38].

The averaging principle says that the slow process (Xε,α
t ) will converge to some

limit process (X̄t) as ε, α→ 0. When the fast process (Y ε,αt ) does not depend on (Xε,α
t ),

usually called an uncoupled system, the averaging principle often holds in quite general
conditions. However, when (Y ε,αt ) depends on (Xε,α

t ) and particularly (Y ε,αt ) does not
locate in a compact space, it becomes more difficult to establish the averaging principle.
In this work we focus on addressing the impact on the limit behavior of (Xε,α

t , Y ε,αt )

caused by: 1) various ergodicities of the fast process on the wellposedness of the limit
process (X̄t); 2) when the state space S is infinitely countable, the dependence on the
fixed state of the slow process (Xε,α

t ) of the invariant measure of (Y ε,αt ).

Let us review some known works in the setting similar to ours. In the situation
that (Y ε,αt ) is a continuous time Markov chain independent of the slow process (Xε,α

t ),
Eizenberg and Freidlin [7], Freidlin and Lee [12] investigated separately the limit behav-
ior of solutions of PDE systems with Dirichlet boundary associated with (Xε,α

t , Y ε,αt )t≥0

when the diffusion coefficient of Xε,α
t does not depend or depends on Y ε,αt . These two

works reveal that whether the diffusion coefficient of Xε,α
t depends on Y ε,αt or not has

important impact on the method to study the limit behavior of (Xε,α
t , Y ε,αt ). To provide a

decisive estimate on the difference between (Xε,α
t ) and its limit process, a large deviation

principle (LDP) was established in [16, 17].

For a setting where the fast process (Y ε,αt ) is a jumping process depending on the
slow process (Xε,α

t ) as well, the averaging principle and LDP have been studied by
Faggionato, Gabrielli, and Crivellari [8] and Budhiraja, Dupuis and Ganguly [3]. [8]
considered a simple case without diffusion term for the slow component by the nonlinear
semigroup method developed by Feng and Kurtz [11]. Whereas, [3] considered a fully
coupled case by using the weak convergence method, and established a process level
large deviation principle.

All the aforementioned works, no matter whether the fast jumping process (Y ε,αt )

depends on (Xε,α
t ) or not, considered only the situation that the state space S of (Y ε,αt )

is a finite state space, which is hence compact. However, the infinite countability of
the state space S of (Y ε,αt ) has important impact on the averaging principle and LDP of
(Xε,α

t , Y ε,αt ). Meanwhile, as our studied system (Xε,α
t , Y ε,αt ) is fully coupled, the invariant

probability measure πx = (πxi )i∈S of (Y ε,αt ) will depend on the position x of the slow
process (Xε,α

t ). The infinite countability of S makes the regularity of x 7→ πx become
much more complicated than the case that S is finite. The regularity of x 7→ πx has
important impact on the characterization of the limit system.

Precisely, suppose (qij(x))i,j∈S is a conservative, irreducible transition rate matrix
for every x ∈ Rd, which is Lipschitz continuous in x in certain matrix norm. Let P(S) be
the space of all probability measures over S endowed with the total variation norm. Let
πx ∈P(S) be the invariant probability measure associated with (qij(x))i,j∈S provided
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it exists. Then, when S is a finite state space, x 7→ πx as a function from Rd to P(S)

is Lipschitz continuous. This result has been proved in [8] and [3] in different ways.
[8] proved it by the Perron-Frobenius theorem to express πx in terms of a nonzero
right eigenvector of (qij(x))i,j∈S corresponding to the eigenvalue 0. In [3], it is proved
through expressing πx as a polynomial of transition probabilities according to Freidlin
and Wentzell [13]. Nevertheless, these two methods are infeasible when S is infinite.
Moreover, when S is infinitely countable, x 7→ πx could be not Lipschitz continuous and
even not Hölder continuous of any exponent in (0, 1); see our Example 2.1 below.

To establish the averaging principle when S is infinitely countable, our main challenge
is to study the regularity of x 7→ πx from Rd to P(S). To overcome this difficulty, the
ergodic property of P xt plays a crucial role, where P xt denotes the semigroup associated
with the Markov chain with transition rate matrix (qij(x))i,j∈S . We shall show that
x 7→ πx is Lipschitz continuous if P xt is strongly ergodic uniformly w.r.t. x based on
an integration by parts formula for continuous time Markov chains. If supposing only
that P xt is ergodic and ‖P xt (i, ·) − πx‖var ≤ Ciηt for i ∈ S with Ci > 0, ηt ∈ [0, 2]

satisfying
∫∞

0
ηsds < ∞, x 7→ πx is shown to be 1/2-Hölder continuous. To prove this

assertion, we develop a coupling method for parameter-dependent Markov chains based
on Skorokhod’s representation theorem for jumping processes. Consequently, under the
strongly ergodic condition, the equation to characterize the limit process (X̄t) admits a
unique solution, and we can show that (Xε,α

t ) converges in L1-norm to (X̄t) as ε, α→ 0.
However, under ergodic condition, (Xε,α

t ) converges weakly to its limit process provided
that the limit system is unique. The ratio ε/α as ε, α→ 0 has no impact on the averaging
principle. Nevertheless, the large deviation principle of (Xε,α

t , Y ε,αt ) will be shown to
depend heavily on the ratio ε/α in our another work.

The remainder of this work is organized as follows. In Section 2, we state the main
results of this work including: the regularity of x 7→ πx under two different ergodicity
conditions, and the averaging principle for (Xε,α

t , Y ε,αt )t≥0 in respectively strong and
weak convergence sense. Section 3 is devoted to developing the coupling method for
parameter-dependent Markov chains, which is not only the basis to study the regularity
of x 7→ πx under the weak ergodicity condition of (Y ε,αt ), but also plays an important role
to decouple the close interaction between (Xε,α

t ) and (Y ε,αt ) to establish the averaging
principle. The arguments of main results are all presented in Section 4.

2 Statement of main results

This section is devoted to establishing the averaging principle for (Xε,α
t , Y ε,αt )t≥0

as ε, α go to zero. Let us begin with introducing three fundamental conditions on the
stochastic system (Xε,α

t , Y ε,αt ), which will be used throughout this work.

(A1) There exist constants K1, K2 > 0 such that

|b(x, i)− b(y, i)|+ ‖σ(x, i)− σ(y, i)‖ ≤ K1|x− y|,
|b(x, i)|+ ‖σ(x, i)‖ ≤ K2, x, y ∈ Rd, i ∈ S.

(A2) For each x ∈ Rd, (qij(x))i,j∈S is a conservative, irreducible transition rate matrix.
Assume κ := supi∈S

∑
j∈S,j 6=i supx∈Rd qij(x) <∞.

(A3) There exists a constant K3 > 0 such that

‖Q(x)−Q(y)‖`1 := sup
i∈S

∑
j 6=i

|qij(x)− qij(y)| ≤ K3|x− y|, x, y ∈ Rd.

Under these conditions (A1)-(A3), the two time-scale system (1.1), (1.2) admit a unique
strong solution to any initial value Xε,α

0 = x0 ∈ Rd and Y ε,α0 = i0 ∈ S; see, e.g. [40]
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or [33] under certain more general non-Lipschitz conditions. To focus our idea on
the impact of the ergodicity of (Y ε,αt ) on the averaging principle, we impose a simple
condition (A1) on the slow process (Xε,α

t ). We refer the readers to [27] for the technique
to generalize (A1) to the local Lipschitz condition.

For the fully coupled two time-scale system (Xε,α
t , Y ε,αt ), in contrast to uncoupled two

time-scale systems, the regularity of invariant probability measure πx associated with
the Q-matrix (qij(x))i,j∈S increases the complexity and difficulty of characterizing the
limit system (X̄t) of (Xε,α

t , Y ε,αt ) as ε, α→ 0. As mentioned in the introduction, when S
is a finite state space, and (qij(x))i,j∈S is Lipschitz continuous in x, then its associated
invariant probability measure πx = (πxi )i∈S is also Lipschitz continuous in x, which has
been proved in [3, 8]. However, when S is infinitely countable, this becomes uncertain.
Note that the invariant probability measure is also a left eigenvector to the Q-matrix.
The perturbation on linear generators can cause significant changes on its corresponding
eigenvalues and eigenvectors. To see the complexity of this problem, one can refer to
the fruitful researches on the perturbation theory of linear operators; see, for instance,
the monograph [21] and references therein.

Let us recall some notations on the ergodicity of Markov chains (cf. [6, 29]). Let Pt
denote a semigroup associated with a continuous time Markov chain on the state space
S. Suppose that there exists an invariant probability measure π = (πi)i∈S . The total
variation distance between Pt(i, ·) and π is defined by

‖Pt(i, ·)−π‖var = 2 sup
{
Pt(i, A)−π(A); A∈B(S)

}
= sup

{
|Pt(i, f)−π(f)|; |f | ≤ 1

}
,

where µ(f) :=
∑
i∈S µif(i) for any probability measure µ on S. The Markov chain is

called ergodic if
lim
t→∞

‖Pt(i, ·)− π‖var = 0, i ∈ S;

the process is called exponentially ergodic, if

‖Pt(i, ·)− π‖var ≤ Cie−εt, t > 0, for some ε > 0, constants Ci > 0, i ∈ S;

the process is called strongly ergodic or uniformly ergodic, if

lim
t→∞

sup
i∈S
‖Pt(i, ·)− π‖var = 0.

It is known that if the chain is strongly ergodic, its convergence rate must be of expo-
nential type, i.e.

sup
i∈S
‖Pt(i, ·)− π‖var ≤ Ce−λt, t > 0,

for some constants C, λ > 0; see, for example, [28, Lemma 4.1]. Consequently, it is
easy to see that ergodic Markov chain on a finite state space must be strongly ergodic.
Accordingly, we first generalize the results in [3, 8] for Markov chains on a finite state
space to the setting on an infinite state space under the strongly ergodic condition.

Let P xt be the semigroup associated with the Q-matrix (qij(x))i,j∈S , and πx its associ-
ated invariant probability measure provided it exists throughout this work.

(A4) Suppose that P xt is strongly ergodic uniformly in x, that is, there exist constants
c1, λ1 > 0 such that

sup
i∈S
‖P xt (i, ·)− πx‖var ≤ c1e−λ1t, ∀ t > 0, x ∈ Rd.

Proposition 2.1 (Strongly ergodic case). Assume (A2), (A3) and (A4) hold. Then, the
functional Rd 3 x 7→ πx ∈P(S) is Lipschitz continuous, i.e.

‖πx − πy‖var ≤ Cπ|x− y|, x, y ∈ Rd,

where Cπ = 4c1K3

λ1
and constants c1, λ1 given in (A4), K3 given in (A3).
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To make the presentation transparent, we defer the argument to Section 4. It
is useful to mention the works [6, 28] and references therein, which provide various
sufficient conditions for strong ergodicity of continuous-time Markov chains and diffusion
processes.

We proceed to investigate the regularity of x 7→ πx under certain ergodic condition
weaker than strong ergodicity. Unfortunately, under weaker ergodic condition and
without the uniformity w.r.t. x, the Lipschitz continuity of x 7→ πx in the total variation
norm may fail. To illustrate it, we construct an example as follows.

Example 2.1. For each x ∈ (0, 1), let (Y xt )t≥0 be a birth-death process on S = {1, 2, . . .}
with birth rate qii+1(x) = bi(x) = x for i ≥ 1 and death rate qii−1(x) = ai(x) = 1 for i ≥ 2.
It is clear that qij(x) is Lipschitz continuous in x for all i, j ∈ S. Then,

(i) for each x ∈ (0, 1), the birth-death Markov chain (Y xt )t≥0 is exponentially ergodic,
but not strongly ergodic, satisfying

‖P xt (i, ·)− πx‖var ≤ Ci(x)e−(1−
√
x)2t, t > 0, i ∈ S, (2.1)

for some positive constants Ci(x) depending on i ∈ S and x ∈ (0, 1).

(ii) Its invariant probability measure πx = (πxi )i≥1 is given by

πxi = (1− x)xi−1, i ≥ 1, (2.2)

and for any β ∈ (0, 1]

sup
x 6=y

‖πx − πy‖var

|x− y|β
=∞. (2.3)

This means that x 7→ πx is not Hölder continuous of any exponent β ∈ (0, 1].

The argument of assertions stated in Example 2.1 is also deferred to Section 4.

Example 2.2. For each x ∈ (0, 1), let (Y xt ) be a birth-death process on S = {1, 2, . . .} with
birth rates q12(x) = (sinx)

5
2 , qii+1(x) = sinx for i ≥ 2, and death rates q21(x) = (sinx)2,

qii−1(x) = 1 for i ≥ 3. It is clear that x 7→ qij(x) is Lipschitz continuous for all i, j ∈ S.
The invariant probability measure for this birth-death process is given by

πx1 =
1− sinx

1− sinx+
√

sinx
, πx2 =

√
sinx(1− sinx)

1− sinx+
√

sinx
,

πxi =
(sinx)i−2

√
sinx(1− sinx)

1− sinx+
√

sinx
, i ≥ 2.

Then, it is easy to see that x 7→ πx is not Lipschitz continuous in the total variation norm.

Now, let us consider the following ergodic condition weaker than strong ergodicity
condition (A4).

(A5) Assume that there exist a positive function θ : S → (0,∞), a decreasing function
η : [0,∞)→ [0, 2] satisfying

∫∞
0
ηsds <∞ such that

‖P xt (i, ·)− πx‖var ≤ θ(i)ηt, t ≥ 0, x ∈ Rd, i ∈ S.

Proposition 2.2. Assume the conditions (A2), (A3) and (A5) hold, then x 7→ πx is 1/2-
Hölder continuous, i.e.

‖πx − πy‖var ≤ K4

√
|x− y|, x, y ∈ Rd, (2.4)

where K4 = 2
√
K3(infi∈S θ(i))

∫∞
0
ηsds.
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This proposition is proved based on an intricate construction of coupling process
of (Ỹ xt ) and (Ỹ yt ) with Q-matrix (qij(x))i,j∈S and (qij(y))i,j∈S respectively in terms of
Skorokhod’s representation for jumping processes, which is presented in Section 3.
Our construction method in current work improves the one used in [35] to study the
stability of regime-switching processes under the perturbation of Q-matrix and in [36] to
study the continuous dependence of intial values for stochastic functional differential
equations with state-dependent regime-swtiching. The key point is the estimate of
1
t

∫ t
0
P(Ỹ xs 6= Ỹ ys )ds in terms of the difference between (qij(x))i,j∈S and (qij(y))i,j∈S .

Next, we go to establish the averaging principle for (Xε,α
t , Y ε,αt ) as ε, α→ 0. Let

b̄(x) =
∑

i∈S
b(x, i)πxi , (2.5)

and the limit system of (Xε,α
t , Y ε,αt ) will be given as the solution to the ordinary differen-

tial equation (ODE)
dX̄t = b̄(X̄t)dt, X̄0 = x0. (2.6)

Under conditions (A1) and (A4), by Proposition 2.1, it is easy to see b̄ is Lipschitz
continuous, and hence ODE (2.6) admits a unique solution. Under the strongly ergodic
condition (A4), we can get L1-convergence of Xε,α

t to X̄t as ε, α→ 0.

Theorem 2.3. Assume (A1)-(A4) hold. Let (Xε,α
t , Y ε,αt ) be the solution to (1.1), (1.2),

and (X̄t) the solution to (2.6). Then

lim
ε,α→0

E
[

sup
t∈[0,T ]

|Xε,α
t − X̄t|2

]
= 0, T > 0.

However, under (A1) and (A5), by Proposition 2.2, b̄ can be shown only to be Hölder
continuous just as πx. In this situation, thanks to Peano’s theorem, ODE (2.6) admits a
solution, but may loss the uniqueness. Consequently, under the weaker ergodic condition
(A5) the limit system (X̄t) becomes more complicated, and (Xε,α

t ) can be shown to
converge weakly to its limit whenever ODE admits a unique solution. The precise result
is given in the following theorem.

Theorem 2.4. Assume that (A1)-(A3) and (A5) hold. In addition, when S is infinitely
countable, suppose that there exist constants c2 > 0, c3 <∞ such that the function θ(·)
given in (A5) also satisfies

Q(x)θ(i) =
∑
j∈S

qij(x)θ(j) ≤ −c2θ(i) + c3, x ∈ Rd, i ∈ S. (2.7)

Let (Xε,α
t , Y ε,αt ) be the solution to (1.1), (1.2). Then, for each T > 0, the set of dis-

tributions of {(Xε,α
t )t∈[0,T ]; ε, α ∈ (0, 1)} in C([0, T ];Rd) is tight, and any convergent

subsequence of {(Xε,α
t )t∈[0,T ]; ε, α > 0} shall converge weakly to a solution (X̄t)t∈[0,T ] of

ODE (2.6). Moreover, if ODE (2.6) admits a unique solution, then (Xε,α
t )t∈[0,T ] converges

weakly to the unique solution (X̄t)t∈[0,T ] of ODE (2.6) as ε, α→ 0.

Remark 2.5. Theorems 2.3 and 2.4 tell us a fundamental fact: the limit system (X̄t) and
the convergence of (Xε,α

t ) to this limit system do not depend on the ratio ε/α as ε, α→ 0.

Example 2.3. 1. Let (Y xt ) be a continuous-time Markov chain on S = {1, 2, . . .} with
the transition rate matrix

qij(x) =
(
1− e−|x|−α

)
e−(j−1)(|x|+α), j 6= i,

qii(x) = −
(
1−

(
1− e−|x|−α

)
e−(i−1)(|x|+α)

)
,

where α > 0 for x ∈ R. Then, according to [5, Theorem 4.45], the process (Y xt )

satisfies the condition (A4). Moreover,

‖Q(x)−Q(y)‖`1 := sup
i≥1

∑
j 6=i

|qij(x)−qij(y)| ≤ 2
(∑
j≥1

je−jα
)
|x− y|, x, y ∈ R,
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which means that (A3) holds as well.

2. Let (Y xt ) be associated with the transition rate matrix (qij(x)) given by

qi(i+1)(x) = 2 + sinx, qi1(x) = 2− sinx, qii(x) = −4; qij(x) = 0, otherwise

for i ≥ 1, x ∈ R. Again, by [5, Theorem 4.45], (Y xt ) satisfies (A4).

3. Let (Y xt ) be a birth-death process on S = {1, 2, . . .} with bi(x) = qii+1(x) = 1 for
i ≥ 1, ai(x) = qii−1(x) = 2 − 1

2 sinx for i ≥ 2, x ∈ R. Then (Y xt ) is exponentially
ergodic and satisfies (A5).

3 Construction of the coupling processes

In this part we introduce the coupling processes used in the study of regularity of
x 7→ πx and in decoupling the interaction between the slow process (Xε,α

t ) and the fast
process (Y ε,αt ) in order to establish the averaging principle. This part deals with the
technical difficulties caused by the full dependence between (Xε,α

t ) and (Y ε,αt ). In the
spirit of Skorokhod, we express a state-dependent jumping process over S in terms of
an integral w.r.t. a Poisson random measure. In order to deal with the case S being
infinitely countable, we modify the construction method of intervals used in Skorokhod’s
representation theorem, which is quite different to the extensively used one (cf. e.g.
[14, 33, 40]).

Consider the solutions (Xx
t , Y

x
t ) and (X̃y

t , Ỹ
y
t ) respectively to the following SDEs:

dXx
t = b(Xx

t , Y
x
t )dt+ σ(Xx

t , Y
x
t )dWt, Xx

0 = x ∈ Rd, Y x0 = i0 ∈ S,

P(Y xt+δ = j|Y xt = i,Xx
t = z) =

{
qij(z)δ + o(δ), i 6= j,

1 + qii(z)δ + o(δ), i = j,

(3.1)

and
dX̃y

t = f(X̃y
t , Ỹ

y
t )dt+ g(X̃y

t , Ỹ
y
t )dWt, X̃y

0 = y ∈ Rd, Ỹ y0 = i0 ∈ S,

P(Ỹ yt+δ = j|Ỹ yt = i, X̃y
t = z) =

{
qij(z)δ + o(δ), i 6= j,

1 + qii(z)δ + o(δ), i = j,

(3.2)

for δ > 0.

Lemma 3.1 (Key lemma). Suppose that (A1), (A2) hold and f, g satisfy (A1) replacing
b and σ respectively. For every x, y ∈ Rd, x 6= y and every i0 ∈ S, there is a coupling
process (Xx

t , Y
x
t )t≥0 and (X̃y

t , Ỹ
y
t )t≥0 satisfying SDEs (3.1) and (3.2) respectively such

that
1

t

∫ t

0

P(Y xs 6= Ỹ ys )ds ≤
∫ t

0

E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds, t > 0, (3.3)

where ‖Q(x)−Q(y)‖`1 =supi∈S
∑
j∈S,j 6=i |qij(x)−qij(y)|.

As an application of Lemma 3.1, consider a special case: b = f = 0, σ = g = 0, then
Xx
t ≡ x, X̃y

t ≡ y, and we obtain that:

Corollary 3.2. Under (A2), for every x, y ∈ Rd, there is a coupling process (Y xt , Ỹ
y
t )

associated respectively with the Q-matrix (qij(x))i,j∈S and (qij(y))i,j∈S such that

1

t

∫ t

0

P(Y xs 6= Ỹ ys )ds ≤ t‖Q(x)−Q(y)‖`1 , t > 0. (3.4)

Corollary 3.2 tells us that when |x−y| tends to 0, we can construct a coupling process
(Y xt , Ỹ

y
t ) such that 1

t

∫ t
0
P(Y xs 6= Ỹ ys )ds goes to 0 when x 7→ Q(x) is continuous in the norm

‖ · ‖`1 .
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Argument of Lemma 3.1. We need first construct suitable intervals related to the
transition rate matrix (qij(x))i,j∈S so as to express the jumping processes (Y xt ) and (Ỹ yt )

in terms of a common Poisson random measure. The proof is divided into two steps.

Step 1. The first step is to construct a sequence of intervals associated with the
transition rate matrix (qij(z)), z ∈ Rd. Our construction method is applicable when S
is finite or infinite, and is more suitable to cope with the case S is infinite than the
construction method used in [14, 33, 40].

Precisely, let γn = supk 6=n supz∈Rd qnk(z) for n ∈ S, and by (A2) we get γn ≤ κ < ∞
for all n ∈ S. Let Γ1k(z)=[(k − 2)γ1, (k − 2)γ1 + q1k(z)) for k ≥ 2, and for n ≥ 2,

Γnk(z)=[(k − n− 1)γn, (k − n− 1)γn + qnk(z)), if k > n,

Γnk(z)=[(k + 1− n)γn − qnk(z), (k + 1− n)γn), if 1 ≤ k < n,

and
Un =

⋃
z∈Rd

⋃
k≥1,k 6=n

Γnk(z), n ≥ 1, (3.5)

where κ is given in (A2). For notation convenience, we put Γii(z) = ∅ and Γij(z) = ∅ if
qij(z) = 0, i, j ∈ S, z ∈ Rd. Due to (A2),

m(Un) ≤
∑

k≥1,k 6=n

sup
z∈Rd

qnk(z) ≤ κ, (3.6)

where m(dx) denotes the Lebesgue measure over R.
Secondly, we provide an explicit construction of the Poisson random measure as

in [18], which helps us to illustrate the calculation below. Let ξ(k)
i , k, i = 1, 2, . . ., be

Uk-valued random variables with

P(ξ
(k)
i ∈ dx) =

m(dx)

m(Uk)
,

and τ (k)
i , k, i ≥ 1, be non-negative random variables satisfying P(τ

(k)
i >t) = exp[−tm(Uk)],

t ≥ 0. Suppose that {ξ(k)
i , τ

(k)
i }i,k≥1 are all mutually independent. Put

ζ(k)
n = τ

(k)
1 + · · ·+ τ (k)

n for n, k ≥ 1, and ζ(k)
0 = 0, k ≥ 1.

Let
Dp =

⋃
k≥1

⋃
n≥0

{
ζ(k)
n

}
,

and
p(t) =

∑
0≤s<t

∆p(s), ∆p(s) = 0 for s 6∈ Dp, ∆p(ζ(k)
n ) = ξ(k)

n , k, n ≥ 1,

where ∆p(s) = p(s)− p(s−). Correspondingly, put

Np([0, t]×A) = #{s ∈ Dp; 0 < s ≤ t,∆p(s) ∈ A}, t > 0, A ∈ B([0,∞)).

As a consequence, we get a Poisson point process (p(t)) and a Poisson random measure
Np(dt,dx) with intensity dtm(dx).

Thirdly, let
ϑ(x, i, z) =

∑
j∈S

(j − i)1Γij(x)(z).

The desired coupling process is defined as the solutions to the following SDEs.{
dXx

t = b(Xx
t , Y

x
t )dt+ σ(Xx

t , Y
x
t )dWt,

dY xt =
∫

[0,∞)
ϑ(Xx

t , Y
x
t−, z)Np(dt,dz), Xx

0 = x, Y x0 = i0.
(3.7)
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{
dX̃y

t = f(X̃y
t , Ỹ

y
t )dt+ g(X̃y

t , Ỹ
y
t )dWt,

dỸ yt =
∫

[0,∞)
ϑ(X̃y

t , Ỹ
y
t−, z)Np(dt,dz), X̃y

0 = y, Ỹ y0 = i0.
(3.8)

Note that under conditions (A1), (A2), SDEs (3.7) and (3.8) both admit unique strong
solution, which can be proved in the same way as in [33, Theorem 2.3]. Then, accord-
ing to Skorokhod’s representation theorem (cf. [40] or [34, Theorem 2.2]), (Xx

t , Y
x
t )

satisfies (3.1) and (X̃y
t , Ỹ

y
t ) satisfies (3.2).

Step 2. Based on the coupling process constructed above, we proceed to estimate the
quantity

∫ t
0
P(Y xs 6= Ỹ ys )ds by induction. It follows from the definition of Np(dt,dz), the

estimate (3.6) that there exists a c̃1 > 0 such that for δ > 0

P
(
Np([0, δ]×Un) ≥ 2

)
= 1− e−m(Un)δ −m(Un)δe−m(Un)δ≤ c̃1δ2, n ≥ 1.

Then,

P(Y xδ 6= Ỹ yδ |Y
x
0 = Ỹ y0 = i0)

= P
(
Y xδ 6= Ỹ yδ ,Np([0, δ]×Ui0) = 1|Y x0 = Ỹ y0 = i0

)
+ P

(
Y xδ 6= Ỹ yδ ,Np([0, δ]×Ui0)≥ 2|Y x0 = Ỹ y0 = i0

)
≤ P

(
Y xδ 6= Ỹ yδ ,Np([0, δ]×Ui0) = 1|Y x0 = Ỹ y0 = i0

)
+ c̃1δ

2

=

∫ δ

0

P
(
ξ

(i0)
1 ∈

⋃
j∈S

(
Γi0j(X

x
s )∆Γi0j(X̃

y
s )
)
, τ

(i0)
1 ∈ds, τ (i0)

2 ≥ δ−s
)

+c̃1δ
2,

where A∆B := (A\B)∪(B\A) for Borel sets A, B inR. Note that for s ≤ τ (i0)
1 , Xx

s = X
(i0)
s

and X̃y
s = X̃

(i0)
s , where

X(i0)
s = x+

∫ s

0

b(X(i0)
r , i0)dr +

∫ s

0

σ(X(i0)
r , i0)dWr,

X̃(i0)
s = y +

∫ s

0

f(X̃(i0)
r , i0)dr +

∫ s

0

g(X̃(i0)
r , i0)dWr.

Therefore, due to the mutual independence ofNp(dt,dz) and (W (t)), and the construction
of Γij(z), we have

P(Y xδ 6= Ỹ yδ |Y
x
0 = Ỹ y0 = i0)

≤ c̃21δ2+

∫ δ

0

E
[∑
j 6=i0

|qi0j(Xx
s )− qi0j(X̃y

s )|
]
e−m(Ui0 )δds

≤ c̃1δ2+

∫ δ

0

E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds.

(3.9)

Now, let us consider P(Y x2δ 6= Ỹ y2δ). It is clear that

P(Y x2δ 6= Ỹ y2δ)

= P(Y x2δ 6= Ỹ y2δ|Y
x
δ = Ỹ yδ )P(Y xδ = Ỹ yδ ) + P(Y x2δ 6= Ỹ y2δ, Y

x
δ 6= Ỹ yδ )

≤ P(Y x2δ 6= Ỹ y2δ|Y
x
δ = Ỹ yδ ) + P(Y xδ 6= Ỹ yδ ).

(3.10)

Due to (3.7) and (3.8),

P(Y x2δ 6= Ỹ y2δ|Y
x
δ = Ỹ yδ )

≤ P(Y x2δ 6= Ỹ y2δ,Np((δ, 2δ]) = 1|Y xδ = Ỹ yδ ) + P(Np((δ, 2δ]) ≥ 2|Y xδ = Ỹ yδ )

=

∫ 2δ

δ

P
(
∆p(s)∈∪j∈S

{
ΓY xδ j(X

x
s )∆ΓỸ yδ j

(X̃y
s )
}
, τ δ1 ∈ds, τ δ2 > 2δ − s

)
+ c̃1δ

2,

(3.11)
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where τ δ1 , τ
δ
2 denote the first and second jump of (p(t)) after time δ. Note also that

given Fδ, for s ∈ [δ, τ δ1 ], Xx
s and X̃y

s depend only on (Wr)r∈[δ,s). Based on the mutual
independence of (Wt) and (p(t)), and their independent increment property, we get
from (3.11) that

P(Y x2δ 6= Ỹ y2δ|Y
x
δ = Ỹ yδ ) ≤

∫ 2δ

δ

E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds+ c̃1δ

2. (3.12)

Inserting the estimates (3.9) and (3.12) into (3.10), we obtain that

P(Y x2δ 6= Ỹ y2δ) ≤
∫ 2δ

0

E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds+ 2c̃1δ

2. (3.13)

Deducing inductively, we get

P(Y xkδ 6= Ỹ ykδ) ≤
∫ kδ

0

E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds+ kc̃1δ

2, k ≥ 3. (3.14)

Denote N(t) =
[
t
δ

]
, the integer part of t/δ, tk = kδ for k ≤ N(t) and tN(t)+1 = t for

t > 0. It follows from (3.14) that∫ t

0

P(Y xs 6= Ỹ ys )ds

=

N(t)∑
k=0

∫ tk+1

tk

{
P(Y xs 6= Ỹ ys , Y

x
kδ = Ỹ ykδ)+P(Y xs 6= Ỹ ys , Y

x
kδ 6= Ỹ ykδ)

}
ds

≤
N(t)∑
k=0

∫ tk+1

tk

P(Y xs 6= Ỹ ys |Y xkδ = Ỹ ykδ)ds+

N(t)∑
k=0

P(Y xkδ 6= Ỹ ykδ)(tk+1 − tk)

≤
N(t)∑
k=0

∫ tk+1

tk

P
(
Np

(
(tk, tk+1]

)
≥1
)
ds+δ

N(t)∑
k=0

∫ kδ

0

(
E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds+kc̃1δ

2
)

≤
(
1−e−κδ

)
t+

(1 +N(t))N(t)

2
c̃1δ

3+δ(N(t)+1)

∫ t

0

E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds.

Letting δ ↓ 0, as δ(N(t) + 1)→ t, this yields that

1

t

∫ t

0

P(Y xs 6= Ỹ ys )ds ≤
∫ t

0

E
[
‖Q(Xx

s )−Q(X̃y
s )‖`1

]
ds.

The proof of Lemma 3.1 is complete.

4 Arguments of the main results

This section is devoted to the arguments of the results presented in Section 2.
We begin with proving the regularity of x 7→ πx under strongly ergodic condition,

which is based on the integration by parts formula for continuous-time Markov chains.
The application of total variation norm and taking supremum in the initial value i over S
play an important role in the argument.

Argument of Proposition 2.1. Using the integration by parts formula for continuous
Markov chains (cf. [30, Theorem 3.5] or [6, Theorem 13.40]),

P yt h(i)− P xt h(i) =

∫ t

0

P yt−s
(
Q(y)−Q(x)

)
P xs h(i)ds, t > 0, h ∈ Bb(S). (4.1)
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For any h : S → R with |h| ≤ 1 and any 0 ≤ s ≤ t,

sup
i∈S

∣∣P yt−s(Q(y)−Q(x)
)
P xs h(i)

∣∣ ≤ sup
i∈S

∣∣(Q(y)−Q(x))P xs h(i)
∣∣

= sup
i∈S

∣∣(Q(y)−Q(x))P xs (h− πx(h))(i)
∣∣

≤ ‖Q(y)−Q(x)‖ sup
i∈S
|P xs h(i)− πx(h)|

≤ ‖Q(y)−Q(x)‖ sup
i∈S
‖P xs (i, ·)− πx‖var,

where, due to the conditions (A2) and (A3), the operator norm

‖Q(y)−Q(x)‖ := sup
{
|(Q(y)−Q(x))h(i)|; i ∈ S, |h| ≤ 1

}
≤ 2 sup

i∈S

∑
j∈S,j 6=i

|qij(y)− qij(x)| = 2‖Q(y)−Q(x)‖`1

≤ 2K3|x− y|.

Combining this estimate with (A4), we get from (4.1) that

|P yt h(i)− P xt h(i)| ≤ 4c1K3|x− y|
∫ t

0

e−λ1sds =
4K3c1
λ1
|x− y|

(
1− e−λ1t

)
, (4.2)

and further

‖P yt (i, ·)− P xt (i, ·)‖var ≤
4K3c1
λ1
|x− y|

(
1− e−λ1t

)
(4.3)

by the arbitrariness of h in (4.2).
For any h : S → R with |h| ≤ 1, it holds∣∣πy(h)−πx(h)

∣∣ =
∣∣∣∑
i∈S

πyi P
y
t h(i)−

∑
i∈S

πxi P
x
t h(i)

∣∣∣
≤
∑
i,j∈S

πyj π
x
i

∣∣P yt h(j)− P xt h(i)
∣∣

≤
∑
j∈S

πyj
∣∣P yt h(j)− P xt h(j)

∣∣+ ∑
i,j∈S

πyj π
x
i

∣∣P xt h(j)− P xt h(i)
∣∣.

(4.4)

By (A4), it holds

|P xt h(i)− P xt h(j)| ≤ |P xt h(j)− πx(h)|+ |P xt h(i)− πx(h)| ≤ 2c1e−λ1t. (4.5)

Inserting (4.3), (4.5) into (4.4), we get

|πy(h)− πx(h)| ≤ 4K3c1
λ1
|x− y|

(
1− e−λ1t

)
+ 2c1e−λ1t.

Letting t→∞ and taking supremum over h with |h| ≤ 1, we obtain that

‖πy − πx‖var ≤
4K3c1
λ1
|x− y|,

which is the desired conclusion, and the proof of Proposition 2.1 is completed.

As a direct application of Proposition 2.1, it follows from (A1) that b̄ is also Lipschitz
continuous. In fact,

|b̄(x)− b̄(y)| =
∣∣∑
i∈S

b(x, i)πxi −
∑
i∈S

b(y, i)πyi
∣∣

≤ sup
i∈S
|b(x, i)|‖πx − πy‖var +

∣∣∑
i∈S

(b(x, i)− b(y, i))πyi
∣∣

≤
(
K1 +

2K3K2c1
λ1

)
|x− y|, x, y ∈ Rd.

(4.6)
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Argument of Example 2.1. Let µx1 = 1,

µxn+1 =
b1b2 . . . bn

a2a3 . . . an+1
= xn, n ≥ 1.

Then,
∞∑
n=1

µxn =
1

1− x
<∞, due to x ∈ (0, 1),

and
∞∑
n=1

1

µxnbn

n∑
k=1

µxk =

∞∑
n=1

1− xn

(1− x)xn
=∞.

According to the ergodic criterion for birth-death processes (cf. [6, Chapter 1]), the birth-
death process (Y xt )t≥0 is ergodic for every x ∈ (0, 1). Its invariant probability measure

πx is given by πxi =
µxi∑∞
n=1 µ

x
n

= (1− x)xi−1 for i ≥ 1, which gives us (2.2). Moreover, one
can check

sup
n≥2

∞∑
k=n

µxk
∑

j≤n−1

1

µxj bj
= sup
n≥2

1− xn−1

(1− x)2
<∞,

and hence (Y xt )t≥0 is exponentially ergodic. However, by virtue of [28, Theorem 3.1], the
birth-death process (Y xt )t≥0 is not strongly ergodic since

∞∑
i=1

1

µxi bi

∞∑
j=i+1

µxj =

∞∑
i=1

1

1− x
=∞.

For the birth-death process (Y xt )t≥0, its rate of exponential ergodicity is equivalent to the
exponential L2-convergence rate; see, [4, Theorem 5.3]. Exponential L2-convergence
of Markov processes are closely related to the extensively studied Poincaré inequality
and spectral gap of infinitesimal generators. There are many works devoted to the
estimates of exponential L2-convergence rate. Applying [4, Example 5.7], the exponential
convergence rate of (Y xt )t≥0 is given by

λ(x) =
(
1−
√
x
)2
, x ∈ (0, 1). (4.7)

At last, we shall show that

sup
x 6=y

‖πx − πy‖var

|x− y|β
=∞, ∀β ∈ (0, 1], (4.8)

which yields (2.3) and x 7→ πx is not Hölder continuous with any exponent β ∈ (0, 1).

Indeed, we only need to consider the case x > y in (4.8). Due to the expression of πx

in (2.2), consider the function f(z) = (1− z)zn on (0,∞). It holds

f ′(z) =
( n

n+ 1
− z
)

(n+ 1)zn−1.

Therefore, when n > 1−x
x > 1−y

y , f ′(z) > 0 for all z ∈ [y, x]. This implies that πxn+1 =

(1− x)xn > (1− y)yn = πyn+1. Let nx = inf{m ∈ N;m ≥ (1− x)/x}. Therefore,

‖πx − πy‖var =

∞∑
n=1

|πxn − πyn| ≥
∞∑

n=nx+1

(
πxn − πyn

)
= xnx − ynx . (4.9)
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Take x = 1 − 1
m and y = 2m−2

2m−1x for m ≥ 2, then 1 > x > y > 0 and nx = m. For any
β ∈ (0, 1], due to (4.9),

sup
x 6=y

‖πx − πy‖var

|x− y|β
≥ lim
m→∞

(1− 1
m )m − (1− 1

m )m(1− 1
2m−1 )m

(1− 1
m )β 1

(2m−1)β

= lim
m→∞

(2m− 1)β
(

1− (1− 1

2m− 1
)m
)

=∞.

(4.10)

All assertions in Example 2.1 have been proved.

Before presenting the proofs of Theorem 2.3 and Theorem 2.4, let us introduce the
main challenge in the proofs. Firstly, we should pay more attention to the difficulty
caused by the full dependence of the two time-scale system (Xε,α

t , Y ε,αt ). To overcome
this difficulty, we shall use the coupling method developed in Section 3. Secondly, we
need to pay attention to the essential difference between the distributions of (Xε,α

t )t∈[0,T ]

and those of (Y ε,αt )t∈[0,T ] for ε, α ∈ (0, 1) given T > 0. Precisely, for each fixed T > 0,
let C([0, T ];Rd) be the space of continuous paths from [0, T ] to Rd, and D([0, T ];S) the
Skorokhod space containing right continuous paths with left limits. Then under condition
(A1), the distributions of {(Xε,α

t )t∈[0,T ]; ε, α > 0} in C([0, T ];Rd) is tight. However, the
distributions of {(Y ε,αt )t∈[0,T ]; ε, α > 0} in D([0, T ];S) is not tight, which can be seen from
the following simple and meaningful example given in [39, Example 7.3, p.172].

Example 4.1 ([39]). Let (Λαt )t∈[0,T ] be a continuous time Markov chain on the state
space S = {1, 2} with transition rate

1

α

(
−λ λ

µ −µ

)
,

for some λ, µ > 0. Then, for each T > 0 the collection of distributions of (Λαt )t∈[0,T ] for
α ∈ (0, 1) is not tight.

Argument of Theorem 2.3. Let (Xε,α
t , Y ε,αt ) be a solution to SDEs (1.1), (1.2). Based

on Skorokhod’s representation theorem, similar to SDE (3.7), (Xε,α
t , Y ε,αt ) can be ex-

pressed as a solution to SDEs driven by a Brownian motion and a Poisson random
measure respectively. In the following, this expression of (Xε,α

t , Y ε,αt ) helps us to use
the method introduced in Section 3 to construct the desired coupling process so as to
decouple the interaction between (Y ε,αt ) and (Xε,α

t ).

For δ > 0, let t(δ) = [ tδ ]δ, where [ tδ ] = max{n ∈ N;n ≤ t
δ}. Due to the boundedness of

b and σ in (A1), it follows from (1.1) that

E|Xε,α
t −Xε,α

t(δ)|
2 ≤ 2E

[( ∫ t

t(δ)

|b(Xε,α
s , Y ε,αs )|ds

)2]
+2εE

[ ∫ t

t(δ)

‖σ(Xε,α
s , Y ε,αs )‖2ds

]
≤ 2K2

2 (δ2 + εδ).

Similarly, we can deduce that E|Xε,α
t − Xε,α

t(δ)| ≤ K2

(
δ + ε

√
δ
)
. By Burkholder-Davis-

Gundy’s inequality and (A1), there exists a constant C̃2 > 0 such that for each T > 0,

E
[

sup
t∈[0,T ]

|Xε,α
t − X̄t|2

]
≤ 2E

[
sup
t∈[0,T ]

∣∣∣ ∫ t

0

b(Xε,α
s , Y ε,αs )− b̄(X̄s)ds

∣∣∣2]+ 2εC̃2K
2
2T.

(4.11)
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Averaging principle for regime-switching processes

Using the triangle inequality, we divide the estimate of E|Xε,α
t − X̄t| into five terms:

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

b(Xε,α
s , Y ε,αs )− b̄(X̄s)ds

∣∣∣2]
≤4E

[(∫ T

0

|b(Xε,α
s , Y ε,αs )−b(Xε,α

s(δ), Y
ε,α
s )|ds

)2]
+4E

[(∫ T

0

|b̄(Xε,α
s(δ))−b̄(X̄s(δ))|ds

)2]
+ 4E

[(∫ T

0

|b̄(X̄s(δ))−b̄(X̄s)|ds
)2]

+4E
[

sup
t∈[0,T ]

(∫ t

0

b(Xε,α
s(δ), Y

ε,α
s )−b̄(Xε,α

s(δ))ds
)2]

=: (I) + (II) + (III) + (IV).

(4.12)

We shall estimate the right hand side of (4.11) terms by terms. By (A1)

(I) ≤ 4K1T

∫ T

0

E
[
|Xε,α

s −Xε,α
s(δ)|

2
]
ds ≤ 8T 2K1K

2
2 (δ2 + εδ). (4.13)

Due to (4.6),

(II) = 4T

∫ T

0

E
[
|b̄(Xε,α

s(δ))−b̄(X̄s(δ))|2
]
ds

≤ 4T
(
K1+

2K3K2c1
λ1

)2∫ T

0

E
[
|Xε,α

s(δ)−X̄s(δ)|2
]
ds

≤ 4T
(
K1+

2K3K2c1
λ1

)2∫ T

0

E
[

sup
r∈[0,s]

|Xε,α
r −X̄r|2

]
ds,

(4.14)

and

(III) = 4T

∫ T

0

E
[
|b̄(X̄s(δ))− b̄(X̄s)|2

]
ds

≤ 4T
(
K1+

2K3K2c1
λ1

)2 ∫ T

0

E|X̄s(δ) − X̄s|2ds

≤ 4δ2K2
2T

2
(
K1+

2K3K2c1
λ1

)2
.

(4.15)

To deal with term (IV), we first estimate the following term

E
[( ∫ (k+1)δ

kδ

b(Xε,α
s(δ), Y

ε,α
s )− b̄(Xε,α

s(δ))ds
)2]

= 2E
[∫ (k+1)δ

kδ

∫ (k+1)δ

r

(
b(Xε,α

kδ , Y
ε,α
s )−b̄(Xε,α

kδ )
)(
b(Xε,α

kδ , Y
ε,α
r )−b̄(Xε,α

kδ )
)
dsdr

]
=2E

[∫ (k+1)δ

kδ

∫ (k+1)δ

r

E
[
b(Xε,α

kδ , Y
ε,α
s )−b̄(Xε,α

kδ )
∣∣Fr

](
b(Xε,α

kδ , Y
ε,α
r )−b̄(Xε,α

kδ )
)
dsdr

]
(4.16)

To estimate
∫ (k+1)δ

r
E
[
b(Xε,α

kδ , Y
ε,α
s )− b̄(Xε,α

kδ )
∣∣Fr

]
ds, we introduce an auxiliary process

(Ỹ
(r)
t )t≥r for r ≥ kδ constructed as in Lemma 3.1 such that:

• Under the conditional expectation E[ · |Fr], (Ỹ
(r)
t )t≥r is a Markov chain on S with

transition rate matrix
(

1
αqij(X

ε,α
kδ )

)
i,j∈S and satisfies Ỹ (r)

r = Y ε,αr .
• The following estimate holds:

1

(k + 1)δ − r

∫ (k+1)δ

r

E
[
1{Y ε,αs 6=Ỹ (r)

s }

∣∣Fr

]
ds

≤ 1

α

∫ (k+1)δ

r

E
[
‖Q(Xε,α

s )−Q(Xε,α
kδ )‖`1 |Fr

]
ds

≤ K3

α

∫ (k+1)δ

r

E[|Xε,α
s −X

ε,α
kδ |
∣∣Fr]ds.

(4.17)
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Noting the scale 1/α of the transition rate matrix of (Ỹ
(r)
t )t≥r, we have

E
[
f(Ỹ

(r)
t )|Fr

]
= P

Xε,αkδ
t−r
α

(f)(Y ε,αr ), t > r,

for any bounded measurable function f on S, where P xt denotes the semigroup associated
with the Q-matrix (qij(x))i,j∈S as before. By (A4), for any h ∈ B(S) with |h| ≤ 1,

E
[
h(Ỹ

(r)
t )− πX

ε,α
kδ (h)

∣∣Fr

]
≤ sup
x∈Rd

sup
i∈S
‖P t−r

α
(i, ·)− πx‖var ≤ c1e−λ1

t−r
α , t > r. (4.18)

Due to (4.16), using (4.17) and (4.18),

E
[( ∫ (k+1)δ

kδ

b(Xε,α
s(δ), Y

ε,α
s )− b̄(Xε,α

s(δ))ds
)2]

≤ 2E
[∫ (k+1)δ

kδ

∫ (k+1)δ

r

(
E
[
b(Xε,α

kδ , Y
ε,α
s )−b(Xε,α

kδ , Ỹ
(r)
s )

∣∣Fr

]
+ E

[
b(Xε,α

kδ , Ỹ
(r)
s )−b̄(Xε,α

kδ )
∣∣Fr

])(
b(Xε,α

kδ , Y
ε,α
r )−b̄(Xε,α

kδ )
)
dsdr

]
≤ 2E

[∫ (k+1)δ

kδ

∫ (k+1)δ

r

(
2K2E

[
1{Y ε,αs 6=Ỹ (r)

s }

∣∣Fr

]
+K2c1e−λ1

s−r
α

)∣∣b(Xε,α
kδ , Y

ε,α
r )−b̄(Xε,α

kδ )
∣∣dsdr]

≤ E
[∫ (k+1)δ

kδ

{4K2K3

α
((k + 1)δ − r)

∫ (k+1)δ

r

E[|Xε,α
s −Xε,α

kδ |
∣∣Fr]ds

+
2αc1K2

λ1

(
1− e−

λ1((k+1)δ−r)
α

)}∣∣b(Xε,α
kδ , Y

ε,α
r )− b̄(Xε,α

kδ )
∣∣dr]

≤ 4K2
2K3δ

α

∫ (k+1)δ

kδ

∫ (k+1)δ

r

E|Xε,α
s −X

ε,α
kδ |dsdr + 4K2

2c1

(αδ
λ1
− α2

λ2
1

+
α2

λ2
1

e−λ1
δ
α

)
≤ 4K3

2K3

α
δ3
(
δ + ε

√
δ
)

+ 4K2
2c1

(αδ
λ1
− α2

λ2
1

+
α2

λ2
1

e−λ1δ/α
)
.

(4.19)

Therefore,

(IV) = 4E
[

sup
t∈[0,T ]

∣∣∣∫ t

0

b(Xε,α
s(δ), Y

ε,α
s )− b̄(Xε,α

s(δ))ds
∣∣∣2]

≤ 8
[T
δ

] [T/δ]−1∑
k=0

E
[( ∫ (k+1)δ

kδ

b(Xε,α
kδ , Y

ε,α
s )− b̄(Xε,α

kδ )ds
)2]

+ 8E
[( ∫ T

T (δ)

b(Xε,α
s(δ), Y

ε,α
s )− b̄(Xε,α

s(δ))ds
)2]

≤ 32K3
2K3T

2
(δ2

α
+ε

δ
3
2

α

)
+32T 2K2

2c1

( α

λ1δ
− α2

λ2
1δ

2
+

α2

λ2
1δ

2
e−λ1

δ
α

)
+ 32K2

2δ
2.

(4.20)

Consequently, inserting the estimates (4.13), (4.14), (4.15), (4.17) into (4.11), we obtain

E
[

sup
t∈[0,T ]

|Xε,α
t − X̄t|2

]
≤ 16T 2K1K

2
2 (δ2 + εδ) + 8T

(
K1 +

2K3K2c1
λ1

)2 ∫ T

0

E
[

sup
r∈[0,s]

|Xε,α
r − X̄r|2

]
ds

+ 8δ2K2
2T

2
(
K1 +

2K3K2c1
λ1

)2
+ 64K3

2K3T
2
(δ2

α
+ ε

δ
3
2

α

)
+ 64K2

2T
2c1

( α

λ1δ
− α2

λ2
1δ

2
+

α2

λ2
1δ

2
e−λ1

δ
α

)
+ 64K2

2δ
2 + 2εC̃2K

2
2T.
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Averaging principle for regime-switching processes

Taking δ = α
3
4 and using Gronwall’s inequality, the previous inequality yields that

lim
ε,α→0

E
[

sup
t∈[0,T ]

|Xε,α
t − X̄t|2

]
= 0, (4.21)

and the proof of this theorem is complete.

Argument of Proposition 2.2. For any bounded function h on S with |h| ≤ 1, take
some i0 ∈ S, and then it holds that

|πx(h)− πy(h)|

≤
∣∣πx(h)− 1

t

∫ t

0

P xs h(i0)ds
∣∣+∣∣πy(h)− 1

t

∫ t

0

P ys h(i0)ds
∣∣+∣∣1

t

∫ t

0

(
P xs h(i0)−P ys h(i0)

)
ds
∣∣

≤ 1

t

∫ t

0

∣∣P xs h(i0)−πx(h)
∣∣ds+

1

t

∫ t

0

∣∣P ys h(i0)− πy(h)
∣∣ds+

1

t

∫ t

0

2P(Ỹ xs 6= Ỹ ys )ds

≤ 1

t

∫ t

0

‖P xs (i0, ·)− πx‖vards+
1

t

∫ t

0

‖P ys (i0, ·)− πy‖vards+‖Q(x)−Q(y)‖`1t

≤ 2θ(i0)

t

∫ ∞
0

ηsds+ ‖Q(x)−Q(y)‖`1t, ∀ t > 0,

where we have used Lemma 3.1 and (A4), which ensures that
∫∞

0
ηsds < ∞. Then, by

taking t =

√
2θ(i0)

∫∞
0
ηsds

‖Q(x)−Q(y)‖`1
, we arrive at

|πx(h)− πy(h)| ≤ 2

√
2θ(i0)

∫ ∞
0

ηsds ‖Q(x)−Q(y)‖`1 . (4.22)

By the arbitrariness of h and (A3),

‖πx − πy‖var ≤ 2
(

2K3θ(i0)

∫ ∞
0

ηsds
) 1

2√|x− y|,
and further the desired estimate (2.4) by taking the infimum for θ(i0) over i0 ∈ S.

Analogous to the deduction of (4.6), under conditions (A1)-(A3) and (A5), b̄ is 1/2-
Hölder continuous by virtue of Proposition 2.2. According to Peano’s theorem, ODE (2.6)
must admit a solution. However, it may loss the uniqueness of solution. Moreover, in
contrast to the L1-convergence in Theorem 2.3 in the strongly ergodic condition, we can
only prove the weak convergence of (Xε,α

t ) to (X̄t).

Proof of Theorem 2.4. Denote by L ε,α the generator of (Xε,α
t ) given by

L ε,αf(x, i)=〈∇f(x), b(x, i)〉+ ε

2
tr
(
(σσ∗)(x, i)∇2f(x)

)
, f ∈C2

b (Rd), x∈Rd, i∈S. (4.23)

Here, for a matrix A, A∗ denotes its transpose and tr(A) its trace. Let T > 0 be fixed.
Let C([0, T ];Rd) be endowed with uniform norm, i.e. ‖x· − y·‖∞ = supt∈[0,T ] |xt − yt| for

x·, y· ∈ C([0, T ];Rd). Denote by LXε,α the law of the process (Xε,α
t )t∈[0,T ] in the path

space C([0, T ];Rd).

Due to the boundedness of b and σ in (A1), it is standard to show

E
[

sup
t∈[0,T ]

|Xε,α
t |p

]
≤ C(T, x0, p), ∀ p ≥ 1, (4.24)
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where x0 = Xε,α
0 , C(T, x0, p) is a constant depending on T, x0 and p. By Itô’s formula, for

0 ≤ s < t ≤ T ,

E|Xε,α
t −Xε,α

s |4 ≤ 8E
∣∣∣ ∫ t

s

b(Xε,α
r , Y ε,αr )dr

∣∣∣4+8ε2E

∣∣∣ ∫ t

s

σ(Xε,α
r , Y ε,αr )dWr

∣∣∣4
≤ 8(t− s)3E

∫ t

s

|b(Xε,α
r , Y ε,αr )|4dr + 288ε2(t− s)E

∫ t

s

|σ(Xε,α
r , Y ε,αr )|4dr

≤ C(t− s)2

for some constant C > 0. Combing this with Xε,α
0 = x0, the collection of laws LXε,α for

ε, α > 0 over the space C([0, T ];Rd) is tight by virtue of [2, Theorem 12.3]. As a con-
sequence, there is a subsequence {LXε′,α′ ; ε′, α′ > 0} and a limit law LX̃ in C([0, T ];Rd)

such that LXε′,α′ converges weakly to LX̃ as ε′, α′ → 0. According to Skorokhod’s rep-

resentation theorem with a slight abuse of notation, we may assume that (Xε′,α′

t )t∈[0,T ]

converges almost surely to some (X̃t)t∈[0,T ] in C([0, T ];Rd) as ε′, α′ → 0.
In order to characterize the limit, we shall show that for any f ∈ C2

c (Rd), the space
of functions with compact support and continuous second order derivatives.

f(X̃t)− f(x0)−
∫ t

0

L f(X̃s)ds is a martingale,

where
L f(x) = 〈∇f(x), b̄(x)〉, and b̄(x) =

∑
i∈S

b(x, i)πxi . (4.25)

This means that (X̃t) is a solution to ODE (2.6).
To this end, it suffices to show that for any 0 ≤ s < t ≤ T , k ≥ 1, tm ≤ s for every

1 ≤ m ≤ k, for any bounded continuous function Φ on Rkd,

E
[(
f(X̃t)− f(X̃s)−

∫ t

s

L f(X̃r)dr
)

Φ(X̃t1 , . . . , X̃tk)
]

= 0, ∀ f ∈ C2
c (Rd). (4.26)

As a solution to SDE (1.1), (Xε′,α′

t ) satisfies

E
[(
f(Xε′,α′

t )− f(Xε′,α′

s )−
∫ t

s

L ε′,α′f(Xε′,α′

r , Y ε
′,α′

r )dr
)

Φ(Xε′,α′

t1 , . . . , Xε′,α′

tk
)
]

= 0. (4.27)

By the dominated convergence theorem, it is clear that

lim
ε′,α′→0

E
[(
f(Xε′,α′

t )−f(Xε′,α′

s )
)
Φ(Xε′,α′

t1 , . . . , Xε′,α′

tk
)
]

= E
[(
f(X̃t)−f(X̃s)

)
Φ(X̃t1 , . . . , X̃tk)

]
.

Hence, letting Fs = σ
{

(Xε′,α′

r , Y ε
′,α′

r , X̃r); 0≤ r≤ s, ε′, α′ > 0
}

, to derive (4.26) from (4.27)
we only need to show

lim
ε′,α′→0

E
[ ∫ t

s

(
L ε′,α′f(Xε′,α′

r , Y ε
′,α′

r )−L f(X̃r)
)
dr
∣∣∣Fs

]
= 0.

According to the expression (4.23), (4.25) of L ε′,α′ , L and the boundedness of σ, it
suffices to show

lim
ε′,α′→0

E
[(∫ t

s

(
〈∇f(Xε′,α′

r ), b(Xε′,α′

r , Y ε
′,α′

r )〉−〈∇f(X̃r), b̄(X̃r)〉
)
dr
)2∣∣∣Fs

]
= 0. (4.28)

Similar to the treatment of (4.11), we shall use the time discretization method and the
coupling method to show (4.28).
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Precisely, for δ > 0, let r(δ) = s+
[
r−s
δ

]
δ for r ∈ [s, t].

E
[( ∫ t

s

〈∇f(Xε′,α′

r ), b(Xε′,α′

r , Y ε
′,α′

r )〉 − 〈∇f(X̃r), b̄(X̃r)〉dr
)2∣∣∣Fs

]
≤ 3E

[(∫ t

s

〈∇f(Xε′,α′

r ), b(Xε′,α′

r , Y ε
′,α′

r )〉−〈∇f(Xε′,α′

r(δ) ), b(Xε′,α′

r(δ) , Y
ε′,α′

r )〉dr
)2∣∣∣Fs

]
+ 3E

[( ∫ t

s

〈∇f(Xε′,α′

r(δ) ), b(Xε′,α′

r(δ) , Y
ε′,α′

r )−b̄(Xε′,α′

r(δ) )〉dr
)2∣∣∣Fs

]
+ 3E

[( ∫ t

s

〈∇f(Xε′,α′

r(δ) ), b̄(Xε′,α′

r(δ) )〉 − 〈∇f(X̃r), b̄(X̃r)〉dr
)2∣∣∣Fs

]
=: Υ1 + Υ2 + Υ3.

(4.29)

Applying the boundedness and Lipschitz continuity of b, the Hölder continuity of b̄,

f ∈ C2
c (Rd), and the almost sure convergence of (Xε′,α′

t )t∈[0,T ] to (X̃t)t∈[0,T ] as ε′, α′ → 0,
it is clear that

lim
ε′,α′,δ→0

(
Υ1 + Υ3

)
= 0.

We proceed to estimate Υ2. Let Nt = [(t− s)/δ], sk = s+ kδ for 0 ≤ k ≤ Nt and sNt+1 = t.

Υ2 ≤ 3(Nt+1)

Nt∑
k=0

E
[(∫ sk+1

sk

〈∇f(Xε′,α′

sk
), b(Xε′,α′

sk
, Y ε

′,α′

r )−b̄(Xε′,α′

sk
)〉dr

)2∣∣∣Fs

]
= 6(Nt+1)

Nt∑
k=0

E
[∫ sk+1

sk

∫ sk+1

r

E
[
〈∇f(Xε′,α′

sk
), b(Xε′,α′

sk
, Y ε

′,α′

u )−b̄(Xε′,α′

sk
)〉
∣∣Fr

]
du

· 〈∇f(Xε′,α′

sk
), b(Xε′,α′

sk
, Y ε

′,α′

r )− b̄(Xε′,α′

sk
)〉dr

∣∣∣Fs

]
≤ 6(Nt+1)

Nt∑
k=0

E
[∫ sk+1

sk

∣∣∣∫ sk+1

r

E
[
〈∇f(Xε′,α′

sk
), b(Xε′,α′

sk
, Y ε

′,α′

u )−b̄(Xε′,α′

sk
)〉
∣∣Fr

]
du
∣∣∣

·
∣∣〈∇f(Xε′,α′

sk
), b(Xε′,α′

sk
, Y ε

′,α′

r )− b̄(Xε′,α′

sk
)〉
∣∣dr∣∣∣Fs

]
.

Completely similar to the estimate of (4.16) via (4.17)-(4.19) by applying (A5) instead
of (A4), to estimate

∫ sk+1

r
E
[
〈∇f(Xε′,α′

sk
), b(Xε′,α′

sk
, Y ε

′,α′

u )− b̄(Xε′,α′

sk
)〉
∣∣Fr

]
we introduce an

auxiliary process (Ỹ
(r)
t )t≥r satisfying

• (Ỹ
(r)
t )t≥r is a Markov chain under E[ · |Fr] on S with transition rate

(
1
α′ qij(X

ε′,α′

sk
)
)

and initial value Ỹ (r)
r = Y ε

′,α′

r .

• the following estimate holds

1

sk+1− r

∫ sk+1

r

E
[
1{Y ε′,α′u 6=Ỹ ε

′,α′
u }

∣∣Fr

]
du ≤ K3

α′

∫ sk+1

r

E
[
|Xε′,α′

u −Xε′,α′

sk
|
∣∣Fr

]
du.

Due to (A5), for any h ∈ B(S) with |h| ≤ 1,

E
[
h(Ỹ

(r)
t )− πX

ε′,α′
sk (h)

∣∣Fr

]
≤ sup
x∈Rd

‖P xt−r
α′

(Y ε
′,α′

r , ·)− πx‖var ≤ θ(Y ε
′,α′

r )η(t−r)/α′ , t > r.

EJP 29 (2024), paper 14.
Page 18/21

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1073
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Averaging principle for regime-switching processes

Therefore,
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(4.30)

By Itô’s formula and (2.7),
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Inserting (4.31) into (4.30), we obtain that
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(4.32)

Taking δ = α′
3
4 , (4.32) yields that limε′,α′→0 Υ2 = 0. Consequently, (4.28) holds, and

further (X̃t) is a solution to ODE (2.6).

If ODE (2.6) admits a unique solution, then for any subsequence of (Xε′,α′

t )t∈[0,T ]

as ε′, α′ → 0, the tightness of {LXε,α ; ε, α > 0} proved above tells us that there is

further a subsequence of (Xε′,α′

t )t∈[0,T ], which converges weakly to the unique solution

(X̄t)t∈[0,T ]. Hence, the arbitrariness of the subsequence (Xε′,α′

t )t∈[0,T ] means that the
whole sequence (Xε,α

t )t∈[0,T ] converges weakly to (X̄t)t∈[0,T ] as ε, α → 0. The proof of
Theorem 2.4 is complete.
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